
EQUIVALENT ABELIAN GROUPS 

J. DE GROOT 

1. Introduction. Throughout this note all groups are abelian, written 
additively. We refer to Kurosh (8; 9) for notation, terminology and theorems 
used without reference. We recall the notion of a serving subgroup (or pure 
subgroup) © of a group @. This is a subgroup © in which for every natural 
number n every equation nx = s, s £ © can be solved provided that it can 
be solved in @. If © is torsion-free, ''linearly closed" subgroups coincide with 
serving subgroups and © is a serving subgroup if and only if ©/© is torsion-
free. Direct summands are serving subgroups but, in general, the converse is 
untrue (cf. 4). 

We call the groups © and § equivalent (or equivalent by subgroups) if each 
is isomorphic to a subgroup of the other, i.e. 

where </> and $ are isomorphic maps. If ©' and § ' are serving subgroups or 
direct summands of § and © respectively, we call © and § equivalent by 
serving subgroups or equivalent by direct summands. 

We give a short survey of the main results obtained so far (a "positive 
answer" means that equivalence implies isomorphism of the groups under 
consideration, otherwise we speak of a "negative answer"). 

Equivalence by subgroups. In the main the problem is solved. In general, 
the answer is negative. De Bruijn (orally) and Kaplansky (6) gave a counter­
example for periodic groups. Here is one for the case of torsion-free groups 
(by a slight alteration the groups can be made countable). 

Example (i). © is the additive group of real numbers, § = © + ( £ , where 
S is an infinite cyclic group. § can be embedded isomorphically in @, just as 
any torsion-free group with at most continuously many elements. So © and § 
are equivalent but clearly not isomorphic. 

Nevertheless, in each of the following cases, the answer is positive: the class 
of complete groups,1 the class of groups with a finite number of generators 
(cf. 1), the class of subgroups of the additive group of rationals. 

Equivalence by serving subgroups. In the main the problem is solved. 
In general, the answer is negative. Indeed, in §4, we shall construct a counter­
example. © and § are both countable, torsion-free groups, decomposable into 
groups of rank < 2 . 

Received April 24, 1956; in revised form October 24, 1956. 
lA group © is complete (or divisible) if each equation nx = g, g £ © for every natural 

number n has at least one solution in ©, that is if n® = ©. 
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However, it is proved in (5), using the results of §2, that for the class of 
completely decomposable groups2 the answer is positive. 

Equivalence by direct summands. In the main the problem is unsolved. 
The answer is positive for the class of countable periodic groups (Kaplansky 
(6)) and the class of completely decomposable groups (5). 

In general, the author expects a negative answer in the case of torsion-free 
groups. However, the structure of the torsion-free groups seems not yet 
sufficiently cleared to overcome the difficulties involved. The problem is 
difficult (Massey (11)); for its topological consequences and some other 
positive results, see Yang (13). 

In §3 we construct a simple example of an indecomposable abelian group of 
arbitrary finite rank. 

2. Positive results. 

THEOREM I.3 If ® and § are equivalent by direct summands (<£© and \p$£ 
in (1) being direct summands) and if in one of the groups the sum of an ascending 
sequence of direct summands is again a {proper or improper) direct summand, 
then © and § are isomorphic. 

Moreover, it is possible to determine direct decompositions 

(2) © = ®i + ©2 

(3) § = § i + §2 

such that the relations 

(4) </>©! = $x • 
(5) ^ © 2 = § 2 

hold true and define an isomorphic map of © onto § . 

Proof. Consider a direct decomposition 

(6) © = « + * § , 
and define ©i by 

(7) ®i = « + H® + i W * « + 

This makes sense, since the property of being a direct summand is transitive. 
\f/<j)® is a direct summand of \f/!g>, so 

@ = « + **« + JE, 
and so on. 

Since the sequence of partial sums in (7) are direct summands of ©, the 
subgroup ©i is a direct summand of ®. </>©i is a direct summand of <£©, 0® 

2A group, decomposable into groups of rank 1, is called completely decomposable. A group 
is said to be of rank 1, if every finite subset of elements generates a cyclic subgroup (cf. 7). 

3This theorem admits considerable generalizations; its proper formulation will be in terms 
of lattices or semi-lattices. 
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a direct summand of H, so <£®i is a direct summand of £>. Applying the map 
\f/1 we see that 

(8) ^®i = M® + MH® + . . . 

is a direct summand of ^^) . Thus there exists a decomposition 

(9) iA£ = **®i + ®2, 

which defines ®2 uniquely up to isomorphism. Using (6), we see 

® = fl + ^ ® 1 + ®2-

It follows from (7) and (8) that 

®i = « + H®u 

so we are in accordance with (2). 
Defining § i and § 2 by (4) and (5), we find, applying yp~l to (9) 

£ = «®i + ^ -1®2 
= § i + §2, 

in accordance with (3). 
Thus (4) and (5) define the required isomorphic map of ® on § , q.e.d. 
We give the following simple application. 

COROLLARY. If ® and § are equivalent complete groups or equivalent 
additive groups of a division-ring, then ® and $£> are isomorphic. 

Proof. Each subgroup U of an additive group of a division-ring with 
characteristic p ^ 0 is a direct summand, so we can apply Theorem I, if the 
characteristic equals p ^ 0. In case p = 0, the additive group of a division-
ring is complete, so we have only to consider equivalent complete groups © 
and § . Since a subgroup of a complete group is a direct summand if and only 
if it is complete and since the sum of an arbitrary number of complete sub­
groups is again complete, we can apply Theorem I to obtain the required 
result. 

It has to be noted that this result can also be obtained easily by applying 
the set-theoretical Schroder-Bernstein theorem directly in view of the (up to 
isomorphisms) unique decomposition of a complete group into a direct sum 
of groups of rational numbers and groups of type pœ for various prime numbers 
P-

This corollary can be generalized to more general classes of completely de­
composable groups, but these are not very interesting since strong conditions 
must be imposed to avoid counter-examples like Example (i). 

The condition in Theorem I requiring that the sum of an ascending sequence 
of direct summands is again a direct summand is also a very strong one. 
It is satisfied, for example, for the class of groups (4) in which every serving 
subgroup is a direct summand, but one can prove that there are already 
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serving subgroups in a free abelian group of infinite rank which are the sums 
of an ascending sequence of direct summands, but nevertheless not direct 
summands themselves. 

THEOREM II. Groups © and § , equivalent by serving subgroups, of which at 
least one has a base, are isomorphic. 

Proof. Since subgroups of a group with a base have themselves a base, 
© and § are both expressible (up to isomorphisms uniquely) as a direct sum of 
infinité cyclic groups and finite primary cyclic groups. Take decompositions 
of this kind in © and § . 

© and § have the same rank, since they are equivalent. Hence the number 
of infinite cyclic summands is the same in both group decompositions. Now 
take the direct sum © of those cyclic summands in © which are of order 
pk (p and k fixed). We shall show that the number of cyclic summands of this 
type is the same (in the given decompositions of © and § ) . © is a direct 
summand of @, 0® a serving subgroup of § , </>© therefore a serving subgroup 
of § . Using the well-known fact that a periodic serving subgroup with all 
elements of bounded order is a direct summand, we see that <£© is a direct 
summand of § . However, since each decomposition of § can be refined to a 
decomposition into indecomposable cyclic direct summands, and since any 
two such decompositions are isomorphic, the number of cyclic summands 
in </>©, all of order pk, is less than or equal to the number of cyclic summands 
of this type in the decomposition of § , given above. So the number of cyclic 
summands of this type in @ is less than or equal to the corresponding number 
in § . Since the converse is equally true, the number is the same. 

Now the theorem follows by taking direct sums in © and § corresponding to 
different numbers pk. 

3. Indecomposable groups of finite rank. Let a be a transcendental 
number and put 

at = a* (i = 1,2, . . . , n). 

We define the group © as the additive group of real numbers 

AA _ <o± iL2_ 3JL # I + <̂2 + . • • + fln 
ypl Pz Pn P 

that is, © is generated by the elements in the right hand side, where the k 
are variable integers and p, pi, pi, ... , pn are distinct prime numbers. 

© is an indecomposable group* of rank n (@ is clearly countable and torsion-
free). 

4The first indecomposable groups of rank two were constructed by Levi (10) and Pontrjagin 
(12, p. 384). Baer (cf. 7, p. 217) proved that every serving subgroup of the additive group of 
£-adic integers is indecomposable. Erdôs (3) gave an example of an indecomposable group of 
rank two, which is essentially the same as our example for the case n = 2, though following 
a different line of thought. 

• 
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Proof. Using the transcendency of a we see that @ only contains elements 
of n + 2 different types, that is, the type 0 (of the infinite cyclic group) and 
the types of #i, a2, . . . , an and 

n 

à = ]C ai-

Moreover, we see in the same way that only the elements of the serving 
subgroups 

a< = tef (* = 1,2,...,*) and 8 = 

have the types of at(i — 1, 2, . . . , n) and b, respectively. 
Suppose now that © is decomposable 

® = ^ + 0 . 
Then each of the groups 31* and S3 must be contained in either $ o r O since' 
in the opposite case, as the reader may easily verify, both ty and O would 
contain elements of, say, the type of a* in contradiction of the fact that 
only the serving subgroup 21* of rank 1 contains such elements. Say 

b € % 

The a,i are spread over $ and Q, but then they are already contained in $, 
since otherwise 

b = p + q, q^O, 

in contradiction to b £ $. 
Hence Q = 0 and @ is indecomposable, q.e.d. 

4. Example (ii). Define "disjoint" groups &t(i = 1 , 2 , . . . ) 

where @ is the group of the preceding section with n = 2. Define 

where w is a variable integer. We form the (restricted) direct sums 
OO OO 

It is easy to see, using different transcendental numbers, that $ can be 
isomorphically embedded in the additive real group. So $ is torsion-free and 
countable. 

fe 
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S and its subgroup S i are countable torsion-free groups, which are equivalent 
by serving subgroups, but S and Si are not isomorphic. 

Proof, ^ i is a direct summand, so certainly a serving subgroup of S. 
Conversely, we can map S isomorphically in S i : 

by mapping ®0 in the natural way on § x C ®i (where § i corresponds to the 
subgroup 

M W 
of ®, defined in §3), and ®* in the natural way on ® i + i (i = 1, 2, . . .) . </>S is 
a serving subgroup of Si, since Si/</>S is torsion-free. Thus Sa nd Si are 
equivalent by serving subgroups. 

To prove that S and Si are not isomorphic, we prove that Si contains no 
direct summand isomorphic to the direct summand ®0 of S. 

Suppose, on the contrary, that there is a subgroup 

\p\ ) 

with 
(10) Si = ®o* + 30Î. 

Since (putting ®j = ®) the elements a2/p2
n are contained in ®^ for all 

natural numbers n, and since "unlimited division" in @0* is only possible 
by powers of ply it follows easily from the decomposition (10) that all a2/pin 

are contained in $)?. The b/pn are equally contained in 9JÎ. So b — a2 = &i 
and therefore the serving subgroup {ai/pin} is contained in the direct 
summand $1. Hence 

This is true for all j = 1, 2, . . . . Therefore 

9K = Si 

in contradiction to (10). 

Remark. Actually, we proved the existence of two non-isomorphic groups, 
the first being isomorphic to a direct summand of the second, and the second 
being isomorphic to a serving subgroup of the first. 
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