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RIEMANN DERIVATIVES AND GENERAL INTEGRALS

S. DE SARKAR AND A.G. DAS

Sargent and later Bullen and Mukhopadhyay obtained a definition

of absolutely continuous functions, AC? functions, that is

related to kth Peano derivatives. The generalised notions of

AC.G*, [/4C,G*] , ACiP* above, etcetera functions led Bullen

and Mukhopadhyay to define certain general integrals of the feth

order.

The present work is concerned with a further simplification

of the definitions of such functions by the use of divided

differences but still retaining similar fundamental properties.

These concepts lead to the introduction of Denjoy and Ridder

type integrals which are shown to be equivalent to a Perron type

integral that corresponds to kth Riemann* derivatives. All

three of these integrals are shown to be equivalent to the three

integrals of Bullen and Mukhopadhyay.

1. Introduction.

A fuction of a real variable / is (L) integrable if there exists

a function F such that

(i) F'(x) = fix) at almost all points x and
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188 S. De Sarkar and A. G. Das

(ii) F is absolutely continuous.

The function F is called the indefinite (L) integral of f .

If the condition (ii) is replaced by the condition that F is

ACGi , we obtain the definition of the (V*) integral, the special

Denjoy integral.

It is well known that if a function F has a finite derivative on

a set E on which F is continuous, then F is ACGA on E and that

if F is ACGt on a set E then a finite derivative of F exists

almost everywhere in E . This fact enables us to show that the (V*)

integral is equivalent to the (P) integral of Perron. Later Ridder

[/4] obtained the generalisations ACGA above and ACG^ below functions

leading to the definition of the (V) integral, say, which is again

completely equivalent to the CO*) and (P) integrals.

Das and Lahiri [£] obtained the definition of a kth absolutely

continuous function, AC-, function. Das and Das C7] showed that the

first integral of an AC, function is AC. - , and that a fe-fold

(L) integral is an AC. function.

An equivalent descriptive definition of a fc-fold integral given

by them is as follows:

A function of a real variable f is (L ) integrable on [a.,fc]

if there exists a function F such that

(k)
(i) F (x) = fix) at almost all points x in [a,fc] and

(ii) F is AC, on [a,&] .

The function F (thus uniquely determined apart from a polynomial

of degree k-1 ) is the indefinite (L ) integral of the function / .

In order to obtain the kth order generalisation of the special

Denjoy and Ridder integrals it is desirable to introduce generalisations

of the concepts of ACGA, ACGA above and ACGt below functions.

The first part of this paper is concerned with such extensions

giving rise to the definitions of AC} , AC?G , AC*G above and AC?G

below functions. It is proved that if the feth Riemann* derivative of

f, D f , exists in [a,fa] then f is AC?G on Ca,Z>] and that if /
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is AC?G on la,b] then Erf exists and is equal to the approximate

derivative of U almost everywhere in [aji].

The second part introduces the definitions of the r- , u- and

P - integrals which are ultimately shown to be equivalent.

It is worth mentioning that our definitions of AC? , AC?G etcetera

functions are simpler than those in Sargent [2 0] and Bullen and

Mukhopadhyay [3] but still retain similar fundamental properties. Also

our integrals are shown to be equivalent to the r-} D - and r -

integrals in Bullen [2] and Bullen and Mukhopadhyay [3] . It is thus

evident that a function / is r- integrable if and only if it is

C, -P -integrable and

a result that the extension of the (L ) integral actually has.

Let / be a real valued function defined on the real line R~ .

Let a,b be fixed real numbers such that a < b . Let k be a positive

integer greater than 1 . By E we shall always mean a subset of la,b].

We remark here that the set E which was taken to be dense in itself in

De Sarkar and Das C ) 0] may be taken as any subset of la,b] , but in that

case the results connected with the existence of derivatives should be

modified for the points of the derived set E' which are in E . We

denote by aj 6 the least upper bound and the greatest lower bound of E

respectively. The Lebesgue measure of a set A will be denoted by mA .

The usual &th order derivative and the approximate derivative of / at

(k)
x,x e J?3 , will be denoted by / (x) and /' (x) respectively; f-jJ^

will stand for the feth order Peano derivative of f at x .

Let x ,x ,.,.,1 be any v+1 distinct points, not necessarily in

linear order, in [a,fc] . Then the rth divided difference of f is

defined by
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190 S. De Sarkar and A. G. Das

Qv(f;xo,xr...,xr) = j { fixj/lT (xt-x.) }
1-0 3=0

Let x,x , . . . , x be points of [a,b~] and l e t h. = x. - x

i = 0,1,. .. , r with

0 £ \hQ\ < | ^ | < . . . < \hr\ .

Then the rth Riemann derivative of / at x is defined by

Xf fix) = rl lim lim ... lim Q (f;x ,x ,...,x ) ,
h +0 h n+V h +0 r ° 2 r

r r-1 o

if the iterated limit exists. The right and the left rth Riemann

derivatives are defined in the obvious way. If in the above definition

h = 0 , then we get the rth Riemann* derivative of / at x and denote

it by U fix) . Taking lim sup (respectively lim inf) at each stage we

get the upper (respectively lower) derivatives V f(x), ufix)

(respectively if fix) , I?fix)). The one sided derivatives Pr fix),

U fix) etcetera are obtained in the usual way.

Let E c Ia,b1 . If, for all choices of k+1 distinct points

a; ,I.,.,.,I. in E , we have Q,(f;x ,X-,...,x.) > 0 , then f is

called k convex on E .

The number

where the supremum is taken over al l IT - subdivisions in E of the form

x < x1 < . . . < x ,x. e E , i = 0,1, . . . , n , is called the kth

variation of f on E . If V,(f;E) < + °° , then f is said to be of

bounded fcth variation, BV, , on E .

L e t X l , 0 < X 1 , 1 < • " < X l , k ~ X 2 , 0 < X 2 , 1 < ' • • < X 2 , k " • ••

£ x Q < x . < . . . < x , be any subdivision of E where x. . e E .

We say that the intervals ix. n,x. ,), i = 1,2, . . . , n , form an
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General in tegrals 191

elementary system I , say, in E . The system is denoted by

We write

i=l ' ' ' *

n

and
n

The function / is said to be absolutely kth continuous, AC, , on E

if (fe > 0)(3S(e) > 0)(ml < 6(e))=>a\l\ < e .

The function f is said to be ACfo above ( respectively below) on

E if (Ve > 0)(36(c) > 0) (ml < &(e))=>ol < e (respectively a I > -c ) .

Remark 1. Taking k = 1 in the above definitions gives the

corresponding definitions of BV, AC, AC above (below) etcetera functions

as in Ridder [J4], Saks [79] and others.

The following theorem whose proof is omitted will be needed.

THEOREM 1. (see Theorem 2.3 and Corollary 2.4 of De Sarkar and Das

[JO]). If f is AC-, above (respectively below) on E and D f

exists on E , then D ~ f is AC above (respectively below) on E .

Notations and definitions not given here may be found in De Sarkar

and Das [70].

2. AC* BV* ACfG functions.

For any two real numbers c,d with a < d define

~Skl(f;c,d) = sup {Qk_1(f;x1,x2,...,xk)-Qk_1(fic,x1,... , 1 ^ ; }

where the supremum is taken for all points x., i = 1,2, ..., k, with

c < x 1 < x 2 < ... < x k < d ;

~Sk2(f;c,d) = sup lQk_1(f;x1,x2t...txk_J3d) - Q^^fsx^x^... ,X]<) }
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192 S. De Sarkar and A. G. Das

where the supremum is taken for all points x. , i = 1,2, ..., k, with

a 4 x < x < . . . < x, < d .

Similarly we define ^(ftcd) and S^2(f;a,d) by replacing the

supremum by infimum in the above.

We now define

SkJ(f;o,d) = sup{ \Qk_1(f;xJ,x2,...:,xk) - Qk_1(f;o,x1,...,xk_1) |}

w h e r e t h e supremum i s t a k e n f o r a l l p o i n t s x . j i = 1,2,..., k, w i t h

c < xJ < xg < ... < X]< <, d ;

Sk2(f;c,d) = suP{ fc^fix^xy...,xk_24) - Q^jCfiXjtXr •. • , V |}

where the supremum is taken for al l points x.9 i = 1,2, . . . . , k, with

a < x < x2 < . . . < x, < d .

We take

and

Sk (f; o, d) = max {S^ (f; a, d) , Sfe2 (f; a,d)} .

It is easy to see that

(2.1) Sk(f;a,d) < 'Sk(f;c,d) - S^(f;c,d) .

DEFINITION 1. The function f i s said to be AC} on E i f

•T&— 1

v" f(x) exists in an interval containing E and if to each e > 0

there corresponds a 6 > 0 such that for every finite sequence of non-

overlapping intervals {(a.,d.)) whose end points belong to E the

inequality 7 (d.-o.) < 6 implies T S,(f;o.,d.) < e .

The function / is said to be AC} above (respectively below) ,

written AC? (respectively AC? ) , on E if v~ f(x) exists in an

interval containing E and if for arbitrary e > 0 , there exists a

6 > 0 such that
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J S,(fjc.,d.) < e (respectively J S_,(f;c.,d.) > - e )
i i

for every f i n i t e sequence of non-over lapping i n t e r v a l s {(a.,d.)} whose
If If

end points are in E and ) (d. -a.) < 6 .

DEFINITION 2. We define

i

V^tfiZ) = sup { I S^fjc^dJ}

where the supremum and infimum are taken for all finite sequences of

non-overlapping intervals {(c.,d.)} whose end points are in E .
If tf

We have the following lemma whose proof is omitted.

LEMMA 1. V^(f;E) > 0 > V^(f;E) .

DEFINITION 3. If V*(f;E) < + °> , then we say that / is BV* on

E . The function / is said to be BV* above (respectively below), written

BV-^ (respectively BVjp , on E if V£(f;E) <+<» (respectively V£(f;E) >-»).

Remark 2. Taking k = 1 in Definitions 1 and 3 gives the

corresponding definitions of AC*, BV*, AC* above (below), BV* above

(below) functions as in Ridder [74], Saks [79] and others.

We next prove the following theorems.

THEOREM 2. If f is AC* on E, then f is AC^ on E .

Proof. Let / be AC? on E and let e > 0 be arbitrary. Let

I(x. -, ..., x. -K_-,) • (x. ~,x•. .)y i = 1,2, ..., n , be an elementary

system in E . Since / is AC? on E there exists a 6 > 0 such that

n n
(2.2) I Sk.(f;xi Q,xi k) < t/2;j = 1,2, for I (x. fc-x. ; < 6 .

i=l " ' ' i=l ' '

In view of Theorem 3 of Russell [75], we have for x. . < y. < x. ,
If j U X- If y J.

i = 1,2, ..., n ,
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194 S. De S a r k a r and A. G. Das

Therefore using (2.2) we obtain

n
whenever £ (x. v-x. .) < 6 and this proves the theorem.

1=1 ' '

Remark 3. It is easy to prove that if / is ~AC? (respectively

AC, ) on E j then / is AC, (respectively AC,) on E .

THEOREM 3. If f is BV* on E , then f is BVk on E.

Proof. Let f be BV? on E . Then there exists a positive

number L such that for any finite sequence of non-overlapping intervals

{(c.3d.)} whose end points belong to E we have

(2.3) I S^ffjc^dJ < L, 3 = 1,2 .

Let us consider any irfx ,i ,,,.,1 ) subdivision of E . We then

have k sets of non-overlapping intervals (x.3x. ,) 3 i e A = {r, k+r,
If if'jK, X*

2k+r3 ... < «} and r = 03l3 ..., k-1 so that

n-k

Let x. <y.<x.-tieA . Then in view of Theorem 3 of Russellt "t %+l r

[15] we have
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n-k

%=0

, using (2.3).

Since v is an arbitrary subdivision of E it follows that

V,(f;E) < 2kL and hence f is BV, on E . This completes the proof.

Remark 4. It can be proved easily that if / is BV* (respectively

BV*. ) on E , then / is B~V, (respectively BV, ) on E .

THEOREM 4. If f is BK* on E and Vk~1f exists on (a,$),

then f is BV, on (a,&) .

Proof. Let f be BV? on E and suppose V f exists on (a,&).

Let T\(X ,X-,...,x ) be a subdivision of (a,BJ . Then

n-k

K-i (f;xi xi

where A contains suffixes v, k+r, 2k+r, ...S n for r = 0,1,...,k-l.

k-1
Let e > 0 be arbitrary. Since V f exists on (a,&) there

exists a sequence of non-overlapping intervals {(y .,y . •.)}, i e A , in

E such that

This gives
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As e > 0 is arbitrary and / is BV, on £ , the theorem follows.

LEMMA 2. If f is BVk on both EJ = La,c'] n E and

Ep = [e,,b] n E wheve a < c < b , and (k-l)th divided differences are

bounded on (a,&) , then f is BV? on E .

Proof. Suppose t ha t (k-l)th divided difference are bounded on

fa,&) in absolute value by K , say. Consider any sequence of non-over-

lapping in te rva l s {(a.,d.)} , i = 1,2, ..., n, whose end points are in
tr If

E and let a < a < d for some v . Then
r r

I S^fiC^dJ = j S^fiC^dJ + I S^frc^dJ+S^fsc^)

and the lemma is proved.

THEOREM 5. If f is ACk on E , then f is BVk on E .

Proof. The proof follows using Definition 1, Definition 3 and

Lemma 2.

Combining Theorems 4 and 5 we obtain.

COROLLARY 1. If f is AC* on E , then f is BVk on (a,&) .

THEOREM 6. Let c < d < c, < d£ <, ... s e, < d, ... be a set of

k-1points in E . If V f exists on (a,8) and f is BV, on E then

the series J S,ff;c.,d.) is convergent.
If

Proof. Let {(p.,q.)} , i = 1,2, ,.., be a subsequence of all

intervals {(c.,d.)} , i = 1,2, ..., for each of which S,(f;p.,q.) 2 0 .

If n is a positive integer, then

\ S^fsp^qJ * V*k(f;E) < + -

and so
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£ S,(f;p.,q.) is convergent .
i

Next let {(r.,t.)} , i = 1,2, ..., be a subsequence of {(o.,d.)},
1,1 % V

i = 1,2, ..., for each of which S,(f;r.,t.) < 0 . For a fixed positive

integer n we consider the finite sequence {(v.,t.)}, i = 1,2, ..., n.

From the definition of 5, for each e > 0 arbitrary, there exists, for

each i (i = 1,2, ... ,n) , a set of points r. Q,r. y,...,r. •, with

r. < r. < r. < ... < r . . < t . such that

(2.4) S,.(f;r.,t.) + z/21

Thus we have an elementary system

in fajBy1 . Let J denote the elementary system in (a,8) n [2*. ,i" ,]

complementary to I . Then J and J together form an elementary

system in (a,8) which we denote by

J(r\i+1,..., ni+k_j) : (r\iS r\i+y), i = 0,k,2k , (m-l)k,mk

where n = r- . and T^rmi.-i)V
 = r v • W e consider (k-1) elementary

systems

i e A = {s,k+s, 2k+s, ... < (nH-l)k) , for each s = 1,2, ..., (k-1)
8

so that

al + al + aJ' + ... +

In view of Theorem 4 above and Theorem 4 of Russell [75], the (k-l)th

divided differences of f are bounded in (a,8) •

Therefore al > -2K - k V,(f;(a,$)) where K is the bound of the (k-l)th
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divided differences on (a,8) . Thus from (2.4) i t follows tha t

n
I S^Cfsr^tJ > al > -ZK-k V^fjfa^)) .

i—1

Since, by Corollary 1, / i s BV, on (a,&) and n is arbitrary, the

series J S,(fjr.,t.) is convergent. Because, by (2.1)
t

I Sk(f>^d.) < I Sk(f;pi3q.) - I ^(fjr^t.)
i i v

the theorem follows.

COROLLARY 2. Let E be a bounded closed set with contiguous

intervals (a 3b ) 3 n = 1,2, If f is AC? on E , then the
rl ft f\

series £ S,(f;a ,b ) converges.
n K n n

THEOREM 7. If f is AC, on E £ la,bl , then there exists a

function F in La,b] such that

(i) F is ACi on E ,

(ii) F(k~2) is AC* on E ,

(Hi) F(x) = f(x) for x e E ,

(iv) F(r) (x) = jff(x) , r= 1,2, ..., (k-1) on E .

Proof. Let / be AC, on E £ ia,b] . Then Theorem 3.3 of

De Sarkar and Das [70] yields a function F in La,bl such that

F(x) = fix) for x e E (which proves (iii)) and F is AC, on La,bl.

By Lemma 1 and the subsequent Note of Das and Lahiri [7] u F exists

on La,b] . Again using Theorem 1 of Das and Lahiri [7] and Theorem 4 of

Russell [J5] we see that the (k-1)fh divided differences of F are

bounded in [a,b~\ . Consequently u F is bounded in [a,b] and so,

by Theorem 3 of Oliver [131, lJi~1F(x) = F, Jx) = F(k~2) (x) for all x

(I, 2)
in \_a,b] . Then by Theorem 1 it follows that F is AC on [a,fc].

Hence (i) and (ii) follow from above and the fact that a function which

is AC, (respectively AC ) on La,bl is necessarily AC? (respectively
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AC* ) on any subset of [a,Z>] . It is easy to see that (iv) follows

from Lemma 1 and the subsequent Note of Das and Lahiri [7] .

This completes the proof.

THEOREM 8. If f is AC^ an E , then f is AC^ on the

closure E of E .

Proof. Since tT / exists on E we have, for a e E and A e E,

S,Jf;a,\) —* 0 and Skgif;c,X) —» 0 as X —>c over the points of E.

It then follows that Qk_1if;y1,y2,..,yk_1,X)^Qk_1)f;x1,xg,...,xk_1,a)

as X •+ a, x.,y. e [a,b], a < x. < y. < \ or a > x. t y. > \

according as X > a or X < c . Now if d e E and \i e E } then it is

not difficult to show that

f>xrx2> •••' V "
= lim

or x. < y. (i = 1,2, ..., k) according as X > c or X < c . This shows

that

Sklif;c,d) <! lim inf Skl(f;\,\i) •

Similarly it can be shown that

Sk2if;o,d) £ lim inf Sk2(f;\,V)
X -»• a, \i •*• d

and hence

S,(f;c,d) Z lim inf S,(f;\,\i) .
X -»• Ci \i •*• d

The theorem now follows easily.

THEOREM 9. If f is AC* on a closed set E £ la,bl , then Dkf

exists and equals iu f) ' almost everywhere in E .

Proof. Let / be ACk on E . We set g(x) = fix) - Fix) where

Fix) is the function obtained by applying Theorem 7 on E . Then
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lfg(x) = 0 for x e E, r = 03 1, 2,..., (k-1) .

By Theorem 6, g is AC, on 2? . Let {(a.,d.)} be the set of

complementary intervals of E in [<Zjb] . Define

h(x) = 0 for x £ E

= Sk(g;o1}dJ for e^ < x < d^ .

Since g is AC, on E it follows that h is AC* on E . Also

F is AC on E . Hence h and F exist almost everywhere
k-1 (k 1)

in E . Since Er f=F on £ it follows that

F(k)(x) = (D*'1)' (x)
op

holds whenever I is a point of density of E . It can be shown that

k (k)
D f(r\) = F (T\) holds whenever n is a point of density of the set

(k) 1
where F and h exist finitely. This completes the proof.

COROLLARY 3. If f is AC? on the closed set E c [a,2>] , then

D f is Lebesgue integrdble an E .

DEFINITION 4. The function f is said to be AC^G below

(respectively above) written J4C,C (respectively AC.G ) , on E if E

can be expressed as a countable union of sets on each of which f is

AC? (respectively A~C? ) . The function / is AC?G on E if E is

countable union of sets on each of which f is AC, .

We shall use the notation [J4CVG] etcetera instead of A-C-Jj

etcetera to mean that the set E can be expressed as a countable union

of closed sets on each of which f is AC, etcetera.

We note that taking k=l in the above definition gives the

corresponding definitions of AC*G, AC*G above (below), [AC Gl above

(below) etcetera functions as in Ridder [J4], Saks [J9] and others.

In view of Theorem 8 we have the following remark.

Remark 5. If f is AC^G on E c [Qjfc] , then / is lAC^Gl on

E , the closure of E .
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THEOREM 10. If "^f(x) < + » on E , then f is Icfp on E .

Proof. For a fixed pos i t ive integer r l e t E denote the set of

a l l points x of E such that for every l . , l , , •••> x, ,

0 < la^-xl < . . . < \xk_J-x\ < \xk-x\ < 1/r

implies

(2.5) k!Qk(f;x3x1,...,xk_ltxk) < r.

Let E . = E n li/r. (i + l)/rl . Thenm. r

(2.6) E = u . .u E . .
r=l i=-<*> rt

We shall show that f is AC? on each E . . Let a?J a e E . with

<Xj < Xj < . . . < x, < a- . Then from (2.5), using Lemma 4 of Russell [15]

we get

and

Thus i t follows that S-,.(f;o.-,aJ < ry fa, - a J , J = 2j2, and

therefore S,(f;a..,aJ < -rj (a- - ct.J . I t is now easy to prove that /

is AC, on each E . . The proof i s completed by (2.6).

In a similar way i t can be shown that if D_ f > - °° y then / is

AC,G on E . Hence we get the following corollary.

COROLLARY 4. if - *> < ̂ f(x) < ifrffx) < + » on E , then f is

AC*G on E .

THEOREM 11. Let f be lAC?Gl below on La,bl and let iff > 0

almost everywhere in [a,fc] . If P is any perfect set in [_a3b] such

that f is k-convex on the complementary intervals of P3 then there

is an interval \X,m\ containing the points of P such that f is

k-convex on Ll3m~} .
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Proof. Since / i s LAC?Gl below on La,bl there i s a sequence

of closed se ts {E.} such tha t La,b] = y E. and / i s AC-, below on

each E. . Then P = y (P n E.) . So by Baire ' s Theorem, (Saks [79,p 54])
t x. i*

there exists i and an interval Ll,m1 such that P n[l,m] c P n E.
O I*

o

Hence / is AC, below on P n Ll,m] . Therefore, by Remark 2, / i s

AC, below on P n Ll,ml and hence, by Theorem 1, D f is AC below

on P n Ll,ml . Since / is k-convex on the complementary intervals of

P and D f is a Darboux function it follows that Er f is continuous

and non-decreasing on the closure of each complementary intervals of P .

Hence u~ f is AC below on LI,ml . Therefore D f is non-

decreasing on [Zjtfi] . This implies, in view of Bullen [7, Corollary 8]

and Oliver [73, Theorem 3] (also repeated in Verblunsky [2 7, Theorem 1

(ii)]) , that / is k-convex on Ll,m] . This completes the proof.

THEOREM 12. Let f be Ucfa below on La,b] . Iflff>0

almost everywhere in La,bl , then f is k-convex on La,b3 .

Proof. Let G be the set of all points x in La,bl such that

there is a neighbourhood N = (<x, 6 ) of x in which / is k-convex.

sc tier 35

Then the set H = la,bl \ G is perfect. If possible suppose that H is

non-empty. Let {(a.,b.)} be the set of complementary intervals of H
in la,b] . Then / is k-convex in each interval (a.,b.) . Thus, by

If is

Theorem 11, there is an interval Ll3ml containing points of H such

that / is k-convex on LI,ml . This contradicts the fact that LI,ml

contains points of H . Therefore H is empty.

Let N be the neighbourhood of x in which / is k-convex. By
3C

The Heine-Borel Theorem there is a finite subcover N , j = 1,2, . . . , n,

of [a,£>] . Since the neighbourhoods are not disjoint, by the application

of Theorem 2 of Russell [75] i t i s easy to show that / is k-convex on

La,bl and thus the theorem is proved.

COROLLARY 5. If f is LAC*G~\ on La,b~l and if one of ifif, iff
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vanishes almost everywhere in La,bl , then f is a polynomial of degree

(k-1) at most.

THEOREM 13. If f is lAC*Gl on E c la,b] t then for almost all

x in B, uf(x) and (u f)' (x) exist and are equal.

Proof. The proof follows directly from the definition of lAC?Gl

and Theorem 9.

3. The Pk- , / - ^P^-integrals.

DEFINITION 5. Let f be a real valued function defined on la,b'l .

Then a function M continuous on [a,b] is called a P^-major function

(or simply a major function) of f on [a3bl if and only if

(i) ifu exists and is finite on [a,fc] , 1 < r < k-1 ;

(ii) ^M(x) 2 fix), x e [a,b] \ E^mE2 = 0 ;

(iii) ITM(x) > - » , ! « ia,b\ \ C, C is countable;

(iv) ifM(a) = 0, 0 <, r <, k-1 .

If -m is a major function of -/ , then m is called a minor function

or more precisely a P^-minor function of / on La3bl .

It is clear from the definition that f need only be finite or

indeed defined almost everywhere.

For a < a < b define F(o) , the upper ^-integral of / on

[ajb] , by F(a) = F1 - I f = inf {t:t = M(c) , M is a major function

of / } . In a similar manner the lower c -integral F_(e) = F_ - I
'a

defined. If F(c) = Fjc) we write the common value F(o) = TT - / an
'a

if further this value is finite we say f is c -integrable on [a,e] .

Remark 6. Bullen and Mulkhopadhyay 14, Theorem 4.4] shows that if

the (k-l)th Peano derivative / , ^ and the (k-l)th Riemann* derivative

D" f exist at x , then the one sided upper (respectivly lower) feth
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Peano derivative and one sided upper (respectively lower) kth Riemann*
derivative at x are equal. Thus i t follows that the above integral is

same as the P^-integral, for n = k , defined in Bullen [2].
Standard arguments (see Bullen [2]) will prove the following results .

THEOREM 14. If f is Pk-integrable, then

(i) for every major function M and every minor function m , M-F
and F-m are r-convex on [a,bl , 0 i r < k ,

(ii) D F exists on (a,b);

(Hi) F(a) = l?F(a) = 0, 1 < r < k-1 ;

(iv) DrF(b) exists, 1 < r < k-1 .

THEOREM 15. If f is P^-integrable on ta,cl and on Lc,bl ,

then f is t-integrable on [a,b~\ .

THEOREM 16. Suppose f is e-integrable on every \_c,d~S ,

< d < b and put I(c,d) = P - / . Suppose further thata < c

(i) Urn I(a'kii =0 > and

a-* a (c-a)
(ii) there is a polynomial P of degree (k-1) at most such that

v Kcd)-p(d) _ Q

dTb (b-d)k-2

then f is P -integrable on la,bl and

f = lim I(c,d) .

THEOREM 17. If f is ^-integrable on la}bl and F is its

F'-integral, then uF exists and equals f almost everywhere.

THEOREM 18. If E is a closed bounded set with end points a'

3'

and if

and 3 ' and contiguous intervals (a ,b ) in (a',fi'), n = 1,2, ...,
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(i) f is Lebesgue integrable on E ,

(ii) f is e -integrable on each [a ,b ] , n = 1,2, . . . ,

(Hi) I Sk(F(n);an,bn) < + - ,
n

where F. . is the P^-integral of f on [a ,b ] , then f is P -

integrable on [a',B'] .

DEFINITION 6. The function / is said to be D -integrable on

la,bl if and only if there is a function F such that

(i) F is i4C*G on [a,fc] ,

(ii) ifF(a) = 0, 0 < r < k-1 ,

(iii) uF(x) = f(x) almost everywhere.

Further we call F the indefinite D -integral of / and write

rX

F(x) = IT - fix), a < x < b .
-"a

It follows from Remark 5 and Corollary 5 that if such an F exists

it is unique.

We shall now show that the P - and D -integrals are completely

equivalent.

THEOREM 19. If f is P*-integrable on La,bl , then it is 1T-
integrable on la,b~] to the same value and conversely.

Proof. (a) Let / be P^-integrable on ia,b1 and F be i t s

P^-integral on la,x], a < x < b . Let e > 0 be arbitrary. There is a
major function H such that

0 < lJ<~1R = Dk~1(M-F) <, (k-D! e/2 ,

where R = M-F . By Theorem 10, M i s AC-ifi ' 3 e l ° w o n [a,b] . Therefore

there exists a sequence of sets {E.} such that La,b] = y E. and M

0 j 3
*

is AC, below on each E. . There is a 6 > 0 such that if {(a.,d.)} ,
K 3 v i*

i = 1,2, . .., n, is any sequence of non-overlapping intervals with end
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points in E. and £ (d. - a.) < & , then
0 i=1 *- *

\ S^H;c d) > - z/2

For any set of points x. , r = 1,2, .. ., k, with a. < x. 7 < x. .<

< x. , id. we have
ik i

S,(M;o.,d.) - {D^'^fbi-D^'1 R(a)}

Since by Theorem 14, R is fc-convex on [â fc] it is easy to deduce

from this that

Qk-l(Fsxi,l>xit2---'
xitk

) ~ <*k-l(Fiei>xitV~>
xi,k-l)

d.) - Dk~2R(a.)} / (k-l)t .

Hence, since D R is non-decreasing, we get

n n V i

and so

n

In a similar way it can be shown that

n n
I §i,->(F;c->d.) > -e whenever 7 (d.-c.) < 6 and therefore F

V=l V=l

is AC? below on each E. and hence AC?G below on la,bl .

However, since -/ is also P^-integrable, F is also AC?G

above on [a,fc] and hence F is AC?G on La,bl .

This and Theorems 14 and 17 above show that / is ZT-integrable

on [a,2>] and that

n
F;c->d.) > -z/2 -z/2 = -z whenever T (d.-c.) < 6 .
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D
k _ r /=P

k _ r f 3 a * x < b.
'a 'a

(b) Suppose f is D -integrable on [a,£>] and let

Ej = {x:f is not P -integrable in any neighbourhood of x} .

Then, clearly, F- is closed and let {(a ,b )} denote the intervals of

the complement of E\. in \_a,b~\ .

If a < a' < 8' < bn , then f is P -integrable on [a',6'] .

If F is the indefinite Z/̂ -integral of f on [â fc] , then since from

the definition of ZT̂ -integral it is clear that

k-1 - ,.m

F(x) - I "/ ifF(a') , where D°F(a') = F(a') ,
rmO

is the indefinite D -integral of f on [a',8'] we have from (a) that

(3,1) J^ -

Since the right hand side of (3.1) satisfies the conditions of Theorem 16

on [a ,b ] we have that / is ̂ -integrable on [a ,i ] and

hn k-1 (b - a f

an

Hence, by Theorem 15, E is a perfect set.

If possible, let Z? be non-empty. Since F is S.AC,G\ on

LO,2>] by Baire's Theorem it follows that Z?7 contains a portion Q

such that F is AC, on Q , the closure of Q . Let o,d be the end

points of Q and (a ,d ), n= 1,2, ..., be the contiguous intervals of

Q in Ce,dj. Then by Corollary 2 we have £ S,(F;a ,d ) < + <» . Also by
n

Corollary 3, UF is Lebesgue integrable on Q . Hence, by Theorem 18,

/ is r -integrable on Lc,dl .
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This contradiction shows that E- is empty and thus the proof of

the theorem is complete.

DEFINITION 7. Let / be a finite real valued function on [a,£>]

Then a continuous function M is called a P -major function of / if

and only if

(i) D M exists and is finite, 1 < r <, k-1 ;

(ii) ITM(x) > f(x) for almost all a; ;

(iii) M is IAC*G1 below on la,bl ;

(iv) ifM(a) = 0, 0 < r < k-1 .

In a similar manner P -minor functions can be defined. Then by a

standard procedure (see Bullen [2], James [72]), this leads to a

definition of an integral of Perron type, the P -integral, say.

I t follows from the above definition that the function f need

only be finite, or indeed defined, almost everywhere in La,bl .

We shall show, Theorem 20 below, that the r -integral is

equivalent to the P^-integral (and consequently to the D - integral).

To show this we require the following results .

LEMMA 3. If M is any r -major function of f, and m is any

r -minor fimction of f, then M - m is k-convex.

Proof. The proof follows immediately from Theorem 12.

COROLLARY 6. If f is r -integrable, and M and m are as in

Lentna 3, then M- F and F-m are k-convex, where F is the

indefinite P -integral of f .

COROLLARY 7. If f is V -intearable on la,bY, and F is its

indefinite r -integral, then IFF exists, a ^ x < b , l < r < k-1 .

LEMMA 4. If f is P -integrable on ia,b~\ with zero as its

indefinite r -integral, then fix) = 0 for almost all x in La,bl .
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Proof. Suppose that f > 0 on some set of positive measure. Then
for some a',&' , a < a' < 6' < b and some s > 0 , e > 0 there is a
set A c [a ' ,B ' ] such that mA > e and x e A implies fix) > s .

k
If M is any P -major function of / , then by Corollary 6, M is

(k)
fc-convex. Let B = {x:M (x) 2 s} ; then by ( i i ) in Definition 7 and

Bullen and Mukhopadhyay [4, Theorem 4.4] i t follows that A c B and so

(3.2) mB > e .

Again since M is ?C-convex, by Bullen [J, Theorem 12] , we have

(3.3) mB < — {M(k~2)($') - M(k~1}(a')} .
s

But M can be chosen so that M(8') is arbitrarily small and so by

Bullen [J, Corollary 8(b)] the right hand side of (3.3) can, by the

correct choice of M , be made less than e . This contradicts (3.2)

and so f(x) 2 0 almost everywhere. In a similar manner it can be shown

that fix) S 0 almost everywhere, which completes the proof.

COROLLARY 8 . If f and g are both T-integvable with the

same indefinite r -integrals, then fix) = gix) for almost all x .

THEOREM 20. The r-integral is equivalent to the p^-integral.

Proof. (a) Let / be P^-integrable. Then by Theorem 19, / is

U -integrable. Therefore there is a function F such that F is &C-,G

on Ia,b1 } I?F(a) = 0 , 0 < r < k-1 and L^f(x)=f(x) for almost all of a;.

Then, by Remark 5, F is LAC?G~\ on La3bl and so is both a P -major

k k
and a P -minor function of / . Hence f is P -integrable with F as

k
its indefinite P -integral; but by Theorem 19, F is also the

k
indefinite P -integral of / .

k k
(b) Let / be P -integrable with indefinite P -integral F .

Proceeding as in (a) of the proof of Theorem 19 it follows that F is

LACjGl on [a,2>] . By Theorem 13, U F exists almost everywhere and so

from Definition 7, u F is if"-integrable with F as its indefinite
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D -integral. By part (a) above then D F is r -integrable with F as

its indefinite r -integral. Hence by Corollary 8 , D F = f almost

everywhere^that is to say, f is ZT-integrable and so P -integrable

with F as its indefinite P -integral. This completes the proof.

Remark 7. From Theorem 20 and Remark 6 it follows that the P -,

D - j P -integrals are equivalent to the c-3 u- integrals in Bullen

[2] and also to the P -integral in Bullen and Mukhopadhyay [31. It

therefore follows, in view of Bullen [2, Theorem 16], that / is t -

integrable on La,b] if and only if it is CV 7P-integrable in \_a3b1 .

If F is the P -integral of / then

/ JF(x) = Ck_2P- f ,
'a

rX tX rX rx

F(x)=P- ClP- C2P- ... Ck_lP- f.
'a 'a 'a 'a
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