JFP 13 (1): 125-138, January 2003. © 2003 Cambridge University Press
DOI: 10.1017/S0956796803001114 Printed in the United Kingdom

Chapter 9

Syntax Reference

This chapter summarises the syntax of Haskell 98.

9.1 Notational Conventions

These notational conventions are used for presenting syntax:

[pattern]

{pattern}
(pattern)
pat; | pats

Pal(parry

fibonacci

optional

Zero or more repetitions

grouping

choice

difference — elements generated by pat
except those generated by pat’
terminal syntax in typewriter font

BNF-like syntax is used throughout, with productions having the form:

nonterm —

alt; | alty | ... | alt,

There are some families of nonterminals indexed by precedence levels (written as a superscript).
Similarly, the nonterminals op, varop, and conop may have a double index: a letter {, r, or n for
left-, right- or nonassociativity and a precedence level. A precedence-level variable : ranges from 0
to 9; an associativity variable « varies over {/, r, n}. Thus, for example

https://doi.org/10.1017/50956796803001114 Published online by Cambridge University Press

125

https://doi.org/10.1017/S0956796803001114

126 CHAPTER 9. SYNTAX REFERENCE
aexp — | eacp“’l qop(“’i))

actually stands for 30 productions, with 10 substitutions for ¢ and 3 for a.

In both the lexical and the context-free syntax, there are some ambiguities that are to be resolved
by making grammatical phrases as long as possible, proceeding from left to right (in shift-reduce
parsing, resolving shift/reduce conflicts by shifting). In the lexical syntax, this is the “maximal
munch” rule. In the context-free syntax, this means that conditionals, let-expressions, and lambda
abstractions extend to the right as far as possible.

9.2 Lexical Syntax

program — { lexeme | whitespace }
lexeme — quarid | geconid | quarsym | gconsym

| literal | special | reservedop | reservedid
literal — integer | float | char | string
special = () 15101111 4])
whitespace — whitestuff {whitestuff }
whitestuff — whitechar | comment | ncomment
whitechar — newline | vertab | space | tab | uniWhite
newline — return linefeed | return | linefeed | formfeed
return — acarriage return
linefeed — aline feed
vertab — a vertical tab
formfeed — aform feed
space — aspace
tab — ahorizontal tab
uniWhite — any Unicode character defined as whitespace
comment — dashes [anysympon {any} | newline
dashes - —-=A{-}
opencom — {-
closecom — =}
ncomment — opencom ANYseq{ncomment ANYseq} closecom
ANYS@Q — {ANY}({ANY} (opencom | closecom) {ANY })
ANY — graphic | whitechar
any — graphic | space | tab
graphic — small | large | symbol | digit | special | : | " |’
small — ascSmall | uniSmall | _
ascSmall — a|b|...|z

https://doi.org/10.1017/50956796803001114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001114

9.2. LEXICAL SYNTAX 127

uniSmall

large
asclLarge
untLarge
symbol

ascSymbol

untSymbol
digit
ascDigit
uniDigit
octit

hexit

varid
conid
reservedid

varsym
consym
reservedop

varid
conid
tyvar
tycon
tycls
modid

quarid
gconid
qlycon
qtycls
quarsym
geconsym

decimal
octal

—

Ll L4 d —1L 11 Le Ll —=4 L1l

A AN

—
—

hexadecimal—

any Unicode lowercase letter

ascLarge | unilLarge
A|B|...|2Z

any uppercase or titlecase Unicode letter
ascSymbol | uniSymbol

special | _ | 2| ")

?

VI#]S] &|*|+]. 2| @
N =1

any Unicode symbol or punctuation
ascDigit | uniDigit

/<l=1>

0|1]...1]9

any Unicode decimal digit
0|1]...1]7

digit |A| ... |Fla]|...|£

(small {small | large | digit | * })(reservedid)

large {small | large | digit | ' }

case | class | data | default |deriving |do | else
if | import | in | infix | infix1l | infixr | instance
let | module | newtype | of | then | type | where | _

(symbOI {SymbOZ :})(reservedop | dashes)
(: {SymbOZ | :})(reservedop>

sl =N <= > @] [=>
(variables)
(constructors)
varid (type variables)
conid (type constructors)
conid (type classes)
conid (modules)
[modid . | varid
[modid . | conid
[modid . | tycon
[modid .] tycls
[modid . | varsym
[modid . | consym
digit{digit }
octit{octit}
hexit{hexit}

https://doi.org/10.1017/50956796803001114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001114

128 CHAPTER 9. SYNTAX REFERENCE
integer — decimal
| 00 octal | 00 octal
| 0x hexadecimal | 0X hexzadecimal
float — decimal . decimal [exponent]
| decimal exponent
exponent — (e |E) [+] -] decimal
char - (graphic<, 1\ | space | escape<\&>) ’
string - " {gmphic< ") | space | escape | gap} "
escape — \ (charesc | ascii | decimal | o octal | x hexadecimal)
charesc — a|blf|n|r|t|v|\|"]"]|&
ascii — “ecntrl | NUL | SOH | STX | ETX | EOT | ENQ | ACK
| BEL|BS|HT|LF|VT|FF|CR|SO|SI|DLE
| DC1|DC2|DC3|DC4|NAK|SYN|ETB | CAN
| EM|SUB|ESC|FS|GS|RS|US|SP|DEL
entrl — ascLarge |Q| [[\]1]|"]|_
gap — \ whitechar {whitechar} \
9.3 Layout

Section 2.7 gives an informal discussion of the layout rule. This section defines it more precisely.

The meaning of a Haskell program may depend on its layout. The effect of layout on its meaning
can be completely described by adding braces and semicolons in places determined by the layout.
The meaning of this augmented program is now layout insensitive.

The effect of layout is specified in this section by describing how to add braces and semicolons to
a laid-out program. The specification takes the form of a function L that performs the translation.
The input to 7 is:

o A stream of lexemes as specified by the lexical syntax in the Haskell report, with the following
additional tokens:

- Ifa let, where, do, or of keyword is not followed by the lexeme {, the token {n} is

inserted after the keyword, where 7 is the indentation of the next lexeme if there is one,
or 0 if the end of file has been reached.

If the first lexeme of a module is not { or module, then it is preceded by {n} where n
is the indentation of the lexeme.

— Where the start of a lexeme is preceded only by white space on the same line, this

lexeme is preceded by < n > where n is the indentation of the lexeme, provided that
it is not, as a consequence of the first two rules, preceded by {n}. (NB: a string literal
may span multiple lines — Section 2.6. So in the fragment

https://doi.org/10.1017/50956796803001114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001114

9.3. LAYOUT 129

f = ("Hello \
\Bill", "Jake")
There is no < n > inserted before the \Bill, because it is not the beginning of a
complete lexeme; nor before the ,, because it is not preceded only by white space.)

o A stack of “layout contexts”, in which each element is either:

— Zero, indicating that the enclosing context is explicit (i.e. the programmer supplied the
opening brace. If the innermost context is 0, then no layout tokens will be inserted until
either the enclosing context ends or a new context is pushed.

— A positive integer, which is the indentation column of the enclosing layout context.

The “indentation” of a lexeme is the column number of the first character of that lexeme; the inden-
tation of a line is the indentation of its leftmost lexeme. To determine the column number, assume a
fixed-width font with the following conventions:

o The characters newline, return, linefeed, and formfeed, all start a new line.
e The first column is designated column 1, not O.
e Tab stops are 8 characters apart.

e A tab character causes the insertion of enough spaces to align the current position with the
next tab stop.

For the purposes of the layout rule, Unicode characters in a source program are considered to be
of the same, fixed, width as an ASCII character. However, to avoid visual confusion, programmers
should avoid writing programs in which the meaning of implicit layout depends on the width of
non-space characters.

The application
L tokens]

delivers a layout-insensitive translation of tokens, where tokens is the result of lexically analysing
a module and adding column-number indicators to it as described above. The definition of L is as

@,

follows, where we use “:” as a stream construction operator, and “[]” for the empty stream.

https://doi.org/10.1017/50956796803001114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001114

130 CHAPTER 9. SYNTAX REFERENCE

L(<n>:ts)(m:ms) = ; : (Lts(m:ms)) ifm=n

= }: (L(<n>:ts)ms) ifn<m
L(<n>:ts)ms = Ltsms
L{{n}:ts)(m:ms) = {: (Lts(n:m:ms)) ifn > m (Note 1)
L ({n}:ts)] = {: (Lts[n)]) ifn >0 (Note 1)
L ({n} :ts) ms = {:}:(L(<n>:ts)ms) (Note2)
L(}:ts) (0:ms) = } : (Ltsms) (Note 3)
L (}:ts)ms = parse-error (Note 3)
L ({:ts)ms = { : (Lts(0:ms)) (Note 4)
L (t:ts) (m:ms) = } : (L(t:ts)ms) if m/ = 0 and parse-error(¢)

(Note 5)

L (t:ts) ms = ¢ : (Ltsms)
il _
L[] (m:ms) = }: L[]ms if m # 0 (Note 6)

Note 1. A nested context must be further indented than the enclosing context (n > m). If not, L
fails, and the compiler should indicate a layout error. An example is:

f x = let
h yv = let

in p
in h
Here, the definition of p is indented less than the indentation of the enclosing context, which
is set in this case by the definition of h.

Note 2. If the first token after awhere (say) is not indented more than the enclosing layout context,
then the block must be empty, so empty braces are inserted. The {n} token is replaced by
< n >, to mimic the situation if the empty braces had been explicit.

Note 3. By matching against O for the current layout context, we ensure that an explicit close brace
can only match an explicit open brace. A parse error results if an explicit close brace matches
an implicit open brace.

Note 4. This clause means that all brace pairs are treated as explicit layout contexts, including
labelled construction and update (Section 3.15). This is a difference between this formulation
and Haskell 1.4.

Note 5. The side condition parse-error(¢) is to be interpreted as follows: if the tokens generated so
far by L together with the next token ¢ represent an invalid prefix of the Haskell grammar,

https://doi.org/10.1017/50956796803001114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001114

9.4. LITERATE COMMENTS 131

and the tokens generated so far by L followed by the token “}” represent a valid prefix of the
Haskell grammar, then parse-error(?) is true.

The test m/ = 0 checks that an implicitly-added closing brace would match an implicit open
brace.

Note 6. At the end of the input, any pending close-braces are inserted. It is an error at this point to

be within a non-layout context (i.e. m = 0).

If none of the rules given above matches, then the algorithm fails. It can fail for instance when the
end of the input is reached, and a non-layout context is active, since the close brace is missing. Some
error conditions are not detected by the algorithm, although they could be: for example 1let }.

Note 1 implements the feature that layout processing can be stopped prematurely by a parse error.
For example

let x = e; y = x in e’
is valid, because it translates to
let { x =e; y =x } in e’

The close brace is inserted due to the parse error rule above. The parse-error rule is hard to imple-
ment in its full generality, because doing so involves fixities. For example, the expression

do a == == C
has a single unambiguous (albeit probably type-incorrect) parse, namely
(do { a == b }) == c¢

because (==) is non-associative. Programmers are therefore advised to avoid writing code that
requires the parser to insert a closing brace in such situations.

9.4 Literate Comments

The “literate comment” convention, first developed by Richard Bird and Philip Wadler for Orwell,
and inspired in turn by Donald Knuth’s “literate programming”, is an alternative style for encoding
Haskell source code. The literate style encourages comments by making them the default. A line in
which “>” is the first character is treated as part of the program; all other lines are comment.

The program text is recovered by taking only those lines beginning with “>”, and replacing the
leading “>” with a space. Layout and comments apply exactly as described in Chapter 9 in the
resulting text.

To capture some cases where one omits an “>" by mistake, it is an error for a program line to
appear adjacent to a non-blank comment line, where a line is taken as blank if it consists only of
whitespace.

https://doi.org/10.1017/50956796803001114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001114

132 CHAPTER 9. SYNTAX REFERENCE

By convention, the style of comment is indicated by the file extension, with “.hs” indicating a
usual Haskell file and “. 1hs” indicating a literate Haskell file. Using this style, a simple factorial
program would be:

This literate program prompts the user for a number
and prints the factorial of that number:

> main :: IO ()

> main = do putStr "Enter a number: "

> 1 <- readLine

> putStr "nt= "

> print (fact (read 1))
This is the factorial function.

> fact :: Integer -> Integer

> fact 0 1
> fact n = n * fact (n-1)

An alternative style of literate programming is particularly suitable for use with the LaTeX text
processing system. In this convention, only those parts of the literate program that are entirely
enclosed between \begin{code}...\end{code} delimiters are treated as program text; all
other lines are comment. More precisely:

e Program code begins on the first line following a line that begins \begin{code}.

e Program code ends just before a subsequent line that begins \end{code} (ignoring string
literals, of course).

It is not necessary to insert additional blank lines before or after these delimiters, though it may be
stylistically desirable. For example,

\documentstyle{article}

\begin{document}

\section{Introduction}

This is a trivial program that prints the first 20 factorials.

\begin{code}

main :: IO ()

main = print [(n, product [l..n]) | n <- [1..20]]
\end{code}

\end{document}

This style uses the same file extension. It is not advisable to mix these two styles in the same file.

https://doi.org/10.1017/50956796803001114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001114

9.5. CONTEXT-FREE SYNTAX

9.5 Context-Free Syntax

module

body

impdecls

exports

export

impdecl

impspec

import

cname

topdecls
topdecl

decls
decl

%
|
%
|
|

—

b—1 —1

—— 1

Ll

module modid [exports] where body
body

{ impdecls ; topdecls }

{ impdecls }

{ topdecls }

impdecl; ; ... ; impdecl, (n>1)
(export; , ... , export, [,]) (n>0)
quar

qtycon [(«.) | (cname; , ..., cname,)] (n > 0)
qtycls [(+.) | (quary , ..., quar,)] (n>0)

module modid

import [qualified] modid [as modid] [impspec]

(empty declaration)

(import; , ... , import, [,]) (n>0)
hiding (import; , ... , import, [,]) (n>0)

var
tycon [(«.) | (cname; , ..., cname,)] (n > 0)
tycls [(« o) | (var; , ... , var,)] (n>0)
var | con

topdecl; ; ... ; topdecl, (n>0)

type simpletype = type

data [context =>] simpletype = constrs [deriving]
newtype [context =>] simpletype = newconstr [deriving]
class [scontext =>] tycls tyvar [where cdecls]
instance [scontext =>] qtycls inst [where idecls]
default (type; , ..., type,) (n>0)
decl

{decl; ; ... ; decl, }
gendecl

—~

n>0)

https://doi.org/10.1017/50956796803001114 Published online by Cambridge University Press

133

https://doi.org/10.1017/S0956796803001114

134

|
cdecls —
cdecl —

|
idecls —
idecl —

|
gendecl —

|

|
ops —
vars —
fizity —
type —
btype —
atype —

|

|

|

|
gtycon —

|

|

|

|
context —

|
class —

|
scontext —

|
simpleclass —

simpletype —

(funlhs | pat”) rhs

{ cdecl; ; ... ; cdecl, }
gendecl

(funlhs | var) rhs
{ idecl; ;3 ... ; idecl, }
(funlhs | var) rhs

[context =>] type
fizity [integer] ops

vars 3

Opi v --- 1 OPn
var; 4 ..., var,
infixl | infixr | infix

btype [-> type]
[btype] atype

gtycon

tyvar

(type; , ...
[type]

(type)

¢+ Lyper)

qlycon
()

[]
(=>)
G4 h

class

(class; , ... , class,)
qtycls tyvar

qtycls (tyvar atype; ...
stmpleclass

(stmpleclass; , ...

qtycls tyvar

atype,)

, simpleclass,,)

tycon tyvar; ... tyvarg

https://doi.org/10.1017/50956796803001114 Published online by Cambridge University Press

CHAPTER 9. SYNTAX REFERENCE

(n>0)

(n>0)

(empty)

(type signature)
(fixity declaration)
(empty declaration)

(function type)

(type application)

(tuple type, k > 2)

(list type)
(parenthesized constructor)

unit type)

list constructor)
function constructor)
tupling constructors)

(
(
(
(

(k> 0)

https://doi.org/10.1017/S0956796803001114

9.5. CONTEXT-FREE SYNTAX

constrs
constr

newconstr

fielddecl
deriving
dclass

inst

funlhs

rhs

gdrhs

gd

exp

exp

lexp’
lexp?®
rexp’

exp?

! —— 1 = Lll—l——11

— Ll —101—1

constr; | ... | constr,

con [!] atypq .. Y] atypey

(btype | 1 atype) conop (btype | ! atype)
con { fielddecl; , ... , fielddecl, }
con atype

con { var :: type }

vars sz (type | ! atype)

deriving (dclass | (dclass;, ...,
qtycls

gtycon

(glycon tyvar; ... tyvarg)

(tyvar; , ... , tyvarg)

[tyvar]

(tyvar; => tyvary)

var apat { apat }

pat ! varop(®) patit!
Ipat® varop) pati+?
pat'+! varop(r’i) rpat’
(funlhs) apat { apat }

= exp [where decls]
gdrhs [where decls]

gd = exp [gdrhs]

| exp’

exp’ 11 [context =>] type
exp’

exp'™ [qop(™) expit?]
lexp’
rexp’

(leap’ | exp™?) qop) exp™!

- exp”
exp't! qop™ (reap’ | exp't!)
\ apat; ... apat, => exp

let decls in exp
if ezp then exp else exp
case exp of { alts }

https://doi.org/10.1017/50956796803001114 Published online by Cambridge University Press

135

n>1)

arity con = k, k > 0)
infix conop)

n>0)

(
(
(
(
delass,))(n > 0)

(k > 0, tyvars distinct)
(k > 2, tyvars distinct)

tyvar; and tyvars distinct

(expression type signature)

lambda abstraction, n > 1)
let expression)

conditional)

case expression)

(
(
(
(

https://doi.org/10.1017/S0956796803001114

136

fexp

aexp

qual

alts
alt

gdpat

stmts
stmt

fbind

pat

J,__

- - - \L

—— 1 ——

4

———1

do { stmis }
fexp
[feap] acap

quar

geon

literal

(exp)

(expy , ..., €xpg)

[exps , ... , €xpr]

[exp; [, exps] « . [exps]]

[exp | qual; , ..., qual,]
(exp™t! qoplai))

(lexp” qop(t))

(qop(’y)
(qop(y) rexp’)

gcon { fbind; , ... , fbind, }
aexP(yeony { findy o ..., fbind, }

e$pi—|—1)

pat <— exp
let decls
exp

alt; 3 ... ; alt,
pat —=> exp [where decls]
pat gdpat [where decls]

gd => exp [gdpat |

stmt; ... stmt, exp [,]

exp ;
pat <- ezxp ;
let decls ;

4

quar = exp

var + integer

https://doi.org/10.1017/50956796803001114 Published online by Cambridge University Press

CHAPTER 9. SYNTAX REFERENCE

(do expression)

(function application)

(variable)
(general constructor)

(parenthesized expression)
(tuple, k > 2)

(list, k > 1)

(arithmetic sequence)

(list comprehension, n > 1)
(left section)

(left section)

(right section)

(
(
(

right section)

labeled construction, n > 0)
labeled update, n > 1)

(generator)
(local declaration)
(guard)

(n>1)

(empty alternative)
(n>0)

(empty statement)

(successor pattern)

https://doi.org/10.1017/S0956796803001114

9.5. CONTEXT-FREE SYNTAX

pati

Ipat’
Ipat®
rpati
pat!’

apat

fpat

geon

var
quar
con
qgecon
varop
quarop
conop
qgconop
op

qop

geonsym

R e

———1

A Y

pata

pat' 1 [geonop™?) pat'+1]

Ipat’

rpati

(Ipat’ | pati*?!) geonop?) patit!
- (integer | float)

pat'T! geonop™ (rpat’ | pat'+1)
apat

gcon apaty ... apalg

var [@ apat]
geon

gcon { fpat; , ...
literal

r Jpaty }

(pat)
(paty , ...

[paty , ...
~ apat

’ patk)
’ patk]

quar = pat

()
(1]
({1

qgecon

varid | (varsym)
quarid | (quarsym)
conid | (consym)
qeonid | (gconsym)
varsym |~ varid®
quarsym |~ quarid®
consym | conid®
gconsym |~ geonid®
varop | conop
quarop | qconop
qeonsym

https://doi.org/10.1017/50956796803001114 Published online by Cambridge University Press

137

(negative literal)

(arity gcon = k, k> 1)

(as pattern)
(arity gcon = 0)
(labeled pattern, k& > 0)

(wildcard)
(parenthesized pattern)
(tuple pattern, k& > 2)
(list pattern, k > 1)
(irrefutable pattern)

variable)

qualified variable)
constructor)

qualified constructor)

variable operator)

qualified variable operator)
constructor operator)

qualified constructor operator)
operator)

qualified operator)

=

https://doi.org/10.1017/S0956796803001114

https://doi.org/10.1017/50956796803001114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001114

