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Abstract

The aims of this paper are to answer several conjectures and questions about the multiplier spectrum of rational
maps and giving new proofs of several rigidity theorems in complex dynamics by combining tools from complex
and non-Archimedean dynamics.

A remarkable theorem due to McMullen asserts that, aside from the flexible Lattes family, the multiplier
spectrum of periodic points determines the conjugacy class of rational maps up to finitely many choices. The proof
relies on Thurston’s rigidity theorem for post-critically finite maps, in which Teichmiiller theory is an essential tool.
We will give a new proof of McMullen’s theorem (and therefore a new proof of Thurston’s theorem) without using
quasiconformal maps or Teichmiiller theory.

We show that, aside from the flexible Lattés family, the length spectrum of periodic points determines the
conjugacy class of rational maps up to finitely many choices. This generalizes the aforementioned McMullen’s
theorem. We will also prove a rigidity theorem for marked length spectrum. Similar ideas also yield a simple proof
of a rigidity theorem due to Zdunik.

We show that a rational map is exceptional if and only if one of the following holds: (i) the multipliers of periodic
points are contained in the integer ring of an imaginary quadratic field, and (ii) all but finitely many periodic points
have the same Lyapunov exponent. This solves two conjectures of Milnor.
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1. Introduction
1.1. Exceptional endomorphisms

Let f : P! — P! be an endomorphism over C of degree at least 2. It is called Lattés if it is semi-conjugate
to an endomorphism on an elliptic curve. Further, it is called flexible Lattés if it is semi-conjugate to the
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multiplication by an integer n on an elliptic curve for some |n| > 2. We say that f is of monomial type
if it is semi-conjugate to the map z > z” on P! for some |n| > 2. We call f exceptional if it is Lattes
or of monomial type. An endomorphism f is exceptional if and only if some iterate f” is exceptional.
Exceptional endomorphisms are considered as the exceptional examples in complex dynamics.

In this paper, we will prove a criterion for an endomorphism being exceptional via the information
of a homoclinic orbit of f. See Theorem 2.11 for the precise statement, and see Section 2 for the
definition and basic properties of homoclinic orbits. Since every f has plenty of homoclinic orbits, the
above criterion turns out to be very useful. A direct consequence is the following characterization of
exceptional endomorphisms by the linearity of a conformal expending repeller Strategy of the proof of
Theorem (CER).

Theorem 1.1. Let f : P! — P! be an endomorphism over C. Assume that f has a linear CER that is not
a finite set. Then, fis exceptional.

CER is an impotent concept in complex dynamics introduced by Sullivan [Sul86]. See Section 7.1
for its definition and basic properties.

1.2. Rigidity of stable algebraic families

Ford > 1,letRat,(C) be the space of degree d endomorphisms on P! (C). It is a smooth quasi-projective
variety of dimension 2d + 1 [Sil12]. Let FL4(C) C Raty(C) be the locus of flexible Latteés maps, which
is Zariski closed in Raty(C). The group PGL,(C) = Aut(P!(C)) acts on Rat,(C) by conjugacy. The
geometric quotient

M4(C) :=Raty(C)/PGL,(C)

is the (coarse) moduli space of endomorphisms of degree d [Sil12]. The moduli space My4(C) =
Spec (O(Raty(C)))POL2(©) s an affine variety of dimension 2d — 2 [Sil07, Theorem 4.36(c)]. Let
¥ : Raty(C) —» My4(C) be the quotient morphism.

An irreducible algebraic family fp (of degree d endomorphisms) is an algebraic endomorphism
IA e ]P’/l\ — P}\ over an irreducible variety A, such that for every t € A(C), the restriction f; of fa
above t has degree d. Giving an algebraic family over A is the same as giving an algebraic morphism
A — Raty. A family fy is called isotrivial if ¥(A) is a single point.

Forevery f € Rat;(C) andn > 1, f™ has exactly N,, := d" +1 fixed points counted with multiplicity.
Their multipliers define a point s,,(f) € CN /Sy, ,! where Sy, is the symmetric group which acts
on CM» by permuting the coordinates. The multiplier spectrum of f is the sequence s,(f),n > 1.
An irreducible algebraic family is called stable if the multiplier spectrum of f; does not depend on
t € A(C).2

In 1987, McMullen [McM87] established the following remarkable characterization of stable irre-
ducible algebraic families.

Theorem 1.2 (McMullen). Let f be a non-isotrivial stable irreducible algebraic family of degree
d > 2. Then, f; € FL(C) for everyt € A(C).

McMullen’s proof relies on the following Thurston’s rigidity theorem for post-critically finite (PCF)
maps [DH93], in which Teichmiiller theory is essentially used. An endomorphism f of degree d > 2 is
called PCEF if the critical orbits of f are a finite set.

Theorem 1.3 (Thurston). Let fa be a non-isotrivial irreducible algebraic family of PCF maps. Then,
f; € FL(C) for every t € A(C).

1Via the symmetric polynomials, we have CN7 /S Np = CNn |
2Stability has several equivalent definitions and can be defined for more general families [McM 16, Chapter 4].
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In this paper, we will give a new proof of McMullen’s theorem without using quasiconformal maps
or Teichmiiller theory. Since an irreducible algebraic family of PCF maps is automatically stable,
this leads to a new proof of Theorem 1.3 without using quasiconformal maps or Teichmiiller theory.
Except Theorem 2.11, whose proof relies on some basic complex analysis, our proof of Theorem 1.2
only requires some basic knowledge in Berkovich dynamics and hyperbolic dynamics. We explain our
strategy of the proof as follows.

Cutting by hypersurfaces, one may reduce to the case that A is a smooth affine curve. Let W be the
smooth projective compactification of A, and let B := W \ A. For every o € B, our family induces a
non-Archimedean dynamical system on the Berkovich projective line (see Section 4 for details), which
encodes the asymptotic behavior of f; when t — o. Since fp is non-isotrivial and stable, via the
study of non-Archimedian dynamics, we show that there is one point 0 € B such that when ¢t — o,
f; ‘degenerates’ to a map taking form z +— z in a suitable coordinate, where 2 < m < d — 1.
The above degeneration z +— 7™ is called a rescaling limit of fa at o, in the sense of Kiwi [Kiw15]
(see Definition 5.4). On the central fiber, it is easy to find a homoclinic orbit satisfying the condition
in our exceptional criterion Theorem 2.11. Using an argument in hyperbolic dynamics [Jon98] (see
Lemma 6.1), we can deform such homoclinic orbit to nearby fibers preserving the required condition.
By Theorem 2.11, f; is exceptional for all ¢ sufficiently close to 0. We conclude the proof by the
fact that exceptional endomorphisms that are not flexible Lattes are isolated in the moduli space

Mq(C).

1.3. Length spectrum as moduli

According to the Noetheriality of the Zariski topology on Rat;, McMullen’s rigidity theorem can be
reformulated as follows.

Theorem 1.4 (Multiplier spectrum as moduli=Theorem 1.2). Aside from the flexible Lattés family, the
multiplier spectrum determines the conjugacy class of endomorphisms in Raty(C), d > 2, up to finitely
many choices.

Replace the multipliers by its norm in the definition of multiplier spectrum, and one get the definition
of the length spectrum. More precisely, for every f € Raty(C) and n > 1, we denote by L, (f) €
RNn /Sy, the element corresponding to the multiset {|4;], ..., |dn, |}, where 4;,i = 1,..., N, are the
multipliers of all f"-fixed points. The length spectrum of f is defined to be the sequence L, (f),n > 1.
A priori, the length spectrum contains less information than the multiplier spectrum. But in this paper,
we will show that it determines the conjugacy class up to finitely many choices, therefore generalizing
Theorem 1.4.

Theorem 1.5 (Length spectrum as moduli). Aside from the flexible Lattes family, the length spectrum
determines the conjugacy class of endomorphisms in Raty(C), d > 2, up to finitely many choices.

1.3.1. Strategy of the proof of Theorem 1.5
Let g € Raty(C) \ FL;4(C). We need to show that the image of

Z :={f €Ratg(C) \ FLq(C)| L(f) = L(g)}
in M4(C) is finite. For n > 0, set
Zu = {f € Ratg(C) \ FL4(C)| Li(f) = Li(g).i = L.......n}.
Itis clear that Z;,i > 1is adecreasing sequence of closed subsets of Rat; (C)\ FL4(C) and Z = N, 51 Z,,.

For simplicity, we assume that all periodic points of g are repelling. Otherwise, instead of the length
spectrum L(g) of all periodic points, we consider the length spectrum RL(g) of all repelling periodic
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points. Such a change only adds some technical difficulties. To get a contradiction, we assume that
Y(Z) € M4(C) is infinite. Our proof contains two steps.

In Step 1, we show that Z = Zy for some N > 0. We first look at the analogue of this step for the
multiplier spectrum. The analogue of Z,, is

Z, :={f €Ratg(C) \ FL4(O)| 5i(f) =si(g).i=1,....n},

which is Zariski closed in Rat4(C) \ FL4(C). Hence, Z, is stable when # is large by the Noetheriality.
This is how Theorem 1.2 implies Theorem 1.4. In the length spectrum case, since the n-th length map
Ly : Raty(C) — RN1 /Sy, takes only real values, it is more natural to view Rat,(C) as a real algebraic
variety by splitting the complex variable into two real variables via z = x +iy. If all Z,,n > 1 are real
algebraic, we can still conclude this step by the Noetheriality. Unfortunately, this is not true in general
(c.f. Theorem 8.10). Since the map L2 sending f to {|4;]%, ..., [An, |?} € RV /Sy, is semialgebraic, all
Z,,n > 1 are semialgebraic. The problem is that, in general, closed semialgebraic sets do not satisfy the
descending chain condition. We solve this problem by introducing a class of closed semialgebraic sets
called admissible subsets. Roughly speaking, admissible subsets are the closed subsets that are images of
algebraic subsets under étale morphisms. See Section 8.2 for its precise definition and basic properties.
We show that admissible subsets satisfy the descending chain condition. Under the assumption that all
periodic points of g are repelling, we can show that all Z,, are admissible. The admissibility is only used
to prove Theorem 1.5.

Step 1 implies that Z = Zy is semialgebraic. Since W(Z) is infinite, there is an analytic curve
v =~ [0, 1] contained in Z such that ¥(y) is not a point. Every r € v C Raty defines an endomorphism
f;. After shrinking y, we may assume that f; is not exceptional.

In Step 2, we show that the multiplier spectrum of f; does not depend on ¢ € y. Once Step 2 is
finished, we get a contradiction by Theorem 1.4. Since for every ¢ € vy, L(f;) = L(g), all periodic points
of f; are repelling. For every repelling periodic point x of fy, there is a real analytic map ¢, : y — P'(C)
such that for every t € vy, ¢, () and x have the same minimal period and the norms of their multipliers
are same. Using homoclinic orbits, we may construct a CER Ej of fj containing x. It is nonlinear by
Theorem 1.1. By Lemma 6.1, for ¢ sufficiently small, Ey can be deformed to a CER E; of f; containing
¢ (t). Using Sullivan’s rigidity theorem [Sul86] (Theorem 7.6), we show that E( and E; are conformally
conjugate. In particular, the multipliers of ¢, () are a constant for ¢ sufficiently small. Since v is real
analytic, the multipliers of ¢, () are a constant on vy. Since x is arbitrary, all f;,7 € y have the same
multiplier spectrum. This finishes Step 2.

1.3.2. Further discussion
It is interesting to know whether the uniform version of Theorem 1.5 holds.

Question 1.6. Is there N > 1 depending only on d > 2, such that for every f € Raty(C) \ FL4(C),
#¥({g € Ratg(C) \ FL4(O)| Li(g) = Li(f),i=1,....N}) <N?
For every n > 0, we set
Ry ={(f,8) € (Rata(C) \ FLa(C))’| Li(f) = Li(g),i=1,...,n}
and
Ry, :={(f.8) € (Rata(C) \ FLa(C))*| si(f) = si(g),i=1,...,n}.
Both of them are decreasing closed subsets of (Rat,(C) \ FL4(C))2. Since all R/, are algebraic subsets

of (Raty(C) \ FL4(C))?, the sequence R, is stable for n large. This implies that Theorem 1.4 for the
multiplier spectrum is equivalent to its uniform version.
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If one can show that the sequence R,,n > 0 is stable (for example, if one can show that R,, are
admissible), then Question 1.6 has a positive answer. But at the moment, we only know that R, are
semialgebraic.

1.4. Marked multiplier and length spectrum

By Theorem 1.5 and 1.4, aside from the flexible Lattes family, the length spectrum (and therefore the
multiplier spectrum) determines the conjugacy class of endomorphisms of degree d > 2 up to finitely
many choices. However, by [Sil07, Theorem 6.62], the multiplier spectrum f + s(f) (and therefore
the length spectrum f +— L(f)) is far from being injective when d large. For this reason, we consider
the marked multiplier and length spectrum. We show that both of them are rigid.

Theorem 1.7 (Marked multiplier spectrum rigidity). Let f and g be two endomorphisms of P' over C of
degree at least 2 such that f is not exceptional. Assume there is a homeomorphism h : J(f) — J(g)
such that ho f =g o hon J(f). Then, the following two conditions are equivalent.

(i) There is a nonempty open set Q C J(f) such that, for every periodic point x € Q, we have
df"(x) = dg" (h(x)), where n is the period of x;
(ii) h extends to an automorphism h : P'(C) — P'(C) such that ho f = g o h on P'(C).

Let U,V c P'(C) be two open sets. A homeomorphism & : U — V is called conformal if h is
holomorphic or antiholomorphic in every connected component of U. Note that a conformal map 4 is
holomorphic if and only if & preserves the orientation of P! (C).

Theorem 1.8 (Marked length spectrum rigidity). Let f and g be two endomorphisms of P' over C of
degree at least 2 such that f is not exceptional. Assume there is a homeomorphism h : J(f) — J(g)
such that ho f = g o hon J(f). Then, the following two conditions are equivalent.

(i) There is a nonempty open set Q C J(f) such that, for every periodic point x € Q, we have
|df™(x)| = |dg" (h(x))|, where n is the period of x;
(ii) h extends to a conformal map h : P'(C) — P'(C) such that ho f = g o h on P'(C).

Note that if 7 : Q — h(Q) is bi-Lipschitz, then it is not hard to show that for n-periodic point x € Q,
we have |df"(x)| = |dg"(h(x))|. So the above theorem implies that a locally bi-Lipschitz conjugacy
can be improved to a conformal conjugacy on P!(C).

Combining Theorem 1.7 and A-Lemma [McM 16, Theorem 4.1], we get a second proof of Theorem
1.2. This proof does not use Teichmiiller theory, but we need to use quasiconformal maps and the highly
nontrivial Sullivan’s rigidity theorem, which is a great achievement in thermodynamic formalism.

Remark 1.9. In Theorem 1.8, in general, 4 can not be extended to an automorphism on P! (C). The
complex conjugacy o : z > Z induces a mark & := 0|z (r) : T(f) — m = J(f), preserving the
length spectrum. In general, some periodic point of f may have non-real multipliers. Hence, in this case,
h cannot be extended to an automorphism on P! (C).

Remark 1.10. Theorem 1.8 was proved by Przytycki and Urbanski in [PU99, Theorem 1.9] under the
assumptions that both f and g are tame and Q = J(f). See [PU99, Definition 1.1] for the precise
definition of tameness. In [Ree84, Theorem 2], Rees showed that there are endomorphisms having
dense critical orbits and therefore, are not tame.

The study of marked length spectrum rigidity has been investigated in various settings in dynamics
and geometry.

In one-dimensional real dynamics, marked multiplier spectrum rigidity was proved for expanding
circle maps (see Shub-Sullivan [SS85]) and for some unimodal maps (see Martens-de Melo [MdM99]
and Li-Shen [L.S06]).

In the contexts of geodesic flows on Riemannian manifolds with negative curvature, a long-standing
conjecture stated by Burns-Katok [BK85] (and probably considered even before) asserted the rigidity
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of marked length spectrum (for closed geodesics). The surface case was proved by Otal [Ota90] and
by Croke [Cro90] independently. A local version of the Burns-Katok conjecture in any dimension was
proved by Guillarmou-Lefeuvre [GL19].

It was also studied in dynamical billiards. We refer the readers to Huang-Kaloshin-Sorrentino
[HKS18], Balint-De Simoi-Kaloshin-Leguil [BDSKIL.20], De Simoi-Kaloshin-Leguil [DSKL19] and
the references therein.

We prove Theorem 1.8 by combining Theorem 1.1 and Sullivan’s rigidity theorem [Sul86] (see
Theorem 7.6). More precisely, let o be a repelling fixed point of f. We construct a family C of CERs of f
using homoclinic orbits which covers all backward orbits of 0. By Theorem 1.1, all of them are nonlinear.
We show that their images under & are CERs of g. Applying Sullivan’s rigidity theorem, we get that
conformal conjugacies link the CERs in C to their images. Two CERs in C have ‘large’ intersections.
Hence, those conformal conjugacies can be patched together. Using this, we get a conformal extension
of h to some disk intersecting the Julia set of f. We can further extend it to a global conformal map on
P'(C).

Theorem 1.7 is a simple consequence of Theorem 1.8 and a result of Eremenko-van Strien [EVS11,
Theorem 1] about endomorphisms with real multipliers.

1.5. Zdunik’s rigidity theorem
The following rigidity theorem was proved by Zdunik [Zdu90].

Theorem 1.11 (Zdunik). Let f : P! — P! be an endomorphism over C of degree at least 2. Let u be the
maximal entropy measure, and let a be the Hausdorff dimension of u. Then, u is absolutely continous
with respect to the a-dimensinal Hausdor{f measure A, on the Julia set if and only if f is exceptional.

Zdunik’s proof is divided into two parts. The first part was proved in her previous work [PUZ89,
Theorem 6] with Przytycki and Urbanski. Later, she proved the second part (hence Theorem 1.11) in
[Zdu90]. In this paper we will give a simple proof of the second part using Theorem 1.1.

1.6. Milnor’s conjectures on multiplier spectrum

As applications of Theorem 2.11 and Theorem 1.1, we prove two conjectures of Milnor proposed in
[Mil06].

Theorem 1.12. Let f : P! — P! be an endomorphism over C of degree at least 2. Let K be an imaginary
quadratic field. Let Ok be the ring of integers of K. If for every n > 1 and every n-periodic point x of f,
df™(x) € Ok. Then, fis exceptional.

The inverse of Theorem 1.12 is also true by Milnor [Mil06, Corollary 3.9 and Lemma 5.6]. In fact,
the original conjecture of Milnor concerns the case K = Q. Since imaginary quadratic fields exist (e.g.,
Q(i)) and they contain Q, Theorem 1.12 implies Milnor’s original conjecture.

Some special cases of Milnor’s conjecture for integer multipliers are known before by Huguin:

(i) In [Hug22a], the conjecture was proved for quadratic endomorphisms.
(i) In[Hug21], the conjecture was proved for unicritical polynomials. In fact, Huguin proved a stronger
statement, which only assumes the multipliers are in Q (instead of Z).

Remark 1.13. In the recent preprint [Hug22b], Huguin reproved and strengthened our Theorem 1.12.
In his result, the multipliers are only assumed to be contained in an arbitrary number field. Huguin’s
result relies on an arithmetic equidistribution result for small points proved by Autissier [AutO1] and on
a characterization of exceptional maps proved by Zdunik [Zdu14].

The following result confirms another conjecture of Milnor in [Mil06].
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Theorem 1.14. Let f : P! — P! be an endomorphism over C of degree at least 2. Assume there exists
a > 0 such that for every but finitely many periodic point x, f™(x) = x, we have |df"(x)| = a". Then, f
is exceptional.

Remark 1.15. Theorem 1.14 can also be deduced by a minor modification of an argument of Zdunik
[Zdu14].

Letx be a n-periodic point of f. The Lyapunov exponent of x is a real number defined by % log |df"™(x)|.
We let A(f) be the closure of the Lyapunov exponents of periodic points contained in the Julia
set. Combining Theorem 1.14 and results due to Gelfert-Przytycki-Rams-Rivera Letelier [GPR10],
[GPRRL13], we get the following description of A(f) when f is nonexceptional. A closed interval in R
is called nontrivial if it is not a singleton.

Corollary 1.16. Let f : P! — P! be a nonexceptional endomorphism over C of degree at least 2. Then,
A(f) is a disjoint union of a nontrivial closed interval I and a finite set E (possibly empty). Moreover,
there are at most 4 periodic points whose Lyapunov exponents are contained in E, in particular |E| < 4.

1.7. Organization of the paper

In Section 2, we prove some basic properties of homoclinic orbits and we prove the fundamental
exceptional criterion Theorem 2.11 by using only the information of a homoclinic orbit. In Section 3,
we prove Theorem 1.12. In Section 4, we recall some results about dynamics on the Berkovich projective
line. In Section 5, we study the rescaling limit via the dynamics on the Berkovich projective line. In
Section 6, we give a new proof of McMullen’s theorem (Theorem 1.2) by studying rescaling limits. In
Section 7, we recall some results about CER, and we prove Theorem 1.1, Theorem 1.7, Theorem 1.8,
Theorem 1.14 and Corollary 1.16. Moreover, we give a new proof of Theorem .11 and we give another
proof of Theorem 1.2. In Section 8, we prove Theorem 1.5.

2. Homoclinic orbits and applications

For an endomorphism f of P! of degree at least 2, we denote by C(f) the set of critical points of f
and PC(f) := U,s1 f*(C(f)) the postcritical set. In this section, P! (C) is endowed with the complex
topology.

Let f : P! — P! an endomorphism over C of degree at least 2. Let o be a repelling fixed point of .
A homoclinic orbit 3 of f at o is a sequence of points 0;,i > 0 satisfying the following properties:

(1) o9 =0,01 # o0 and f(0;) = 0;—; fori > 1;
(i) lim o; = o.
1—00

Be aware that 0;,i > 0 is actually a backward orbit.

The main result of this section is Theorem 2.1 1, which is a criterion for an endomorphism f being
exceptional via the information of a homoclinic orbit. We will state and prove this theorem at the end of
this section.

2.1. Linearization domain and good return times

Define a linearization domain of o to be an open neighborhood U of o such that there is an isomorphism
¢ : U — D sending o to 0, which conjugates f|y, : Uy — U to the morphism z +— Az via ¢, where
Uy = f~1(U)NU and A = df (o). We call such ¢ a linearization on U.

Define g to be the morphism U — U sending z to ¢~!(17'¢(z)). It is the unique endomorphism of
U satisfiying f o g = id.

3This terminology was introduced by Milnor [Mil11] in his presentation of Julia’s proof that repelling periodic points are dense
in the Julia set. The word ‘homoclinic orbit’ dates back to Poincaré.
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Remark 2.1. By Koenigs’ theorem [Mill 1, Theorem 8.2], for every repelling point o, there is always
a linearization domain U. For every r € (0, 1], ¢~'(ID(0,r)) is also a linearization domain of o. In
particular, the linearization domains of o form a neighborhood system of o.

Remark 2.2. Since g is injective, for every x € U, f~!(x) NU = g(x). In particular, if 0; € U fori > I,
then 0; = g"~*(0;) forall i > [.

The following lemma shows that for every repelling fixed point o, there are many homoclinic orbits.

Lemma 2.3. For every integer m > 0 and for every a € f~(0), there is a homoclinic orbit 0;,i > 0
of o such that 0,, = a.

Proof. Let U be a linearization domain of o. Since preimages of a are dense in the Julia set, there is
I > m such that f" ! (a) NU # 0. Pick o; € f™(a)nU andfori =0,...,I,seto; := f"'(0;). Then
0o =o0and o,, =a.Fori > [ +1, seto; := g""*(0;). Then 0;,i > 0 is a homoclinic orbit of 0. O

Definition 2.4. Let U be a connected open neighborhood of o such that U is contained in a linearization
domain. For i > 0, let U; be the connected component of f~/(U) containing o;. An integer m > 1 is
called a good return time for the homoclinic orbit and U if

(i) o; € U foreveryi > m;
(i) U, cc U, and f™ : U,, — U is an isomorphism between U,, and U.

Remark 2.5. If U itself is a linearization domain and m is a good return time, then 7 is a good return
time for all i > m. Indeed, one has U; = g'"™(U,,) cC U, and f' : U; — U can be writen as f" o g™,
which is an isomorphism.

Proposition 2.6. The following statements are equivalent:

(1) 0; ¢ C(f) foreveryi > 1;
(ii) there is a linearization domain U and an integer m > 1 which is a good return time of U;
(iii) there is a linearization domain U such that, for every connected open neighborhood V of o, V C U,
there is an integer m > 1 which is a good return time of V.

In particular, when o ¢ PC(f), (i) (and therefore (ii) and (iii)) are satisfied.

Proof. We first show (i) is equivalent to (ii). To see that (ii) implies (i), let m be a good return time of U.
Then, by the definition of good return time, o; ¢ C(f) fori = 1,...,m. By Remark 2.5, we conclude
that o; ¢ C(f) for every i > 1. To see that (i) implies (ii), first choose a linearization domain Uj. Let
g : Uy — Up be the morphism such that f o g = id. Since lim o; = o, there is / > 1 such that 0; € Uy

fori > 1. Since 0; ¢ C(f) for every i > 1, we have d(f*)(0;) # 0. So there is an open neighborhood W
of 0; in Uy such that f/(W) C Uy and f!|w is injective. Pick a linearization domain of U of o contained
in f/(W). Set U; := f~/(U) N W. Since g is attracting, there is m > [ such that g"!(U;) cc U. We
note that U, := f™(U) N U = g™ *(U;). Hence, U,, cc U, and f™ : U,, — U is an isomorphism.
This implies (ii).

It is clear that (iii) implies (ii). It remains to show that (ii) implies (iii). Let [ > 1 be a good return
time of U. Let U; (resp. V;) be the connected component of f~(U) (resp. f~/(V)) for i > 0. We have
U, cc U. Since g is attracting, there is m > [ such that g”~(U;) cc V. This implies that m is a good
return time of V. O

2.2. Adjoint sequence of periodic points

Let U be a linearization domain, and let m be a good return time of U. We construct a sequence
of periodic points ¢g;,i > m as follows. By Remark 2.5, for every i > m, f'|y, : U; — U is an

isomorphism. Since U; ccC U, the morphism (fi|y,)~! : U — U is strictly attracting with respect to
the hyperbolic metric on U. Hence, it has a unique fixed point g; € U;. Such g; is the unique i-periodic
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point of f which is contained in U;. Indeed, i is the smallest period of g;, and g; is repelling. We call

such a sequence an adjoint sequence for the homoclinic orbit 0;,i > 0 with respect to the linearization

domain U and the good return time m (we write (U, m) for short). One can say that a sequence of

points g;,i > 0 is an adjoint sequence of the homoclinic orbit 0;,i > 0 if ¢;,i > m is an adjoint

sequence for o0;,i > 0 with respect to some (U, m). It is clear that for every adjoint sequence ¢g;,i > 0 of

0i,i 20, 1Lm q; = o. The following lemma shows that the adjoint sequences are unique modulo finite
12 (o)

terms.

Lemma 2.7. Let q;,i > 0 and q;,i > 0 be two adjoint sequence for o;,i > 0. Then, there is | > 0 such
that q; = q; for alli > 1.

Proof. We only need to prove the case where g;,i > [ is an adjoint sequence with respect to (U, /) and
g;,1 > I’ is an adjoint sequence with respect to (U’,1’). Since there is a linearization domain U’ such
that U"”” € U N U’, we may assume that U’ C U. After replacing /,!’ by max {/,!’}, we may assume
that / = I’. Then, for every i > [, U] C U;. Then, both ¢; and g; are the unique i-periodic point of f in
Ui.Soq; =g fori > 1. O

2.3. Poincaré’s linearization map

Set A := df (o) € C. Since o is repelling, || > 1. Let (U, m) be the pair of linearization domain and
good return time for 0;,i > 0, and let g;,7 > 0 be an adjoint sequence.

A theorem of Poincaré [Mill I, Corollary 8.12] says that there is a morphism ¢ : C — P!(C) such
that |p gives an isomorphism between D and U and

fW(2) =¢(12) (2.1

for every z € C. In particular, ‘ﬁhﬁl : U — D is a linearization of f on U. Such a  is called a Poincaré
map.
The following criterion for exceptional endomorphisms using the Poincaré map ¢ is due to Ritt.

Lemma 2.8 [Rit22]. If the Poincaré map s is periodic (i.e., there is a a € C* such that Y (z+a) =y (z)
for every z € C), then fis exceptional.

Ritt’s theorem can be easily generalized as following.

Lemma 2.9. If there is an affine automorphism h : C — C such that h(0) # 0 and o h =, then fis
exceptional.

Proof. Let G be the group of affine automorphisms g of C satisfying yy o g = 1. We have h € G. It takes
formh:z+— az+b,a € C* and b = h(0) € C*. For every z € C, we have

Y(Ah(A'2)) = fy (h(A7'2)) = fy(A7'2) = ¥(2).

Hence, the automorphism g : z > Ah(17'z) = az + Ab is contained in G. Then, T :=h™'og: z
z+a~ (A1 —1)b is contained in G. Since b # 0 and |A| > 1, T is a nontrivial translation. We conclude
the proof by Lemma 2.8. O

Set P := A™Y|5! (0,) and V := A" (¢|5' (Um)). Fori > m, set Q; := y/|5' (g;). One has (V) = U,
W (P) = o, and y|y : V — U is an isomorphism. We set T := (¢/|y) ™' o¢|p : D — V. Then T is an
isomorphism. Similar constructions of 7 appeared already in the works of Ritt [Rit22] and Eremenko-
van Strien [EVS11]. We summarize our construction in the following figure.
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We have ¢ o T = y and T(0) = P. Moreover, by our construction, we have for every i > m,
V = A (¢lp) "1 (U;). In particular, A'Q; € V. By (2.1) we have

Y(A'Q:) = FL(w(Q) = f(qi) = qu.

This implies
T(Qi) = 2'Q;. 22
Since lim g; = o, we have lim Q; = 0 and
lim A'Q; = P. (2.3)
By (2.1), we have for every i > 1,
df' (¥(2)dy (z) = V'dy ('), 2.4)
and by ¥ o T =, we have
dy(T(2))T'(z) = dy(2). (2.5)

Set z = Q;. Combine (2.2), (2.4) and (2.5), and we get
df'(gi)dy (X' Q)T (Qi) = A'dy (X' Qy).

Since zeros of a holomorphic function are isolated, as ' Q; — P, for i large enough, we have dy (1'Q;) #
0. Hence, for i large enough,

AT(Qi)7" = df'(q0)- (2.6)
The following observation will be used in the proof of Theorem 1.12.
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Lemma 2.10. Set 6 := 1/T’ : D — C. We have
lim (df"(q:) = 4'6(0)) = PE"(0).
Proof. By (2.3) and (2.6),we have

lim (df* (g:) = 1'0(0)) /P = lim (df (g7) = 2'0(0))/A'Q;

= lim (df*(g:)/A" = 6(0))/Q; = lim (6(Q;) - 6(0))/Q; = 6/ (0),
which concludes the proof. m}

The following is the main result of this section, which characterizes exceptional endomorphisms by
using the multipliers of adjoint sequence of a homoclinic orbit.

Theorem 2.11. Let f : P! — P! be an endomorphism over C of degree at least 2. Let o be a repelling
fixed point of f such that df (0) = A. Let 0;,i > 0 be a homoclinic orbit of o such that o; ¢ C(f) for
every i > 0. Assume that there is C € C*, such that for one (and therefore, every) adjoint sequence
gi,i > 00fo0;,i >0, df'(q;) = CA! for i large. Then f is exceptional.

Proof. We may assume that g;,7 > m is adjoint with respect to the linearization domain and good return
time (U, m) for 0;,i > 0, and d(f)(g;) = CA’ for all i > m. By (2.6), we get T'(Q;) = C~! fori > m.
Since Q; # Ofori > mand lim Q; =0,7’ = C~! on D. It follows that T(z) = C~'z+ P for every z € D.

1—00
Then, T extends to the affine endomorphism on C sending z to C~'z + P. One has ¢ = ¢ o T on C. We
conclude the proof by Lemma 2.9. O

3. Proof of Milnor’s conjecture

In this section, we prove one of Milnor’s conjectures (Theorem 1.12). We postpone the proof of another
conjecture of Milnor (Theorem 1.14) to Section 7.

Proof of Theorem 1.12. Let f : P! — P! be an endomorphism over C of degree at least 2. Let K be an
imaginary quadratic field. Assume that for every n > 1 and every n-periodic point x of f, df"(x) € Og.

After replacing f by a suitable positive iterate, we may assume that f has a repelling fixed point
o ¢ PC(f). Let 0;,i > 0 be a homoclinic orbit of 0. By Proposition 2.6, there is a linearization
domain and a good return time (U, m) for o;,i > 0. Let ¢;,i > m be the adjoint sequence for it. Set
u; = df(q;) € Ok fori > m. Set A := df (o).

Lemma 3.1. There are a € K*, b € K such that u; = ad’ + b for i large.

Proof of Lemma 3.1. We view K as a subfield of C. Then, Ok is a discrete subgroup of (C, +). Set
T :=C/Ok and 7 : C — T the quotient map. Since A € Ok, the multiplication by A on L descends to
an endomorphism [1] on T. By Lemma 2.10, we have

lim (y; — ad’) = b, 3.1
1—00

where a = 6(0) = 1/T7(0) € C* and b = P6’(0) € C (See Section 2 for the definitions of T and 6).
Since y; € Ok ,i > m, we get

lim [A]'7(a) = n(b).

https://doi.org/10.1017/fmp.2023.12 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2023.12

12 Z. Jiand J. Xie

In particular, 7(b) is fixed by [A]. Since d[1](b) = A, [A] is repelling at 7(b). Hence, for i large, we
must have

[A]'m(a) = 7(D). (3.2)

Since O is discrete in C, by (3.1) and (3.2), we have
wi = ad’ + b for i large. (3.3)
There are n > [ > m such that u,, = aA” + b and y; = ad’ + b. This implies that a, b € K. O

After enlarging m, we may assume that u; = ad’ + b for all i > m. Assume by contradiction that f
is not exceptional. By Theorem 2.11, we must have b # 0. For p € Spec Ok, let K}, be the completion
of K with respect to p. Denote by | - |, the p-adic norm on K}, normalized by [p|, = p~! where
p = char Ok /p. Let K be the valuation ring of Kp. For 1 € Ok, p € p if and only if |ulp < 1.

Lemma 3.2. For p € Spec Ok and € > 0, if 1 & p, then there is N € Z such that |AN" = 1|, < € for
alli > 0.

Proof of Lemma 3.2. Since O /p is a finite field and A ¢ p, there is [ > 1 such that A’ — 1 € p. Since

lim 2’7" = lim (1+ (' = 1))?" =1
n—o00 n—oo

in the p—adic topology, there is N € Z, such that [1N — 1|, < €. Then, for every i > 0, [AN — 1|, =
AN = Lfp| L+ AN o+ AN ED ] < e O

Let S be the finite set of prime ideals p € Spec Ok \ {0} dividing A(deg f)! € Ok. For every
p € Spec Ok \ (S U {0}), there is an embedding of field 7x : K < C,, such that | - | is the restriction
of the norm on C, via this embedding. Recall that C,, is the completion of the algebraic closure of Q.
Then, 7k extends to an isomorphism 7 : C — C,,. Via 7, the norm | - |, extends to a non-Archimedean
complete norm on C. By [RLO3a, Corollaire 4.7 and Corollaire 4.9] of Rivera-Letelier (or [BIJL14,
Corollary 1.6] of Benedetto-Ingram-Jones-Levy), for every p € Spec Ok \ (S U {0}), there are at most
finitely many integersi > m satisfying |u;[p < 1. We claim that forevery i > m, we have u; = ad’+b ¢ p
for every p € Spec Ok \ (S U {0}). In fact if there is p € Spec Ok \ (S U {0}) such that ad’ + b € p for
some i > m, by Lemma 3.2, there is N € Z¢, such that for all j > 0, [A¥/ — 1|, < |a~"|/2. Then, for
every j > m, we get

lien jlp = @A™ + bl < max{|ad’ + bl + |ad’ AN/ - 1)|p} < L.

Thus, we obtain infinitely many integers i > m satisfying |u;|p < 1, which is a contradiction.
SetS’ :={peS|dep}landS” =5\S". Since a # 0, there is / > 0 such that ad’ + b # 0. Set

A :=min({|ad’ +blp| p e S”} U{|blp| pe S'}U{1}) > 0.

Forevery p € §’, there is an integer Mp > m such that |aaMp lp < |blp. Then, foreveryi > Mp,p € S,
we have

|Ni|p = |b|p = A.

For every p € S”, by Lemma 3.2, there is Np € Zs such that for every j > 0, [AM/ — 1|, <
la! |p|a/ll + blp. Then, for all j > m, we have

ey jlp = [ad*™ 4 b, = |(ad' + b) + a2’ (A = 1), = [ad’ + bl > A.
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Set M := max{My| p € §'} and N := [[,cs~ Np. For every i > M, by the above discussion, we
get |unilp = A for all p € S. Fix an embedding of K in C. For every p € Spec Ok \ {0}, set
np = [Kp : Qp] with p = char Ok /p. We have n, < 2. By product formula, we get, since |uznilp = 1
for all p € Spec Ok \ (S U {0}),

K: -n -n )
|| K9 = l_[ luienilp * = 1_[ lwienily ™ < A72S1,
peSpec Ok \ {0} peS

where i > m.
Hence, N, i = m is bounded in C. Since a # 0 and |1| > 1, we get a contradiction. The proof is
finished. ]

4. The Berkovich projective line

Let k be a complete valued field with a nontrivial non-Archimedean norm | - |. We denote by k° the
valuation ring of k, k°° the maximal ideal of k° and k = k°/k°° the residue field.

In this section, we collect some basic facts about Berkovich’s analytification of Pll(. We refer the
readers to [Ber90] for a general discussion on Berkovich space, and to [BR10] for a detailed description
of the Berkovich projective line and the dynamics on it.

4.1. Analytification of the projective line

Let Pll(’an be the analytification of IP’II( in the sense of Berkovich, which is a compact topological space
endowed with a structural sheaf of analytic functions. Only its topological structure will be used in this
paper. We describe it briefly below.

The analytification All(’a" of the affine line All( is the space of all multiplicative semi-norms on Kk[z]
whose restriction to k coincide with ||, endowed with the topology of pointwise convergence. For any x €
All("‘m and P € k|[z], itis customary to denote |P(x)| := |P|x, where |- |, is the semi-norm associated to x.

As atopological space, Pll(’a“ is the one-point compactification of All(’a“. We write Pll(’a“ = All(’a“ U{oo}.
More formally, it is obtained by gluing two copies of All(’an in the usual way via the transition map
z — z~! on the punctured affine line (A} \ {0})™.

The Berkovich projective line Pll(’a“ is an R-tree in the sense that it is uniquely path-connected (see

[Jonl5, Section 2] for the precise definitions). In particular, for x,y € P]i’an, there is a well-defined
segment [x, y].

Fora € kandr € [0, +00), we denote D(a, r) by the closed disk D(a, r) := {x € All(’a“ : (z—a)(x)| <
r}. One may check that the norm ;5 a;(z — a)' — max{|a;|r*,i > 0} defines a point &, , € D(a,r).
One may set xg := &, and call it the Gauss point.

Remark 4.1. When r = 0, £, is exactly the image of a via the identification k = A! (k) — Ai’an.
The group PGL , (k) acts on P!, and therefore on Pll(’an.

Lemma 4.2. [DF19, Proposition 1.4] For a point x € Pll(’a“, x € PGL(K) - xg if and only if it takes
formx =&, for some a € kandr € |K*|.

Remark 4.3. The stablizer of PGL » (k) at x, is PGL »(k®), which is open in PGL > (k). So for any dense
subfield L of k, we have PGL 2(L) - xg = PGL>(K) - x,.

4.2. Points in }Pll(’a"

Let k be the completion of the algebraic closure of k. It is still algebraically closed. By [Ber90, Corollary

1.3.6], Aut(k/K) acts on PL*" and we have PL/Aut(k/k) = P,. We denote by 7 : pLan P]i’an the
K k K

quotient map. The points of Pll(’an can be classified into 4 types:
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lan

(1) atype 1 point takes form 7 (a) where a € k U {0} = P

(ii) atype 2 point takes form (& ) where x € k andr € |k B

(iii) a type 3 point takes form (&, ) where x € k andr € Roo \ |k B
(iv) a type 4 point takes form (x) where x is the pointwise limit of &y, ,, such that the corresponding
discs D(x;, r;) form a decreasing sequence with empty intersection.

See [Ber90, Section 1.4.4] for further details when k is algebraically closed. See also [Ked 11, Proposition
2.2.7] and [Ste19, Section 2.1]. The set of type 1 (resp. type 2) points is dense in Pll(’an. Points of type 4
exist only when Kk is not spherically complete. If we view Pll(’a" as a metric tree, then the end points have
type 1 or 4.

For every x € Pllﬁ’an, we can define an equivalence relation on the set Pi’an \ {x} as follows: y ~ z if the
paths (x, y] and (x, z] intersect. The tangent space T at x is the set of equivalences classes of Pll(’a" \ {x}
modulo ~. See [Jon15, Section 2.5] for details. If x is an end point (a point of type 1 or 4), then |7 | = 1.
If x is of type 3, then |T,| = 2. If x is of type 2, then |T,| > 3. For a direction v € Ty, let U(v) be the set
ofally € P]i’an such that the path (x, y] presents v. Then, U(v) is an open subset such that AU (v) = x.

4.3. Dynamics on ]Pl](’a"
Let f: Pll( — ]P’ll( be an endomorphism of degree d > 2. We still denote by f the induced endomorphism

1,an
on Pk .

4.3.1. The tangent map
For x,y € Pl'(’a", if f(x) = y, then x,y have the same type. Moreover, f induces a tangent map
T.f : T, — T, sending v € T, to the unique direction w € T, such that for every z € U(v),
(y, f(2)]NU(w) # 0. We note that, in general, f(U(v)) may not be equal to U(w). If f(U(v)) = U(w),
we say that v is a good direction. Otherwise, it is called a bad direction. If v is a bad direction, then
f(U(»)) =™ [Ben, Theorem 7.34].

We may naturally identify T, with P! (K) as follows. Consider the standard model Pll(o of P]i’an. There
is a reduction map red : ]Pll(’a“ — Pll(. The preimage of the generic point of Pll( is the Gauss point xg, and

for every y € P'(K), there is a unique v, € T such that U(vy) = red”'(y). The map P' (k) —
sending y to vy, is bijective. Let & be any endomorphism of IP’]fI such that ~(xg) = xg, and it extends to a
rational self-map /ue of Py.. We denote by /i : Pl — ]Pll( the restriction of / to the special fiber of P, and

call it the reduction of h. Then, Ty, h : Ty, = P! (k) — ; is induced by h. We define deg T, . htobe
the degree of 7. We note that deg h < deg h The equahty holds if and only if Ay- is an endomorphlsm
In this case, we say that i has explicit good reduction.

More generally, for every x, y € PGL (k) - xg with f(x) = y, we may define

deg T f :=degTy, (h™' fg) = degh™! fg,

where h, g € PGL, (k) with g(xg) = x and h(xg) = y. Then, 1 < degTy, f < deg f and deg T f
does not depend on the choices of g, A.

Remark 4.4. Assume that k is algebraically closed. By Lemma 4.2, the set of type 2 points in ]Pll(’a" is
exactly PGL (k) - xg.

4.3.2. Periodic points

Assume that K is algebraically closed. For n > 1, a n-periodic point of f is a point x € P]](’a" such that
f™(x) = x. They can be divided into three types: attracting, indifferent and repelling. A type 1 periodic
point x € P! (k) of period n > 1 is called attracting if |d (™) (x)| < 1; indifferent if |d(f™)(x)| = 1; and
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repelling if |d(f™)(x)| > 1. A n-periodic point x € ]P’]i’an of type 2 is called indifferent if deg Ty f = 1;
repelling if deg Ty f > 2. Every n-periodic point x € P]](’a” of type 3 or 4 are indifferent [RL03b, Lemma
5.3,5.4].

4.3.3. Fatou and Julia sets
Assume that Kk is algebraically closed.
The Julia set of f is the set J(f) of points z € Pll(’a“ with the following property: for every

neighborhood U of z, the union of iterates | J,,»¢ /" (U) omits only finitely many points of Pll(’an. Its

complement F(f) := Pl](’a" \ J(f) is the Fatou set of f.
We list some basic properties of the Julia and Fatou sets of f.

Proposition 4.5 [Ben, Chapter 8 and Section 12.2].

(1) The Fatou set F(f) is open and the Julia set J (f) is closed.
(ii) All attracting periodic points of f are contained in F (f).

(iii) All repelling periodic points of f are contained in J (f).

(iv) We have T (f) = f(T () = (T (f) and F(f) = F(F(f) = FTH(F ).
(v) Both J(f) and F(f) are nonempty.

(vi) Foreveryz € J(f), Unsof"(z) is dense in J(f).

(vii) Repelling periodic points are dense in J (f).

4.3.4. Good reduction
We say f has good reduction if, after some coordinate change 7 € PGL »(k), the map 4~! o f o h has
explicit good reduction.

Theorem 4.6 [FRL10, Theorem E]. The endomorphism f has explicit good reduction if and only if
J(f) = xg. Moreover, if K is algebraically closed, f has good reduction if and only if J(f) is a single
point.

Remark 4.7. Assume that k is algebraically closed. If 7 ( f) is a single point, then by Theorem 4.6 and
(vii) of Proposition 4.5, it is a type 2 repelling point.

5. Rescaling limits of holomorphic families
5.1. Holomorphic families

Recall that ¥ : Rat;(C) — M 4(C) is the quotient morphism, where M 4(C) := Raty (C)/PGL,(C) is
the moduli space.

Let A be a complex manifold. We denote by O*(A) the ring of holomorphic functions on A.
Moreover, if A is a complex algebraic variety, we denote by O(A) the ring of algebraic functions on A.

A holomorphic (resp. meromorphic) family on A is an endomorphism (resp. meromorphic self-map)
faon P! x A such that 7 o fa =7, where mp : P! (C)x A — Ais the projection to A. More concretely,
one may write fa([x : y],7) = ([P:(x,y) : Q:(x,y)],t) where P,(x,y),Q(x,y) are homogenous
polynomials of same degree d in O*"(A)[x, y] without a common divisor. We say that fj is of degree
d. Then, f is holomorphic if there is no (z,x,y) € A X C* x C* such that P,(x,y) = Q;(x,y) =0.

For t € A, we denote by f; the restriction of f to the fiber above t. We denote by I(fs) the
indeterminacy locus of fx and B(fa) := o (1(fa)). Then, I( fo) and B(fa) are proper closed analytic
subspaces of P! x A and A, respectively. For every t € A \ B(fy), we have deg f; = d. When A is
connected, this is equivalent to say that deg f; = d for one t € A\ B(fa). A meromorphic family is
holomorphic if and only if B(fa) = 0. So, giving a degree d holomorphic family fx on A is equivalent
to giving a holomorphic morphism 7 — f; = P,/Q, from A to Rad;(C). We say that fy is algebraic if
A is a complex algebraic variety and fj : P! x A — P! x A is algebraic (i.e., P;,Q; € O(A)[x,y]). In
other words, it means that the induced morphism A — Rad,(C) is algebraic.
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For a degree d holomorphic family fy on A, let ¥5 : A — M, be the holomorphic morphism
sending ¢ € A to the class of f; in My (C). We say that f is isotrivial if ¥ : A — My is locally
constant. More generally for degree d meromorphic family fx, we say that f is isotrivial if f|z\B(s)
is isotrivial.

5.2. Potentially good reduction

Assume that A is a Riemann surface and fj is a meromorphic family of degree d.

For b € A, we say that fj has potentially good reduction at b if ®x\(p(s)u(p)) : A — Mg extends
to a holomorphic morphism on (A \ B(fa)) U {b}. In particular, fy has potentially good reduction at
every b € A\ B(fp).

Lemma 5.1. Assume that A is an irreducible smooth projective curve. Let fp be a meromorphic family
of degree d. If fa has potentially good reduction at every point in A, then fy is isotrivial.

Proof. Since fj has potentially good reduction at every point in B(fp), Ya\s(s) : A\ B(fa) = My
extends to a holomorphic morphism ¥, : A — M. Recall that M4 (C) = Spec (O(Raty(C)))PeL2(©)
is affine [Sil07, Theorem 4.36(c)]. This follows from the fact that Rat,(C) is affine and the geometric
invariant theory [MF82, Chapter 1]. Since A is projective, ¥, is a constant map. This concludes the
proof. O

Having potentially good reduction is a local property at b (i.e., for every open neighborhood U of b in
A, fa has potentially good reduction at b if and only if fiy := falpi (c)x has potentially good reduction
at b). Note that there is an open neighborhood U of b which is isomorphic to a disk D such that fi\ (5} is
holomorphic. So we can focus on the case that fp is a meromorphic family that is holomorphic on D*.
We will give another characterization of potentially good reduction via non-Archimedean dynamics.

5.3. Holomorphic family on puncture disk

Let fp be a a meromorphic family of degree d > 2 that is holomorphic on D*. Let ¢ be the standard
coordinate on D. We can relate fp to some non-Archimedean dynamics on the field of Laurent’s series
C((1)).

Recall that on C((2)), there is a r-adic norm | - |: Given an element z = 3,5, ant" # 0, where ng € Z,
a, € Cand ap, # 0, the r-adic norm of z is |z| := e™™. This norm is non-Archimedean and C((¢)) is

complete for | - |. Set L := C((?)).
Write

F(x:ylt) = ([Pi(x,y) : Qi(x,9)].1)

where P;(x,y), Q;(x, y) are homogenous polynomials of degree d in O**(D)[1/¢t][x, y] without com-
mon divisors. Since O*(D)[1/t] € C((¢)), fp defines an endomorphism fr((r)) : [x, ¥] = [P/ (x,y) :
Q;(x,y)] on Pl of degree d. Set fi. := fo((1)®c(u)L : P — P}

Recall that

C((1)) = Ups1C((£1/m)). (5.1

To get endomorphisms over C((¢'/™)), we introduce some base changes of f; as follows. Consider the
morphism ¢, : U, := D — D sending ¢ to ¢". There is u,, € O*(U,) such that u]; = ¢*t. Then, u,
is a coordinate on U,,, and we may identify C[u, ] with C[r'/"] (hence, we may identify C((u,)) with
C((r'/™))). Let 0 € U, be the point defined by u,, = 0. The endomorphism on Pé’an ) induced by fy,

((u
i fo () = feiun Be(o C(™).
Lemma 5.2. If fi has good reduction, then fp has potentially good reduction at 0.
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Remark 5.3. The inverse statement of Lemma 5.2 is also true. However, we do not need that direction
in this paper. So we leave it to readers.

Proof of Lemma 5.2. By Theorem 4.6, there is h € PGL 5 (L) such that 7 (fp) = {h(xg)}. Then, h~! o
fi o h has explicit good reduction. By (5.1) and Remark 4.3, we may assume that 1 € PGL > (C((¢'/™)))
for some n > 1. Since C(u,,) is dense in C((u,)) = C((t'/")), by Remark 4.3 again, we may assume
that 1 € PGL »(C(u,)). There is an open neighborhood V of o such that 7 and 4~! are holomorphic on

V\{o} (i.e., they define holomorphic families &y {,} and h;,l\ {0}). We may assume further that V ~ D.

Consider the family fy := h{,l o fu,lv o hy. Observe that

Yo+ 0 dlviio) = Py (o) (5.2)

1,an

C((w))’
duction. So fy is an endomorphism on P! x V. So Wy \ (0} extends to a holomorphic morphism
Yy : V- M. By (5.2), ¥p- is bounded in some neighborhood of 0. So Wp- extends to a holomorphic
morphism on D, which means that fp has potentially good reduction at 0. O

Then, fy induces an endomorphism fc(w)) = fo(()®c())C((1)) on P, which has good re-

The following definition was introduced by Kiwi.

Definition 5.4. [Kiw15] Let fp be a meromorphic family of degree d > 2 which is holomorphic on
D*. We say an endomorphism g is a rescaling limit of fp (or fp-) (via (¢, Mp)) if there is an integer
g > 1, a finite set § ¢ P!(C) and a meromorphic family Mp of degree 1, such that Mp and My are
holomorphic on D* and

M o £7 0 My (2) — g(2)

when ¢ — 0, uniformly on compact subsets of P!(C) \ S.
The following result was proved by Kiwi.

Proposition 5.5 [Kiw15, Proposition 3.4]. Let fp be a meromorphic family of degree d > 2 which
is holomorphic on D*. Let Mp be a meromorphic family of degree 1, such that Mp and Mﬁl are
holomorphic on D*. Then, for all g > 1, the following are equivalent:

(i) There exist an endomorphism g on P' and a finite set S c P'(C) satisfying
Mo f o Mi(2) — g(2)

when t — 0, uniformly on compact subsets of P'(C) \ S.
(ii) The point x = My (x¢g) is fixed by ff and MH:I o f]f oMy =g.

In the case where (i) and (ii) hold, Ty f1 : T, — Ty can be identified with g after identifying Ty to
Ty = P! (C)via Ty My, : Ty, — Tx. Under this identification, S is a finite subset of Ty, which contains
all the bad directions of T f4.

Remark 5.6. One may rewrite Definition 5.4 in the following more geometric way. Let hp be the
meromorphic family Ap := Mﬁl ° f]g o Mp on P'(C) x D. Then, ho = g. Moreover, S can be any finite
subset containing Sy where I(hp) = So x {0} € P'(C) x D.

Corollary 5.7. Let x € P]lL’an be a type 2 fixed point of fi. Assume that Ty fi, is conjugate to some
endomorphism g : P'(C) — P!(C). Then, there is n > 1, such that g is a rescaling limit of fy, |y where

fu,, is the base change of fp by the morphism U, := D — D sending t to t" as in Section 5.3, and V is
an open neighborhood of o € U,, isomorphic to D.

Proof. There is My, € PGL (L) such that x = My (xg). By (5.1) and Remark 4.3, we may assume
that My, € PGLZ(C((t,l,/ "))) for some n > 1. Let fy, be the base change of fp by the morphism
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¢ : U, =D — D, sending ¢ to ¢", and pick u,, with u” = ¢.!(¢) as in Section 5.3. Since C(u,) is
dense in C((u,)) = C((¢'/")), by Remark 4.3 again, we may assume that M; € PGL 5(C(uy)). There
is an open neighborhood V of o such that My, and M I are holomorphic on V \ {0} (i.e., they define

holomorphic families My () and M “,1\ {O}). Then, we conclude the proof by Proposition 5.5. O

5.4. Endomorphisms without repelling type I periodic points

In general, the Julia set of an endomorphism f;, on Pﬂld’a" is a complicated object. The following theorem
due to Favre-Rivera Letelier [FRL], and independently by Luo [Luo22, Proposition 11.4], classifies the
case when f1, has no repelling type I periodic points.

Theorem 5.8. Let f; : Pﬂt’a“ - Pi’a" be an endomorphism. Assume fi, has no type 1 repelling periodic

points. Then, the Julia set of f1, is contained in a segment.

By (v) of Proposition 4.5, 7 (fr) # 0. In the above theorem, if fi, does not have good reduction, then
the segment cannot be a point. As a corollary, we get the following lemma.

Lemma 5.9. Let f; : Pﬂljan — IP’]IL’an be an endomorphism of degree d > 2, which does not have good
reduction. Assume that J(fL) is contained in a minimal segment [a, b]. Let x be a repelling type 2
periodic point in (a, b) with period q > 1. Then, the tangent map T\ f9 is conjugate to z — 7" for some
|m| = deg Ty f4 > 2. Moreover, every bad direction of Ty f4 is presented by (x, a] or (x, b] and under
the above conjugacy, it is identified to 0 or co.

Proof. Since [a, b] is the minimal segment that contains 7 (f), a and b are contained in the Julia
set. Since deg fi, > 2 and fi, does not have good reduction, the Julia set is not a single point. Hence,
a # b. Let v (resp. v2) be the direction in T, represented by the segment (x, a] (resp. (x, b]). Since
J(fL) € la,bl,{veTx| Uv)NT(fL) # 0} = {vi,v2}. Since J(fL) is totally invariant, for v € Ty,
if fAAUW)NT(fL) #0,then U(v) N T (fr) # 0. Hence, v € {vy, vy }. This implies {vy, v,} is totally
invariant by T f9. Actually, let w € (T, f9)!(v;) for some i = 1, 2. Then, we have U(v;) ¢ f4(U(w)).
This implies f7(U(w)) N J(fL) # 0. Thus, w = v;. Bad directions of T, f¢ are contained in {v{,v,}.
Actually, if w is a bad direction, then we have f4(U(w)) = P]i’an. Hence, f9(U(w))NJ(fL) # 0, which
implies w = v| or v,. Finally, an endomorphism of degree deg T, f¢ on P!(C) has a totally invariant
set with two elements that must conjugate to z + z™ for some |m| = deg Ty f4. This conjugacy maps
{v1,v2} to {0, co}, which concludes the proof. O

The following theorem is the main result of this section.

Theorem 5.10. Let fp be a meromorphic family of degree d > 2 which is holomorphic on D*. Assume
that fp does not have potentially good reduction at 0. For every n > 1, assume that the multipliers of the
n-periodic points of f; are uniformly bounded in t. Then, there isn > 1,m > 2, such that g : z +— 7" is
a rescaling limit of fy,|v where fy, is the base change of fp by the morphism U, :=D — D, sending
tto t" as in Section 5.3, and V is an open neighborhood of o € U,, isomorphic to D. Moreover, we may
ask the finite set S in Definition 5.4 to be contained in {0, co}.

Proof. Let f : ]P’IIL’an — Pi’a“ be the endomorphism induced by fp. The multipliers of the n-periodic
points of f; are uniformly bounded in #, which implies f; has no repelling type 1 periodic points. By
Theorem 5.8, J(f) is contained in a minimal segment [a, b]. Since fp does not have potentially good
reduction at 0, by Lemma 5.2, f1, does not have good reduction. By a result of Rivera-Letelier [BR 10,
Theorem 10.88], there are infinitely many repelling type 2 periodic points. By (iii) of Proposition 4.5,
they are necessarily contained in J(f1). Pick a repelling type 2 periodic point x that is contained in
(a, b) of period ¢ > 1. By Lemma 5.9, replace g by 2q if necessary. The tangent map Ty /¢ is conjugate
to z — ™ for some m > 2. Moreover, the bad directions of 7 f¢ can be identified with a subset of
{0, oo} by the conjugacy. The proof is finished by using Corollary 5.7. O
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6. A new proof of McMullen’s theorem

We can now give a new proof of Theorem 1.2.

Proof of Theorem 1.2. Let fa be a non-isotrivial stable irreducible algebraic family of endomorphisms
of degree d > 2. Since A is covered by affine open subsets, we may assume that A itself is affine. Cutting
A by hyperplanes and removing the singular points, we can reduce to the case that A is a connected
Riemann surface of finite type. Since the only non-isotrivial family of exceptional endomorphisms of
degree d is the flexible Lattés family, we only need to show that there is a nonempty open subset W of
A such that, fort € W, f;, is exceptional.

Write A = M\ B, where M is a compact Riemann surface and B is a finite subset. Since f} is algebraic,
it extends to a meromorphic family of degree d. We have B( fy;) C B. Since fj is not isotrivial, by
Lemma 5.1, there is b € B such that fj; does not have potentially good reduction at b. Reparametrize
our family near b € M, and we get a meromorphic family fp of degree d > 2, which is holomorphic on
D* and preserves the multiplier spectrum.

By Theorem 5.10, after replacing fp by the family fy in Theorem 5.10, we may assume that z — z™
for some m > 2 is a rescaling limit of fp with S = {0, co}. Using the reformulation of the rescaling
limit in Remark 5.6, there is an integer ¢ > 1 and a meromorphic family Mp of degree 1, such that
Mp and Mﬁl are holomorphic on D*, and hg is z — 7" where hp := Mﬁl o f]g o Mp on P'(C) x D.
Moreover, I(hp) C {0, 00} x {0} € P!(C) x D. We may replace fip by hp and assume that fy : z > z™
and I(fp) C {0, o} x {0} C P'(C) x D.

The Julia set of fy is the unit circle S', and f; is expanding on S'. We need the following classical
lemma of holomorphic motions of expanding sets. A proof can be found (without using quasiconformal
maps) in Jonsson [Jon98], which is also valid in higher dimension. Let K c P'(C) be a compact set.
We say f : K — K is expanding if there exist C > 0 and p > 1 such that |df"(x)| = Cp" for every
n>0andx € K.

Lemma 6.1. Let (f;),ep be a family of endomorphisms on P'(C). Suppose fy has an expanding set K,
f(K) = K. Assume (f;) is a holomorphic family in a neighborhood of K (i.e., there exists an open set
V, K C V such that for every z € V, t — f;(2) is holomorphic in D). Then, there exist r > 0 and a
continuous map h : D, x K — P'(C) such that for each t € D,.:

(1) K; := h(t,K) is an expanding set of f;.
(ii) the map h, == h(t,-) : K — K, is a homeomorphism and f; o h; = h; o fy.

We set fy : z = z™ and K := S! in the above lemma. The endomorphism f; has the following
properties:

() f7'(K) = fo(K) = K;
(2) all periodic points outside the exceptional set {0, co} are contained in K;
(3) for every n-periodic point z € K, we have df'(z) = m".

Since the family (f;);ep+ has the same multiplier spectrum, the multiplier of the periodic point £, (z)
of f; does not change in the family r € D}. Hence, for every ¢t € D, we have df"(h;(z)) = m". We
choose a homoclinic orbit 0;, i > 0 of fy with og = 1. By (1), all 0;,7 > 1 are contained in K. Hence,
hs(0;),1 > 0 is a homoclinic orbit of f; at z = h,(1), for t € D,.. Let g;, i > 0 be an adjoint sequence
of 0;,i > 0. For every t € Dj, we need to show %,(g;), 7 > 0 is an adjoint sequence of /;(0;),i > 0. In
fact, let U, be a linearization domain of f; at h,(1). Let U, ; be the connected component of f;(U,)
containing i, (0;). Let [ be a good return time of U;. Forevery n > I, f]" : U; ,, — Uy, is an isomorphism,
with a unique fixed point p,,. Let V be the connected component of 4, ! (U, N K,) containing 1. It is an
open arc in S'. Let V,, be the connected component of fo " (V) containing 0, Since K is totally invariant
by fo and V contains some linearization domain at 1, after enlarging [ if necessary, for every n > [ we
have g, € V,, N K. Hence, h;(q,) € U; » N K;, which is fixed by f;" : U; , — U;. By the uniqueness of
pn We have p, = h,(q,). Hence, h;(q;), i > 0 is an adjoint sequence of &, (0;),i > 0.
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For every ¢ € Dj, we consider the dynamics of f;. The fixed point /,(1) has multiplier m and the
adjoint sequence h,(g;), i > 0 of the homoclinic orbit /;(0;), i > 0 has multiplier m’ when i large
enough. By Theorem 2.11, f; is exceptional, which concludes the proof. O

7. Conformal expanding repellers and applications
7.1. Definition, examples and rigidity of CER

The following definition was introduced by Sullivan [Sul86].

Definition 7.1. Let f : P! — P! be an endomorphism over C. A compact set K ¢ P!(C) is called a
CER of f if
(i) there exist m > 1 and a neighborhood V of K such that f™(K) = K and K = N0 f "™ (V).

(i) f™ : K — K is expanding (i.e., there are constants C > 0 and A > 1 such that |df"""(x)| > CA"
forevery x € K and n > 1);

(iii) f™ : K — K is topologically exact (i.e., for every open set U C K there exists n > 0 such that
£ (U) = K).

Remark 7.2. Condition (i)+(ii) is equivalent to f™ expanding on K and f™ : K — K is an open map

[PUI0, Lemma 6.1.2].

The following is an important class of examples of CER.

Example 7.3. Assume V, U;, 1 <i < k are connected open sets in P! (©), k = 2 such that U, cV,and
there exists m > 1 such that f" : U; — V is an isomorphism. Then, we call

K::{zeLkJU,-

i=1

k
f™(z) € U U; for every n > 0}

i=1

a horseshoe of f. We check that K satisfies the three conditions in Definition 7.1. Let Vj := Uf.‘:l U;.

Condition (i): It follows from the definition of K;

Condition (ii): f : Vo — V strictly expands the hyperbolic metric of V. This implies f* : K — K
is expanding;

Condition (iii): Again, using f™ : Vy — V strictly expands the hyperbolic metric of V. The maximal
diameter of the connected components of f~""(Vy) NV shrinks to O when n — oo. For each open set
W cC K, there existinteger n > 0 and a connected component B of f ™" (V) NV, suchthat BNK c W.
Since f"+)™(B N K) = K, we have f"*)"(W) = K. Hence, f™ : K — K is topologically exact.

Moreover, K is a Cantor set. In particular, K is not a finite set.
When f has degree at least 2, there are plenty of horseshoes. Following the terminology in section

2, we can construct a horseshoe associated to finite numbers of homoclinic orbits at 0. We prove the
following lemma which will be used in the proof of Theorem 1.8.

Lemma 7.4. Let o be a repelling fixed point. Let k > 1 be an integer. Assume for each fixed 1 < j < k,
0{, i > 0 is a homoclinic orbit of o such that olf ¢ C(f). Then, there exist an integer m > 1 and
a horseshoe f™ : K — K such that ofm.
0<g<m-1, f49(K) is a CER.

Proof. By Lemma 2.6, there exist a linearization domain U of o and an integer m such that, for every
1 < j < k, mis acommon good return time of U for the homoclinic orbits o{ , 1> 0. Let U{n be the

€ K foreveryi > 0 and 1 < j < k. Moreover, for each

connected component of f~"*(U) containing ofn. Let

k
Vo= Juim |uem .
j=1
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Then, the set

K ={ze V| f™(z) € Vy forn = 0}

is a horseshoe of f. Clearly, we have ofn ;€K foreveryi>20and1 < j < k.

Foreach0 < g <m —1,let K; := f9(K). We know that f¢ : Ul — U,],,_q is an isomorphism, and
f1:¢g™(U) — g™ 1(U) is an isomorphism. This implies f4 : Vy — f2(Vp) is a finite holomorphic
covering (the image of ¢ of two components of V, may coincide). We let ¢, denote this map. Then we
have

bq o ["Ive = f"ra(vy) © ¢g

on f~™(Vy) N Vy, which implies that /™ : K — K and f™ : K, — K, are holomorphically semi-
conjugated by ¢, on the corresponding neighborhoods of K and K,. We check that K, satisfies the three
conditions in Definition 7.1. Since ¢, is a covering and /™ : K — K is an open map, f™ : K, — K,
is an open map. Since ™ : K — K is expanding and |d¢,;| > ¢ on K for some constant ¢ > 0,
™ Ky, — K, is expanding. By Remark 7.2, conditions (i) and (ii) hold. Since f™ : K — K is
topologically exact and ¢, : K — K, is a semi-conjugacy, f™ : K; — K, is topologically exact. This
implies Condition (iii). Hence, K, = f4(K) is a CER. O

The following definition of linear CER was introduced by Sullivan [Sul86].

Definition 7.5. Let f : P' — P! be an endomorphism over C. Let K be a CER of f. f(K) = K. We call
K linear if one of the following conditions holds.

(i) The function log |df| is cohomologous to a locally constant function on K (i.e., there exists a
continuous function u on K such that log |df| — (u o f — u) is locally constant on K).

(ii) there exists an atlas {¢;};;<; that is a family of holomorphic injections ¢; : V; — C such that
K c U}V, and all the maps ¢; o ¢ and ¢; o f o ¢ are affine.

A proof that these two conditions are actually equivalent can be found in Przytycki-Urbanski [PU10,
section 10.1].

The following Sullivan’s rigidity theorem [Sul86] will be used in the proof of Theorem 1.5 and
Theorem 1.8. A proof can be found in [PU10, section 10.2].

Theorem 7.6 (Sullivan). Let (f,Ky), (g, Kg) be two CERs such that Ky is nonlinear, f(Ky) = Ky,
8(Kg) =Kg. Let h : Ky — Kg be a homeomorphism such that ho f = g o hon K. Then, the following
two conditions are equivalent

(i) for every periodic point x € Ky, we have |df" (x)| = |dg" (h(x))|, where n is the period of x;
(ii) there exist a neighborhood U of K ¢ and a neighborhood V of K, such that h extends to a conformal
map h:U — V.

Here, as in Theorem 1.8, a conformal map may change the orientation of P! (C).

7.2. Having a linear CER implies exceptional

Now we give a proof of Theorem 1.1.

Proof of Theorem 1.1. Let K be a linear CER of f, which is not a finite set. By [PU10, Proposition
4.3.6], there exists a repelling periodic point 0 € K of f. Passing to an iterate of f, we may assume
f(K) = K and f(0) = o. Topological exactness of f on K implies for every a € K, the preimages of
flk are dense in K. Let U be a linearization domain U of f at 0. Since K # {0}, there exist/ > 1 and a
point p; € K such that p; # o, f!(p;) = o. Then, there exists a (unique) homoclinic orbit 0;, i > 0 such
that o; = p; and 0; € U for every i > [. Clearly, o; € K when i < [. By the definition of CER, there
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exists a neighborhood V of K such that K = N,50f ™" (V). Shrink U if necessary. We assume U C V.
Hence, for every i > I, we have o; € V. This implies for every fixed i > 0, for every n > 0 we have
f"(0;) € V. Hence, o; € K for every i > 0.

Let {V;}, ;< be an affine atlas in Definition 7.5. Shrink the linearization domain U, if necessary.
We may assume for every i > 0, U; (the connected component of f~#(U) containing o;) is contained in
some affine chart, say V;(;). In particular, U C V() and U; C V; (o) for every i > [. Let {qi},i > 0be
the adjoint sequence of o;, i > 0. For every large enough integer n, we have ¢, € U,. For such fixed n,
for every 1 < i < n, we have f"(g,) € U; C Vi) Let A4; € C* be the derivatives of the affine map
jiist)© fo ¢l where 0 < i < I—1.Let A € C” be the derivatives of the affine map ¢ (o) © f 0 47/,
Then, we have df (0) = A, and for every n large enough, we have

-1
df" (qn) = (ﬂ ai) a
i=0

By Theorem 2.11, f is exceptional. The proof is finished. O

7.3. Marked length spectrum rigidity

We now prove Theorem 1.8 by using Theorem 1.1 and Lemma 7.4.

Proof of Theorem 1.8. 1t is clear that (ii) implies (i). We need to show (i) implies (ii). Assume that &
preserves the marked length spectrum on Q. If / extends to a global conformal map P'(C) — P'(C),
since ho f = g o h on J(f), the same equality holds on P!(C). So we may replace f by its iterate.
Passing to an iterate of f, we assume f has a repelling fixed point 0 € Q and 0 ¢ PC(f). A result
of Eremenko-van Strien [EVS11] says that if a non-Lattés endomorphism f has the property that all
the multipliers are real for periodic points contained in a nonempty open set of 7 (f), then J(f) is
contained in a circle. By this result, there are two cases:

(i) we can further choose o such that df (o) ¢ R,
(ii) J(f) is contained in a circle C.

By our choice of o, h(0) is a repelling fixed point of g. Moreover, we have h(0) ¢ PC(g) since h
preserves critical points in the Julia set. This can be proved using the total invariance of the Julia sets
and the fact that critical means locally, not injective. Let o; i > 0 be a homoclinic orbit of 0. Then, 4(0;),
i > 0is a homoclinic orbit of 4(0). Let U be a linearization domain of o such that U N J(f) c Q. Let
W be a connected open neighborhood of 4 (o) such that 2(U N 7(f)) c Wand WN J(g) C h(Q). By
Lemma 2.6, shrink U and W, if necessary. There exists m > 1 such that m is a good return time of U
(resp. W) for 0;,i > 0 (resp. h(0;),i > 0). By Lemma 7.4, there exist two horseshoes, ™ : Ky — Ky
(resp. g™ : Xy — X,) such that 0;,, € K¢, i > 0 (resp. h(0jm) € Xg, i 2 0). Welet K, := h(Ky). By
our construction, we have 4 : Ky — K, is a homeomorphism and % o ™ = g o h on K. Moreover,
K, C X,. We check that K, is a CER of g: g" : K, — K, is open and topologically exact since
™Ky — Ky is; g™ : Kg — Ky is expanding since K, is contained in an expanding set X,. Hence,
K, is a CER of g. Passing to an iterate we may assume f(Ky) =Ky and g(K,) = K,. To simplify the
notation, for i > 0, we let 0; be the unique point in ' (0) which is contained in the previous homoclinic
orbit.

Since f is not exceptional, K¢ is a nonlinear CER by Theorem 1.1. Moreover, by our construction,
we have Ky C Q. Hence, for every n-periodic point x € Ky, we have |df"(x)| = |dg" (h(x))|. By
Theorem 7.6, h can be extended conformally to a neighborhood V of Ky such that V. n J(f) c Q.
We denote this extension by h. In case (ii), we can further assume that 7 is in fact holomorphic. If
h is antiholomorphic on some connected component B of V, let ¢ be a nonidentity conformal map
(necessarily antiholomorphic) on P!'(C) such that ¢ fixes every point in C, then on B. We may replace

https://doi.org/10.1017/fmp.2023.12 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2023.12

Forum of Mathematics, Pi 23

h by h o ¢, which is holomorphic. We have 7 = / on Ky . Since hof=gohon Ky and K is a perfect
set, by the conformality of /2, we have ho f = gohon V.

Next, we show that i = hon Uy N T (f), where Uy C V is a linearization domain of o. Let E be the
set of all f- preimages of 0. For every a € E N Uy, f4(a) = o, there exists a homoclinic orbit o] of o
such that a = oy, and o; € U for every i > q.

Choose m’ 2 q by 51m11ar construction as in the first paragraph. We get two CERs, f™ : K ]’{ - K J’[
(resp. g™ : K¢ — K{/) such that 0,y € KJ’{ and o], , € KJ’Z (resp. h(oiny) € K¢ and h(o],,) € K

for i > 0. Moreover, K }, is a horseshoe and K ”” is contained in a horseshoe X .. By Lemma 7.4,

= q(K”) and f™ q(X”) are CERs. Since K := fm UKy € fm ‘q(X”) g : Ky — K
is expandmg Smce h: K} - K’ is a homeomorphism and 4 o f” = g™ o hon K} gm Ké - K,
is open and topologically exact. By Remark 7.2, K; is a CER. Moreover, we have 0g4im € K } and

o ., € K' (resp. h(og+im) € Ky and h(o],;..) € Kg) for i > 0. Since f is not exceptional, K} is

g+im’ g+im’

a nonlinear CER by Theorem 1.1. Moreover, every periodic point x of f™ : K > K * has the form

x = f™4(y), where y is a periodic point x of f : Kj’! K” Since K” C Q, we get that the f-orbit

of x has nonempty intersection with Q. This implies for every n- perlodlc p01nt xof f : K } - K } ,
have |df™"(x)| = |dg"™ " (h(x))|. By Theorem 7.6, h can be extended conformally to a nelghborhood
V’ of K ’.. Denote this extension by A4’. In case (ii), we further assume that 4’ is holomorphic. We have
4 (oqﬂmz) = h(0q+lm) = h(0g+in'), i > 0. The set {0g4in,i > 0} is a set with accumulation point o.
We claim that 4’ = h on Vj, where Vj is the connected component of V NV’ containing o. In case (i),
since df (0) ¢ R, i’ and h are both holomorphic or both antiholomorphic on V, hence 2’ = h on V;. In
case (ii), by our choices 4’ and h are both holomorphic Hence A’ = h on V.

There exists b € Vo N K such that f4™ (b) = a for some n > 0 and {b, f(b), -+, f1*"™ (b)} C

Uy. We also have hi(b) = i (b) h(b). Since h o f = g o h on Uy, we have
h(a) = k(£ (b)) = g7(h(b)) = g7 (h(b)) = h(f(b)) = h(a).

This implies & = h on E N Uy. Since E is dense in 7 (f), we get that i1 = h on Uy N T (f).

In summary, we have shown that the homeomorphism # : 7 (f) — J(g) conjugates f to g and can
be extended conformally to a disk intersecting 7 (f). By a lemma due to Przytycki-Urbanski [PU99,
Proposition 5.4, Lemma 5.5], i extends to a conformal map 4 : P! (C) — P!(C) suchthat ho f =goh
on P'(C). O

7.4. Marked multiplier spectrum rigidity

Combining Theorem 1.8 and Eremenko-van Strien’s theorem [EVS11], we now prove Theorem 1.7.

Proof of Theorem 1.7. 1t is clear that (ii) implies (i). We need to show that (i) implies (ii). Assume &
preserves the marked multiplier spectrum on Q. By Theorem 1.8, & can be extended to a conformal
map on P!(C). If 4 is holomorphic, then we are done. If / is antiholomorphic, then the multipliers of
all periodic points in Q are real. By the main theorem in [EVS11], 7 (f) is contained in a circle C. Let
¢ be a nonidentity conformal map on P!(C) such that ¢ fixes every point in C. Let & := h o ¢. Then
h € PGL 5(C), and we have /1 o f = g o h on P! (C). This finishes the proof. o

7.5. Another proof of McMullen’s theorem

Now we can give another proof of Theorem 1.2 using A-Lemma and Theorem 1.7.

Proof of Theorem 1.2. By using A-Lemma [McM 16, Theorem 4.1], it is well known that two endomor-
phisms in a stable family are quasiconformally conjugate on thier Julia sets. Assume by contradiction
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the conclusion is not true. Since exceptional endomorphisms that are not flexible Lattes are isolated
in the moduli space M, there is at least one f in the familly that is not exceptional. Let g be another
endomorphism in the family. Let & : 7 (f) — J(g) be the quasicoformal conjugacy. Since multiplier
spectrum is preserved in this family and the conjugacy & moves continuously in the family, for every
n-periodic point x of f, we have df” (x) = dg" (h(x)). By Theorem 1.7, h extends to an automorphism
on P!(C). This contradicts the assumption that the family is non-isotrivial. O

7.6. Milnor’s conjecture on Lyapunov exponent
We now prove Theorem [.14 using Theorem 1.1.

Proof of Theorem 1.14. Let S be the finite exceptional set of periodic points in Theorem 1.14. Passing
to an iterate of f, there exists a repelling fixed point o of f such that 0 ¢ S. Choose a linearization domain
U of o such that U NS = 0. By the discussion in Lemma 7.4, there exists a horseshoe K C U. Passing to
an iterate of f, we assume that f(K) = K. For every n-periodic point x € K, we have |df" (x)| = b" for
some b > 0. Consider the function ¢ := log |df|. We have shown that, for every n-periodic point x € K,
Z;:ol #(f'(x)) = nlog b. Recall the following classical Livsic Theorem [Liv72].

Lemma 7.7. Let K be a CER of f, f(K) = K. Let ¢ be a Holder continuous function on K. Assume there
exists a constant C such that for every n-periodic point x € K of f, we have

n-1

(£ (x)) =nC.
i=0

Then, there exists a continuous function u on K such that ¢ —C =uo f —u.

Applying the above theorem to ¢ := log |df|, we get that ¢ is cohomologous to a constant function
on K in the sense of Definition 7.5. Hence, K is a linear CER, which is not a finite set. By Theorem 1.1,
f is exceptional. The proof is finished. O

Next, we prove Corollary 1.16. Let f : P! — P! be an endomorphism over C of degree at least 2.
By Gelfert-Przytycki-Rams [GPR10], there is a forward invariant finite set ¥ c 7 (f) with cardinality
at most 4 (possibly empty), such that for every finite set F ¢ J(f) \ £, we have f~'(F) \ C(f) # F.
Let A’(f) be the closure of the Lyapunov exponents of periodic points contained in J(f) \ . The
following theorem was proved by Gelfert-Przytycki-Rams-Rivera Letelier. Be aware that the definition
of ‘exceptional’ in [GPR10] and [GPRRL13] has a different meaning.

Theorem 7.8 [GPR 10, Theorem 2], [GPRRL13, Theorem 1, Proposition 10]. Let f : P' — P! be an
endomorphism over C of degree at least 2. Then, A’(f) is a closed interval (possibly a singleton).

Proof of Corollary 1.16. If A’(f) is not a singleton, then we are done by Theorem 7.8. If A’(f) is
a singleton, then by Theorem 1.14, f is exceptional, contradicting our assumption. This finishes the
proof. O

7.7. A simple proof of Zdunik’s theorem
Next, we give a simple proof of Theorem 1.11, using Theorem 1.1.

Proof of Theorem 1.11. 1t is easy to observe that if f is exceptional, then u is absolutely continuous
with respect to A,. We only need to show the converse is true.

Let ¢ := alog|df|. Following Zdunik [Zdu90], we say ¢ is cohomologous to log d if there exists a
function u € L>(J(f), u) such that ¢ —logd = u o f — u holds for almost every point, where 7 ()
is the Julia set. By a result of Przytycki-Urbanski-Zdunik [PUZ89, Theorem 6], ¢ is not cohomologous
to log d, implying u is singular with respect to A,. So we only need to show that ¢ is cohomologous
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to log d implying f is exceptional. Now we assume ¢ — logd = u o f — u for some u € L>(J(f), ).
By a lemma due to Zdunik [Zdu90, Lemma 2], for every p ¢ PC(f), there exists a neighborhood U of
p such that u equals to a continuous function almost everywhere. We observe that if ¢ r = alog |df]|
satisfy ¢ —logd = u o f — u, then ¢p¢» := alog|df"| satisfies

¢ppn —nlogd=uo f" —u. (7.1)

Passing to an iterate of f, there exists a repelling fixed point o ¢ PC(f). Let U be a linearization
domain of o such that u is continous on U. Let K be a horseshoe of f contained in U. Passing to an
iterate of f, we may assume f(K) = K. Since u is continuous on K, by (7.1), the function log |df| is
cohomologous to a constant on K in the sense of Definition 7.5. This implies X is a linear CER. Since
K is not a finite set, by Theorem 1.1, f is exceptional. The proof is finished. O

8. Length spectrum as moduli

For N > 1, the symmetric group Sy acts on CN (resp. R") by permuting the coordinates. Using
symmetric polynomials, one can show that CV /Sy ~ CN . For every element (1;,...,Ayx) € CV (resp.
RYM), we denote by {11,...,An} its image in CcN/Sy (resp. RN /Sn). We may view the elements in
CN /Sn as multisets. *

For d > 2, let fra, : Raty X P! be the endomorphism sending (z,z) to (¢, f;(z)) where f; is
the endomorphism associated to ¢ € Raty. For t € Raty, f/* has N, := d" + 1 fixed points counted

with multiplicities. Let Ay, ..., A4n4 be the multipliers of such fixed points. Define s5,,(¢) = s, (f;) :=
{A,..., Adgns1} € ANn /Sy the n-th multiplier spectrum of f;. Similarly, define L, (t) = L,(f;) :=
{Jl, ..., |Adans1]} € RN /Sy, the n-th length spectrum of f;. Both s, (f;) and L, (f;) only depend on

the conjugacy class of f;.

For every n > 1, let Per ,,(frat,) be the closed subvariety of Raty x P! of the n-periodic points of
Srat, - Let ¢y, : Per ,,(frar,) — Ratg be the first projection. It is a finite map of degree d" + 1. Let 4,, :
Per , (frat,) — Al be the algebraic morphism (f;,x) > dff"(x) € Al. Let |4,] : Per »,(fRai, (c)) (C) —
[0, +00) be the composition of A, to the norm map z € C — |z| € [0,+00). A fixed point x of f"
has multiplicity > 1 if and only if df;"(x) = 1. This shows that the map ¢, is étale at every point
x € Per ,,(frat,) \/lﬁl(l)

We may view Per,(frar,) as the moduli space of endomorphisms of degree d with a marked
n-periodic point. So we may also denote it by Raty[n] or Ratb [n]. More generally, for every s =

1,...,d" + 1, one may construct the moduli space Rat},[n] of endomorphisms of degree d with s
marked n-periodic point as follows: For s = 2,...,d" + 1, consider the fiber product (Raty[n] )/SRM of
s copies of Raty[n] over Raty. Fori # j e {1,...,d" +1},letm; ; : (Ratd[n])/SRatd — (Ratd[n])/zRa[d

be the projection to the 7, j coordinates. The diagonal A C (Raty ["])/ZRm, is an irreducible component

of (Raty[n] . One may define Rat;[n] to be the Zariski closure of

2
)/Ratd
(Raty [”])7Ratd \ (Uigjeqt,..., d'l+1}ﬂ;}(A))

in (Raty [n])/SRatd. Denote by ¢;, : Rat};[n] — Raty the morphism induced by ¢,. Let 4;, : Rat;[n] —
A* be the morphism defined by (2, x1,...,x5) = (df"(x1),...,df"(xs)) and |4;| : Rat};[n](C) — R®

the map defined by (f,x1,...,x5) — (df"*(x1)],...,|df"(xs)]). Since ¢, is étale at every point
x € Per,, (frar,) \ 4,1 (1), ¢S is étale at every point x € (15)'((A!\ {1})*).
To prove Theorem 1.5, we need to study the subsets taking the form A,(a) := L;'(a) where

a € RN» /Sn, . Since L, is not holomorphic (hence, not algebraic), in general, the above set is not
algebraic. The problem is that one projects a real algebraic set under a finite map, but it may not be

4A multiset is a set allowing multiple instances for each of its elements. The number of the instances of an element is called
the multiplicity. For example, {a, a, b, ¢, ¢, ¢} is a multiset of cardinality 6, and the multiplicities for a, b, ¢ are 2,1,3.
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real algebraic. To get some algebricity of A, (a), one can view Rat;(C) as a real algebraic variety by
splitting a complex variable z into two real varieties x, y via z = x + iy. A more theoretic way to do
this is using the notion of Weil restriction. See Section 8.1.1 for a brief introduction. However, even
when we view Rat;(C) as a real algebraic variety, A, (a) is not real algebraic in general (c.f. Theorem
8.10). Here, real algebraic means Zariski closed when viewing Rat;(C) as a real algebraic variety. See
Section 8.1.1 for the precise definition. This is one of the main difficulties in the proof of Theorem 1.5.
To solve this problem, we introduce a class of closed subsets of Rat;(C) that are images of algebraic
subsets under étale morphisms. We will study such subsets in Section 8.2.

8.1. An example of a length level set which is not real algebraic

The main result of this section is Theorem 8.10, in which we give an example to show that the subsets
A, (a) may not be real algebraic in Rat(C)>.

Except Definition 8.1, in which we give a precise definition of the notion real algebraic using Weil
restriction, this section will not be used in the rest of the paper.

8.1.1. Weil restriction
We briefly recall the notion of Weil restriction. See [Poo17, Section 4.6] and [BLR90, Section 7.6] for
more information.

Denote by Var ¢ (resp. Varr) the category of varieties over C (resp. R). For every variety X over
C, there is a unique variety R(X) over R representing the functor Var — Sets, sending V € Var g
to Hom(V ®g C, X). It is called the Weil restriction of X. The functor X +— R(X) is called the
Weil restriction. One has the canonical morphism 7x : X(C) — R(X)(R), which is a real analytic
diffeomorphism. One may view X (C) as a real algebraic variety via 7.

Definition 8.1. The real Zariski topology on X(C) is the restriction of the Zariski topology on R(X)
via 7x. A subset Y of X(C) is real algebraic if it is closed in the real Zariski topology.

By (iii) of Proposition 8.3 below, the real Zariski topology is stronger than the Zariski topology on
X(C).

Roughly speaking, the Weil restriction is just constructed by splitting a complex variable z into two
real variables x, y via z = x + iy. For the convenience of the reader, in the following example, we show
the concrete construction of R(X) when X is affine.

Example 8.2. First assume that X = Ag . Then R(X) = A%KN . The map
x AN (C)=CV — AN (R) =R™

sends (z1,...,2n) to (X1, Y1,X2,¥2,...,XN,YN) Where z; = x; +iy;.
Consider the algebra B := C[I]/(I*> + 1) ~ C® IC. Every f € C[zy,...,zn] defines an element

F:=f(xi+1Iyy,....,xy +1Iyn) € B[x1,¥1,...,XN,YN]-
Since
Blxi,y1,...,xn,YN] =Clxt, 1, .., xn, yN] @ IC[x1, y1, .. . XN, YN ]S

F can be uniquely decomposed to F = r(f) + Ii(f) where r(f),i(f) € C[x1, Y1,--.,XN,YN]-
If X is the closed subvariety of ACN = SpecC[zy,...,zm] defined by the ideal (fi,..., fy), then

R(X) is the closed subvariety of R(ACN) = A%RN = SpecR[x,y1,...,xn,yn] defined by the ideal
generated by r(f1),i(f1), ..., r(fs),i([fs).

We list some basic properties of the Weil restriction without proof.

5In our example, we will take d =2 and n = 1.
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Proposition 8.3. Let X,Y € Var c. Then, we have the following properties:

(i) if X is irreducible, then R(X) is irreducible;
(i) dimR(X) = 2dim X,
(iii) if f : Y — X isaclosed (resp. open) immersion, then the induced morphism R(f) : R(Y) — R(X)
is a closed (resp. open) immersion.

Then, we get the following easy consequence.

Lemma 8.4. Let Y € Varc and X be a closed subset Y. Then, R(X) is the Zariski closure of X(C) =
R(X)(R) in R(Y).

Proof. We may assume that X and Y are irreducible. It is clear that R(X)(R) C R(X). So R(X) (R)Zar c
R(X). Since

dimp R(X)(R)™" > dimg R(X)(R) = 2dim X = dim R(X)

and R(X) is irreducible, we get R(X)(R)Zar = R(X). O

We denote by oo € Gal(C/R) the complex conjugation z +— z. For every complex variety X, one
denotes by X7 the base change of X by the field extension o : C — C. This induces a morphism of
schemes (over Z) o : X9 — X. It is not a morphism of schemes over C. It is clear that (X7)? = X.

Example 8.5. If X is the subvariety of Ag = SpecC|z1,...,zn] defined by the equations Y; a; ;z' =
0,i = 1,...,s, then X7 is the subvariety of AY defined by ¥; @77z’ = 0,i = 1,...,s. The map
o:X=(X9)7 - X7 sends a point (z1,...,zn5) € X(C) to (Z1,...,2n) € X7 (C).

The following result due to Weil is useful for computing the Weil restriction.

Proposition 8.6 [Pool7, Exercise 4.7]. We have a canonical isomorphism
R(X)®rC~XxX".
Under this isomorphism,
R(X)(R) ={(z1,22) € X(C) x X7 (C)] z2 = 5 (z1)}

and tx sends 7 € X(C) to (z,0(z)) € R(X)(R).

8.1.2. The norm map
For N > 1, let vy : CVN/Sy — RN/Sy be the real analytic map sending {zi,...,zn} to
{1z11%, ..., 1zn|?}. We view CN /Sy as a real algebraic variety via the identification

CcN/Sy = (AY/Sn)(C) = R(AY /Sn)(R) € R(AY /SN )(C).

The following result is the aim of this section. We postpone its proof to the end of this section.

Proposition 8.7. For a := {ay,...,an} € RfO/SN, vl_\,l (a) is real Zariski closed if and only if N = 1
orN=2and a| # as.

Set X := R(AY/Sn) ®r C = (AN /Sn) x (AL /SN). (Since AY /Sy is defined over R, we have
AN /Sy = (AY/Sn)7.) Consider the quotient morphisms g : AY — AY /Sy defined by

(z15--2n) = {21, -, 2N )

and g5 : AY x AY —» X defined by

(“15'-"MN;V1’~"’VN)|_) ({ul’--~a“N}a{Vl,~--7VN})-
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Consider the morphism uy : Ag X Ag — Ag defined by

(ul""’uN;V17"'9vN) '-_) (ulvl""’uNVN)'

Let I'y,, be the graph of uy in (Ag X Ag) X Ag. SetI'y = (g2 X q1)(T'yy) € X X (Ag/SN). Since
g2 % q is finite, I'y is an irreducible closed subvariety of X x (Ag /Sn). We view it as a correspondence
between X and AY /Sy .

Let mp : X X (AY/Sy) — X and my : X x (AY/Sy) — (AY/Sy) be the first and the second
projection. Then, mq|r, is a finite morphism of degree N!. For every x € X, the image of x under
I'yisT'y(x) :=m(Ty N Jrl‘l(x)). For a general x € X(C), I'y (x) has N! points. Similarly, for every
y € AN /Sy, the preimage of y under Ty is T3 (v) = m(Ty N3 ().

Lemma 8.8. For every a = {ay,...,an} € (Ag/SN)(C) with a; # 0,i = 1,...,N, Fl_\,l(a) is
irreducible and of dimension N.

Proof. Consider the actions of g € Sy on AY x AY by
gty . s uUN VL, o V) = (Ug(1)s - -5 Ug(N)3 Vg(l)s - - 2 Vg(N))
and on AY by g.(z1,...,28) = (Zg(1)s - - - » Zg())- Then, we have
q1(8-x) = q1(x), q2(g.x) = g2(x).
Since
I'y'(a) = g2 (uy (a7 (ar... . an})))
and
q7'{ai,...,an}) ={g.(a1,...,an)| g € SN},

we get 'y (a) = g2(uy ((ay, ..., an))). Since uy) ((ay, ..., an)) isdefinedby u;v; = a;,i = 1,..., N,
it is isomorphic to (A' \ {0})V, which is irreducible. Since g is finite, I'y!(a) is irreducible of
dimension N. o

Fora=1{ay,...,an} € RiVO/SN c (Ag/SN)(R), we have
Iy (@) (R) =T (@) N X(R) = Ugesy Vv ¢(a)
where

Vn.g(@) = qa({(ur,...,un;u1,....un) € CN| uiigq) = a;, 1 <i < N})

={({u1,...,un},{u1,...,un}) € R(X)(R)| ujugi =a;,1 <i <N}

We note that, if g1, g> € Sy are conjugate, then Vi ¢, (a) = Vi g,(a). For every g € Sy, it can be
uniquely written as a product of disjoint cycles (i.e., there is a partition {1,..., N} = LI7_ I; such that
g = o1 -+ - 05 where oy acts trivially outside /; and transitively on ;). Set

Zn g(a) ={(u1,...,un;ur,....un) € C*N| wiligs = api=1,...,N}.
Then, Vi ¢(a) = q2(Zn 4 (a)).

Fori=1,...,s,setm; :=#[; and write I; = {j1,..., jm,} With 0(j,) = jn+1. Here, the index n is
viewed in Z/m;Z. We define Z;,i = 1, ..., s as follows:
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(Eop) : If m; is even and Zmil( D*logaj, #0,Z; :=0.
(Ey) : If m; is even and Z ((=D"logayj, =0, then Z; is the set of points taking forms (U, U) €
Cli x ¢l where

i0 -1 i0 -1 i0 -1

_ . . . i6
U—(rjle sair; e, aray rje ,...,a]m[_lajm[_2 ar Te )

for some r;, € Ry and 8 € R. Hence, Z; ~ R.g X (R/Z).
(0) : If m; is odd, then Z; is the set of points taking forms (U, U) € C x C! where

m[—l L 1/2
(. IO L0y . (=1)
U_(rjle s-~~’r]m1.e )’r]n_ l_[aj,ﬁl

1=0
for some 6 € R. Hence, Z; ~ R/Z.

It is easy to show that

N
Zy g(a) =] |z
i=1

Let ep(g), e1(g) and o(g) be the numbers of the index i that falls into the cases (Ep), (E;) and (O)
respectively. Then, Zy ,(a) = 0 if eg(g) > 0. Otherwise,

Zy (@) = R x (R/2)71819),

Lemma 8.9. We have Vy jq(a) = vN (a), and it is Zariski dense in 'y, '(a).

Proof. It is clear that Vi ja(a) = v, '(a). By Lemma 8.8, I'; 1(a) is irreducible and of dimension N.

Since Zy ia(a) = (R/Z)N, Vy ia(a) = g2(Zn ia(a)) is of dimension N. Then, it is Zariski dense in

' (a). O
N

Proof of Proposition 8.7. By Lemma 8.9, v,‘\,] (a) = Vn ia(a) is Zariski closed if and only if Viy 4(a) €
Vn id(a) for every g € Sn.

The case N = 1is trivial. If N = 2 and a; # ay, then ep(g) > 0 for g € S, \ {id}. Hence, Vy i4(a) is
Zariski closed. If there is i # j witha; = aj,let g := (i, j) € SN . Then

Zn g(a) = Roo x (R/Z)V!
which is not compact. Since g, is finite, g2(Zn 4(a)) is closed but not compact. Hence, it is not

contained in Vi iq(a).
Now we may assume that N > 3 and a; # a; for every i # j. We may assume that a; > a, > a3 and

a; =max{a;,i =1,...,N}. Then, for every ({u1,...,un}, {ur,...,un}) € Vn . ia(a), we have
max{|u;|,i=1,...,N} = a}/Q.
Pickg = (1,2,3) € Sy.Then Zy jq(a) # 0 and forevery point (u1, ..., un;u1,...,un) € Zn ¢(a),
we have
max{|u;|,i=1,...,N} > |uz| = (a]azagl)l/2 > a}/z.
Since Vy ia(a) = g2(Zn ia(a)), Vv g(a) NV a(a) = 0. Hence, Vi jq(a) is not Zariski closed. ]
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8.1.3. The example
In this section, we focus on the first length spectrum map L; : Rat;(C) — Rio/ S3. We view Raty (C)
as a real algebraic variety via identifying Rat, (C) with R(Ratp)(R)

Theorem 8.10. Fora < (1,V2), Ll‘l ({a, a, a}) is not real algebraic in Rat;(C).

Proof. We follow the notations in Section 8.1.2.

Recall the first multiplier spectrum map s; : Rat;(C) — (A3/S3)(C). Then, LI‘({a,a,a}) =
5T (v3'({a?, %, a*})). Set b := {a*,a?,a*}. Since s, factors through the moduli space M5 (C), there
is a morphism [s1] : M2(C) — (A3/S3)(C) such that [s;] o ¥, = s;. It was proved by Milnor[Mil93]
that [s] is an isomorphism to its image M (see also [Sil12, Theorem 2.4.5]). Moreover, by [Sil12,
Theorem 2.4.5 and Lemma 2.4.6], M = g, (Yy) and R(M) = g2(R(Yy)), where

Yo={(z1,22,23) €C| z1izazzs =21 + 22+ 23 - 2, 2122 # 1} U {(1,1,23)}.

SetY :={(z1,22,23) € C3| 212023 = 21 + 22 + 23 — 2}, which is the Zariski closure of Yy. The Zariski
closure of R(M) in R(A2/S3) is g2(R(Y)).

Lemma 8.11. The intersection q2(R(Y)) N T’y L(b) is irreducible of dimension 1.

Proof. Observe that (¢2(R(Y)) N F;l (b)) ®r C = g2(Z) where Z is the closed subset of R(Aé) ®rC =
A% X Aé = Spec Cluy, uz, us, vi, va, v3] defined by the following equations:
(i) ujuuz = uy +uy +u3z — 2;
(ii) Vivav3y =V +Vvy+v3 — 2;
>iii) uyvy = a;
@iv) urvy = a;
V) uzvsz = a.

Using symmetric polynomials, one may write

R(AL/S3) ® C=A2/S3 x AL/S;
as

Al x A}, = SpecClx,y,z,x",y, 7]

and in this coordinate, g, is given by x +— uj + uy + u3, y ¥ ujuy + ujus + usuz, 7 > UUru3,
X' > v+ vy +v3, ¥y > vivy +vivy 4+ vpvs and Z7 - vivavs. One may compute that g;(Z) is defined
by the following equations:
(i) z+0;
(i) x=z+2;
(iii) y = 2z +a’)/a;
(v) ¥’ =a’/z+2;
V) ¥ =a*(z+2)/z;
i) 2 =d?/z.

Then, it is irreducible of dimension 1 since it is parametrized by a single variable z. O

Then, R(M) N T3 L(b) is irreducible, and if this intersection is nonempty, it is of dimension 1. We
note that

v3H(b) = M N q2(Z34(b)).
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Let g = (1,2) € S3. We have
M 0 (q2(Z3,5a(b)) U q2(Z3,4(b))) € (R(M) N T3 (b)) (R).

Lemma 8.12. Both M N q2(Z34(b)) and M N q2(Z3,4(b)) are infinite and M N q2(Z3 4(b)) &
M N q2(Z3,ia(b)).

Proof. Since g is finite, we only need to show that Yo N Z3;q(b) and Y N Z3 4(b) are infinite and
M N qa(Z3,4(b)) £ M N q2(Z3a(D)).

Since a > 1, one may compute that Yy N Z3;4(b) = Y N Z39(b) and it is the set of points
(u1,u2,u3) € C3 satisfying the following equations:

upupuz = uy +uy +uz —2and |u| = |uz| = luz| = a. 8.1)
Consider the function F : [0, 7]*> — [0, +c0) given by

a(et? +eif) -2

Fi01,60) =\ = ey

Since a > 1, it is well-defined and continuous. We have

F(0.0) = |(2a - 2)/(a* - a)| = a(a—zﬂ) <!
and
F(n,m) = |(-2a - 2)/(a’ = a)| = ﬁ > 1

There is B8 € (0, 7/2) such that for every a € [0, B], we have
F0,a) <land F(mr —a,n) > 1.
Hence, for every a € [0, 8], there is 8(a) € [0, 7 — @] such that
F0(a),0(a)+a) =1.
One may check that

a(eiB(a) + eia(a)+a) )
adeiQé(a)+a) _ 4

if(a) i0(a)+a Uz =

,a € [0,8]

uyp =ae

,Up = ae

are infinitely many distinct solutions of (8.1). So Yy N Z3 ;4(b) is infinite.
Since a > 1, one may compute that Yo N Z3 ,(b) = Y N Z3 4,(b), and it is the set of points
(u1,u2,u3) € C? satisfying the following equations:

u1u2u3:u1+u2+u3—2andu1u_2:|u3|2=a2. (8.2)
Consider the function G : R X [0, 1] — [0, +00) given by

a(r+1/r)e'? -2

G:(r,0)— 320 g

Since a > 1, it is well-defined and continuous. We note that G(1,0) = F(6,0) for 6 € [0,n]. So
G(1,0) < 1 and G(1,7) > 1. There is R > 1 such that for every r € [1,R], G(r,0) < 1 and
G(r,m) > 1. Then, for every r € [1, R], there is 8, € [0, n] such that G(r,0,) = 1.
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One may check that

a(r+1/r)e' -2
a3e2if _g

i6,

ui(r) =are ,uz(r)zar_leig’,u3(r)=a ,r€[1,R]

are infinitely many distinct solutions of (8.1). So ¥y N Z3 4(b) is infinite. Moreover, if r > 1, then
max{lui (r)|, u2(r)|, lus(r)|} = ar > a, so {ui(r),uz(r),us(r)} € (M N q2(Z3,4(b))) \ (M N
q2(Z33a(b))). This concludes the proof. O

Since M Ng2(Z3 34(b)) is infinite and dim R(M)ﬁFS’l(b) = 1, the Zariski closure of M Ng2(Z3,iqa(b))
in R(M) is R(M) N T3 (b) but M N q2(Z3a(b)) & (R(M) N T3 (B))(R). So L' ({a,a,a}) =
sl_l(M N q2(Z34(b))) is Zariski dense in R(s;)'(R(M) N Fgl(b)), where R(s;) : R(Raty) —
R(M) is induced by s;. Since M N q2(Z3,a(b)) & (R(M) N Fgl(b))(R) and M is the image of s,
Li'({a,a,a}) € R(s1)""(R(M) N T3'(b)). This concludes the proof. O

8.2. Images of algebraic subsets under étale morphisms

Let X be a variety over R. A closed subset V of X(R) is called admissible if there is a morphism
f 1Y — X of real algebraic varieties and a Zariski closed subset V' C Y such that V = f(V’(R)) and f
is étale at every point in V/(R).

Every algebraic subset of X(R) is admissible.

Remark 8.13. Denote by J the non-étale locus for f in V. We have J N V(R) = 0. Since we may replace
V by V \ J in the above definition, we may further assume that f is étale.

Remark 8.14. Let Y be a Zariski closed subset of X. Since étale morphisms are preserved under base
changes, if V is admissible as a subset of X (R), it is admissible as a subset of Y (R).

Remark 8.15. An admissible subset is semialgebraic. So it has finitely many connected components.

Proposition 8.16. Let V|, V, be two admissible closed subsets of X(R). Then V| NV, is admissible.

Proof. There is a morphism f; : ¥; — X,i = 1,2 of algebraic varieties and a Zariski closed subset

V! C Y;suchthat V; = f(V/(R)), and f; is étale. Then, the fiber product f : Y1 xx ¥ — X is étale. Since
VinVy = fi(Vi(R) N A(V3(R)) = f((V] Xx V;)(R)),

Vi NV, is admissible. ]

The key result in this section is the following, which shows that admissible subsets satisfy the
descending chain condition.

Theorem 8.17. Let V,,,n > 0 be a sequence of decreasing admissible subsets of X(R). Then, there is
N > 0 such that V,, = Vy foralln > N.

We need the following lemma.

Lemma 8.18. Let V be an admissible closed subset of X (R). Assume that X and V™ are smooth. Then,
—zar
V is a finite union of connected components of V- (R).

Proof. Since V™ is smooth, different irreducible components of V™ do not meet. So we may assume
that V" is irreducible of dimension d. Hence, v (R) is smooth; it is of dimension d everywhere.
There is a morphism f : ¥ — X of algebraic varieties and a Zariski closed subset V’ C Y such that
V = f(V'(R)), and f is étale at every point in V'(R). After replacing V' by V’(R)Zar, we may assume
that V’(R) is Zariski dense in V’.
For x € V, there is y € V’(R) such that V/(R) has dimension d at y. Since f is étale, f~! (Vzar(R))
is smooth and of dimension d. Hence, V’ coincides with f~! (‘_/m) in some Zariski open neighborhood
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of y. So V'(R) is smooth at y. It follows that f maps some Euclidean neighborhood of y in V’(R) to
—zar —zar
some Euclidean neighborhood of x in V* (R). This shows that V is open in V" (R). Then V is a finite
—Zzar
union of connected components of V' (R). O

Proof of Theorem 8.17. We do the proof by induction on dim X. When dim X = 0, Theorem 8.17 is
trivial.

There is N > 0 such that V_nZaI are the same for n > N. After removing V,,,n = 1,..., N, we may
assume that V,, " ,n > 0 are the same variety. After replacing X by this variety, we may assume that
V_,,Zar = X forall n > 0. Let Xy, X; be the smooth and singular part of X. We only need to show that both
VuNnXp(R),n > 0and V,NX;(R), n > 0 are stable for n large. Since dim X| < dim X, V,NnX;(R),n > 0
is stable for n large by the induction hypothesis. Since Xy is smooth, by Lemma 8.18, every V,, is a union
of connected components of Xy(R). Since Xp(R) has at most finitely many connected components, we

conclude the proof. O

Remark 8.19. Theorem 8.17 does not hold for general semialgebraic subsets. The following example
shows that it does not hold even for images of algebraic subsets under finite morphisms. For n > 0, set
Z, = [n,00) € A'(R). They are the images of A'(R) under the finite morphisms z — z> +n,n > 0.
We have Z,,,1 C Z,, but N,;»0Z, = 0.

Let d > 2. We now view Rat;(C) as a real variety and study the locus in it with given length
spectrum. Forn > 1, s = 1,...,N, and a € R%/Sj, let A} (a) be the subset of # € Rat;(C) such that
a € L,(t) (i.e., f{* has a subset of fixed points counting with multiplicity, such that the set of norms of
multipliers of these fixed points equals to a). It is a closed subset in Rat;(C).

Remark 8.20. This notion generalizes the notion A, (a). When s = N,,, we get A, (a) = Aj (a).

Pick (ay,...,as) € R® representing a € [0, +c0)*/S;. We have
A (a) = 5105 (at, . . ., ay)).
Even though |4} | is not real algebraic, its square |/lfl|2 is real algebraic. So |15 (ay,...,a5) =
(|/1;|2)‘1(a%, ...,a?) is real algebraic. Hence, A% (a) is semialgebraic. Moreover, if a; # 1 for every
i=1,...,s,

A5 ar, . as) € ()TN AT (1)),
So ¢3 is étale along |A5|7(ay, ..., ay). This shows the following fact.

Proposition 8.21. For a € ([0, +c0) \ {1})*/Ss, A} (a) is admissible.

8.3. Length spectrum

Let f be an endomorphism of P! (C) of degree d > 2. Recall that the length spectrum L(f) = {L(f)n,n =
1} of f is a sequence of finite multisets, where L(f), := L, (f) is the multiset of norms of multipliers of
all fixed points of f". In particular, L( f) is a multiset of positive real numbers of cardinality d" + 1. For
every n > 0, let RL(f), be the sub-multiset of L( f),, consisting of all elements > 1. We call RL(f) :=
{RL(f)n,n = 1} the repelling length spectrum of f and RL*(f) := {RL*(f)n := RL(f)n1,n > 1} the
main repelling length spectrum of f. We have d" + 1 > |RL(f),| = d" +1 — M for some M > 0. It is
clear that the difference d* + 1 — |[RL*(f),| is increasing and bounded.

Let Q be the set of sequences A,, n > 0 of multisets consisting of real numbers of norm strictly larger
than 1 satisfying |A,,| < d™ + 1 and for every a € A,, with multiplicity m, @' € A,,; with multiplicity
at least m. For A,B € Q, we write A C Bif A, C B,, for every n > 0. An element A = (4,) € Q
is called big if d™ + 1 — |A,| is bounded. For every endomorphism f of P'(C) of degree d, we have
RL*(f) € Q and it is big.
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For A € RL*(f), by induction, we can show that there is a sequence of sub-multisets P, C
Fix,(f),n > 1 (here we view Fix,(f) as a multiset of cardinal ™' + 1) such that P,, C P, and
A, = {ldf™(x)|| x € P,}. Such P := (P,) is called a realization of A, which may not be unique.
Further, assume that A is big. Then, for every realization of A, |Fix,(f) \ P,| is bounded. It follows that
Per (f) \ (Up>0Py) is finite.

Let A € Q. Define A(A) := ﬂnzlAlA"‘(An), which is the locus of ¢ € Raty satisfying A € RL*(f;).

n!
It is clear that AL‘?""(A,,), n > 1 is decreasing, and by Proposition 8.21, each of them is admissible.
Hence, by Theorem 8.17, we get the following result.

Proposition 8.22. There is N(A) > 0 such that

|A |
A(A) = /\NEVA()A,) (An(a))

which is admissible.

Lety ~ [0, 1] be a real analytic curve in Rat,;(C). We view y x P! (C) as a subset of Rat;(C) x P! (C).
Let f, be the restriction of fra, (c) to ¥y X P! (C). For every n-periodic point x = (¢, y) € y x P'(C), let
% be the connected component of

(y xPY(©)) NRata(O)[n] = ¢, (%)
containing x.

Remark 8.23. If x is repelling for f;, then ¢, is étale at (¢, x). Hence, it induces an isomorphism from
some neighborhood of (x,7) in y% to its image in y.

Moreover, if |1,[(y}) € (1,+c0), then ¢, is étale along y%. In particular, ¢p|yn : ¥y — v isa
covering map. Since v is simply connected, ¢, |, : y§ — v is an isomorphism. If n|m, then y} C v
However, for every (u,y) € y%, the multiplicity of y in Fix(f") is 1. So y¥' coincide with y% in a
neighborhood of y. Hence, y}' = y%. This implies that every y € vy, has the same minimal period and
for every period / of y, yé =y

Lemma 8.24. Fix A € Q. Assume that for every t € y, A C RL*(f;). Then, there is a realization P of A
for fo, such that the following holds:

(i) For every x € U,»oPy, y?’é’x) does not depend on the choice of period m of x. We denote by
YVx = y?’é’x) for some (then every) period m of x. Then ¢ply, : yx — v is a homeomorphism and it
is étale along . In particular, for different points x, vy are disjoint.

(ii) For every x € Uy,soPy, with a period m, |A,,| is a constant on .

Proof. For every n > 1, let B, be the subset of Fix(f;') such that |1, is a constant > 1 on V?O,x)' If
x € B, for some n > 1, by Remark 8.23, x € B,, for every period m of x and y, = 7%,@ does not
depend on the choice of period m. Moreover, ¢,yly, : yx — v is a homeomorphism and it is étale along
vx- In particular, for different points x, y, are disjoint.

It is clear that B = (B,,) realizes an element C € Q. We only need to show that A C C. Let a
be an element in A, of multiplicity / > 1. Then, for every ¢ € , since |a| > 1, [4,]7"(a) N ¢! (1)
contains at least [ distinct points. Let xp, ..., x, be the elements in x € By with 4,,;((0,x)) = a. We
only need to show that s > [. For every i = 1,...,s, y,, is a connected component of ¢;!1(7). Set
Z:= ¢;,1 (P \ UL 7vx-Ifs <[, then foreveryt €y, ZN [l (@) N ¢;!1(t) has at least one point. So
there is y € Z such that y;’! N ||~ (@) is infinite. Since both y;’! and |A,,1]7" (a) are real analytic in
y XP'(C), 2 € |4,|7"(a). By Remark 8.23, ' meets ¢! (0) at some point (0, x) for some x € B,.
So y;” = ¥x, which is a contradiction. O
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8.4. Length spectrum as moduli

Let ¥ : Raty;(C) — My4(C) = Raty(C)/PGL »(C) be the quotient map. Let FL4(C) C Raty(C) be the
locus of Latteés maps, which is Zariski closed in Rat,(C). We now prove Theorem 1.5 via proving the
following stronger statement.

Theorem 8.25. If A € Q is big, then ®(A(A) \ FL4(C)) € My is finite.

Proof. By Proposition 8.22, A(A) is admissible in Raty;(C). Hence A(A) \ FLy4(C) is admissible in
Rat,(C) \ FL4(C). In particular, A(A) \ FL4(C) and ®(A(A) \ FL4(C)) are semialgebraic.

To get a contradiction, assume that ®(A(A) \ FL;(C)) is not finite. By Nash Curve Selection Lemma
[BCROS, Proposition 8.1.13], there is a real analytic curve y ~ [0, 1] in A(A) \ FL4(C) whose image
in M is not a point. Since non-flexible Lattés exceptional endomorphisms are isolated in the moduli
space M 4, there is at least one f; that is not exceptional. Without loss of generality we assume fj is not
exceptional. We now apply Lemma 8.24 for vy and A, and follows the notation there. Set Q := Uy, 50 Py,.
Then S := Per (fp) \ Q is finite.

Pick any z9 € Q. By the discussion in Example 7.3, there exists a horseshoe K of fy containing zo
and K N S = 0. There is m > 0 such that f"(K) = K and fi"(z0) = zo. By Lemma 6.1, there exists
£ > 0 and a continuous map 4 : [0, &] X K — P'(C) such that for each ¢ € [0, &]:

(i) K; = h(t, K) is an expanding set of f;".
(ii) the map h; := h(t,-) : K — K; is a homeomorphism and f/" o h; = h; o f;.

Forevery € [0, £] and for every wg € K satistying f;"" (wo) = wo, we have f"" (h; (wg)) = h (wo).
It follows that /1, (wo) = Yy, (2). Since [, is a constant on yy,, we get [df™ (wo)| = |dff™" (he (wo))|.
We claim that K is a CER of f;. We check that ( f;, K;) satisfies Definition 7.1: since K; is expanding by
Lemma 6.1, (ii) holds; since topological exactness and openness are preserved by topological conjugacy,
by Remark 7.2), (i) and (iii) hold.

Since fy is not exceptional, by Theorem 1.1, K is a nonlinear CER for fy. By Theorem 7.6, for
every fixed t+ € [0, &], the conjugacy h, can be extended to a conformal map 4, : U — V where
U is a neighborhood of K and V is a neighborhood of K;. This implies df"(z0) = dff" (v (1)) (=

df" (hi(z20))) or dfj"(z0) = df{" (v (t)). Since df;" (y,(t)) depends continuously on ¢, we must have
dfy"(z0) = df{"(y4 (1)) when t € [0, ]. Since y, is real analytic, the map t — df/" (y,,(t)) is real
analytic on y = [0, 1]. It is a constant on [0, £]. Hence, it is a constant on . Let n be any period of zg.
The above argument shows that (4, |7z0)m is a constant. Hence, /ln|7z0 is a constant.

Since our choice of zg € Q is arbitrary, for every zp € Q, of period n, the map ¢ — df]'(¢()) is
a constant on [0, 1]. Since S is finite, all f; have the same multiplier spectrum for periodic points of
sufficiently high period.

The set of all endomorphisms in Raty(C) with the same multiplier spectrum of fj for periodic points
with period at least N > 1 is an algebraic variety. We denote it by V. There exists N > 1 such that
v C Vi . Furthermore, there exists an irreducible component X of Vj; which contains y. The irreducible
variety X forms a stable family (see [McM16, Chapter 4]), since the period of attracting cycles are
bounded in Vyy. The variety X is not isotrivial since W¥(y) is not a point. By Theorem 1.2, ¥ C X is
contained in the flexible Lattes family, which is a contradiction. O
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