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ON LINEAR INDEPENDENCE FOR INTEGER TRANSLATES
OF A FINITE NUMBER OF FUNCTIONS
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We investigate linear independence of integer translates of a finite number of compactly supported functions in
two cases. In the first case there are no restrictions on the coefficients that may occur in dependence relations.
In the second case the coefficient sequences are restricted to be in some / ' space (1 g p g oo) and we are
interested in bounding their /'-norms in terms of the L'-norm of the linear combination of integer translates of
the basis functions which uses these coefficients. In both cases we give necessary and sufficient conditions for
linear independence of integer translates of the basis functions. Our characterization is based on a study of
certain systems of linear partial difference and differential equations, which are of independent interest.

1980 Mathematics subject classification (1985 Revision): 41A30, 41A63, 15AO3, 35E2O, 39A70

1. Introduction

In this paper, we are concerned with spaces generated by integer translates of a finite
number of compactly supported functions. Specifically, given a finite set <J> of compactly
supported functions $l,...,<l>n from Rs to C, we are interested in the space

ltj>j,fJy.f1,...,fmes\, (1.1)

where S is the linear space of all sequences / : Zs -»C, and

[*,/]:= I *(•-«)/(«)• (1-2)

These spaces have already been a focus of a lively investigation, see the recent
monograph [3] and references therein. We only mention here that it was Schoenberg
[15] and later Fix and Strang [8] who studied the question when polynomials of some
fixed total degree are contained in F(<t). This issue is important for constructing finite
element approximations.

Motivated by other questions concerning multivariate splines, one is led to consider
the problem of algebraic linear independence of integer translates of 4>u...,<j>n. Here
"algebraic" means that there are no restrictions on the coefficients that may occur.

69

https://doi.org/10.1017/S0013091500005903 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500005903


70 RONG-QING JIA AND CHARLES A MICCHELLI

Precisely, the integer translates of <f>1,...,<j)n are said to be (algebraically) linearly
independent provided the linear mapping

Wi, • . • , / „ ) • -£ [0;,/;] (1-3)
i=y

from S" to F(O) is injective. One of the main purposes of this paper is to give a
characterization for linear independence in terms of the Fourier-Laplace transforms of
0i.---.0»-

We shall investigate the properties of the mapping T when / i , . . . , / n are restricted to
be elements of P(ZS) for some p, l^p^oo. If 0i,...,<pn are continuous functions of
compact support, then one can show that the image of (/P(ZS))/I under the mapping T is
a subspace of LP(IRS), which we shall denote by Fp(<pu...,<(>„), or simply Fp(4>). If T is
injective as a mapping from S" to F(4>), then the restriction of T to (/"(Z*))" is also
injective. It turns out that this latter condition on T is equivalent to the boundedness of
T~l as a mapping from Fp(<5) to (/"(Zs))" for all p, l ^pgoo . We shall also give a
necessary and sufficient condition in terms of the Fourier transforms of 0 l 5 . . . ,0n for
this to happen.

The problem of linear independence of integer translates of basis functions stemmed
from some questions about multivariate splines. In [1] de Boor and Hollig considered
the linear independence problem for integer translates of a box spline. They gave a
necessary condition for integer translates of a box spline to be linearly independent and
conjectured that their condition would be also sufficient. Their conjecture was confirmed
independently by Dahmen and Micchelli [5], and Jia [10].

The general problem of linear independence of integer translates of a function was
studied in [5]. It was realized there that a dependence relation, that is, an element feS
with [<p, / ] = 0 could be viewed as a family of difference relations on the element / .
Thus one was led to focus on the ideal generated by these difference equations, invoke
the Hilbert Nullstellensatz and prove that the existence of a nontrivial dependence
relation implies the existence of a dependence relation for some exponential element
feeS with 0 = (01,...,0,)e(C\{O})1, where fe is defined by the rule

Obviously the elements feS such that [0, / ]=O form a shift-invariant subspace of S
closed under pointwise convergence topology. Thus, as observed in [13], the result
mentioned above is a consequence of a general principle of Lefranc [12], which say that
every nontrivial closed shift-invariant subspace of S contains an exponential element.
Moreover, using the Poisson summation formula, Ron [13] put the above result into
the following convenient form: The integer translates of a compactly supported
distribution 0 on W are linearly dependent if and only if there exists some t, e Cs such
that

0 forallaeZs,
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where $ is the Fourier-Laplace transform of </>.
Our characterization of linear independence is based on a study of certain systems of

linear partial difference and differential equations, to which Section 2 is devoted. The
results of Section 2 essentially depend on an application of Hilbert's Nullstellensatz. In
Section 3 these results are employed to characterize linear independence of integer
translates of a finite number of compactly supported distributions. The linear space of
all possible linear dependence relations among these integer translates is studied in
Section 4 along with certain kernel spaces of linear partial difference and differential
operators. Finally, Wiener's lemma will be used in Section 5 to give a useful necessary
and sufficient condition for T ~l to be a bounded operator from Fp(O) to (/p(Zs))n.

2. Linear partial differential and difference equations

Let k be an algebraically closed field. Denote by n(fcs) the ring of polynomials over k
in s variables. Let S be the linear space of all sequences /:Zs-»fe. For example, for
6 = {9l!...,9s)e(k\{0}Y, the sequence given by

is an element of S, which we shall denote by fg.
Let {c1;...,es} be the standard basis for Us. We denote by x} the shift operator given

by

For0=(01,...,ft)eZs,let

T : = T ! ' ...1S'.

If p£ll(/cs), pM = Z/»goa0x^> then P induces the linear partial difference operator

p(t):= £ a,**.

It follows immediately that

9e(k\{0}f. (2.1)

Let P={Pij)izizm,izjzn be a matrix with all its entries pyellffe*). For dele1, we
denote by P(6) the matrix (piJ(0))l^i§m lsJSn. Consider the system of linear homo-
geneous partial difference equations for ( / ^ . . ^

Z PiM)fj = 0, i=l,...,m. (2.2)
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All the solutions to this system of equations form a subspace of S" which we shall
denote by x(P).

Theorem 2.1. Let P be an mx n matrix whose entries are elements of Il(fcs). Then the
following conditions are equivalent.

(i)

(ii) There exists some 0e(fc\{O})s and (au...,an)ek"\{0} such that

(aJe,...,anfe)€x{P). (2.3)

(iii) There exists some 6e(k\{0})s such that the matrix P(9) has rank less than n.

Proof. First, by (2.1) we have

Hence (2.3) is true if and only if

i=l, . . . ,m.

This proves that (ii) is equivalent to (iii). Since (ii) implies (i) trivially, it remains to
prove (i)=>(ii). For this purpose, we consider the ideal J generated by the polynomials
Pii>--->Pmi- Let V{J) denote the variety of J, i.e.,

s: p(z) = 0 for all peJ}.

If V(J) n (fc\{0})s is nonempty, then there is some 0e(fc\{O})s such that

It follows that

Thus the theorem is true in this case. If V(J) n (/c\{0})s is empty, then the monomial r
given by

r(x): = x1...xs{x = (xl xs)ek*)

vanishes on V(J). Hence, by Hilbert's Nullstellensatz, there exists a positive integer k
such that r^eJ. Thus we can find polynomials uu...,umeTl(ks) such that
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* -- + umpml. (2.4)

If n = 1, then fex{P) implies

This together with (2.4) gives r*(i)/ = 0, and hence / = 0 , because r*(r) is invertible on S
with (TX ...Ts)~

k as its inverse. In other words, if V(J) is disjoint from (fc\{0})s, then z(P)
is trivial. This proves the theorem for n = 1.

We proceed with the proof by induction on n. Let n > 1 and suppose that the theorem
is true for n— 1. Set

1 = 1

Note that qi = rk by (2.4). Let (/1,...,/n)er(P)\{0}. Then

n n m

q^x)fj= L Z uiPij('c)fj=0- (2-5)

In particular, ( / 2 , - - , /n )#0 . for otherwise / t would also be zero by (2.5). Moreover, by
(2.2) and (2.5), (/2 ) . . . ,/„) satisfies the following equations:

Z (QiPij-Pn9j)(^)fj = 0, i=l,...,m. (2.6)
7=2

Conversely, if (/i,...,/B) satisifes the equations in (2.5) and (2.6), then it also satisfies the
equations in (2.2). Thus the system (2.6) has a nontrivial solution. Therefore by the
induction hypthesis one can find some 0e(/c\{O})s and (a2,...,an)e/cn~1\{0} such that

\e,...,aje) is a solution to (2.6). Let

Then gt =alfe for some a, ek by (2.1). Thus
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satisfies (2.5) and (2.6), hence it is a solution to the system (2.2). This advances the
induction step. •

Similar results hold for differential operators induced by polynomials. Let A be the
linear space of all formal power series over k in s indeterminates Xu ...,XS. An element
of A is of the form X ^ o M ^ , where X': = X?...X? for <x=(a1,...,as)eZs, and the
coefficients ba are elements of k. For instance, A contains the exponential e% for any
£=(f!,...,(iljefc5, which is defined to be the formal power series

n=0 n=0

For /? = (/?!,...,&)eZs, 0^0, let £>" be the (formal) differential operator on A given
by the rule

where we have used the notation a!: = a1!...as! and adopted the convention that
Xx~fi=0 if CCJ<PJ for some je{l,...,s}. If peU(ks), p(x) = X ^ 0 «/>*'» then p induces the
linear partial differential operator p(D):=YJp^oapDfi. It follows at once that

p(D)(ei)=p(Oei, ^efe5.

Again, let P — (Pij)i^i^m,igj^n be a matrix of polynomials. Consider the following
system of linear homogeneous partial differential equations for (fl,...,fn)eAn:

t Pij(D)fj = 0, i = l , . . . ,m .
7 = 1

All the solutions to this system of equations form a subspace of A" which we shall
denote by D(P).

Theorem 2.2. Let P be an mxn matrix whose entries are elements of n(/cs). Then the
following conditions are equivalent.

(i)

(ii) There exists some (^ek* and (au...,an)ekn\{0} such that

{alei,...,aHet)eD(P).

(iii) There exists some ^ek such that the matrix P(£) has rank less than n.
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3. Algebraic linear independence

In this section we let k be the complex field C. Recall that a distribution on Us is a
continuous linear functional on the test function space &>(US) (e.g., see [14, Chap. 6]).
The space of all distributions on Us is denoted by @'(US). If 4>e2i'{Us) is compactly
supported, then the Fourier-Laplace transform of </>, denoted by <j), is defined to be the
function given by

where i denotes the imaginary unit. It is well known that $ is an entire function on Cs

and its restriction to Us is the Fourier transform of 4> (see [14, Theorem 7.23]).
For a compactly supported distribution <j> on W and a sequence / e S, the bilinear

sum of <j> and / , denoted by [ 0 , / ] , is the distribution defined by (1.2). Let
<b = {<j>1,...,(j)n} be a finite set of compactly supported distributions on Us. Recall that
the linear mapping T defined in (1.3) maps S" onto F(O), where F(<I>) is as given in (1.1).
We denote by K(O) = K(<t>u...,<£„) the kernel of T; that is,

If X(<D) is trivial, i.e., K(O) = 0, then the integer translates of (p1,...,(f>n are said to be
(algebraically) linearly independent. The purpose of this section is to give a characteriz-
ation for K(<S>) to be trivial.

Lemma 3.1. There exists a matrix P with n columns whose entries are elements of
n(Cs) such that K(<D) = 1

Proof. Let G be the open cube ( - 1 , l)s. Since Us is the union of G + J?, /?eZs, we see
that ( A , . . . , / . ) e K(<D) if and only if

= 0 foralljSeZ5.
G

But T ' [ 0 , / ] = [ 0 , T ' / ] ; hence ( / , , . . . , / , )6K(O) if and only if

£ Z (*"//)(«)<£.,•(•-a)|G = 0 fora l l0eZ s . (3.1)

Since ^>l,...,^>n are compactly supported, there exists a positive integer N such that

| « |> JV=>^( - - a ) | c = 0 fora l l ; = l , . . . ,n , (3.2)

where |a|: = max{|a,| , . . . , |as |} for a=(a 1 , . . . , a J ) eZ s . This shows that the restriction of
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the linear space F($) to G is finite dimensional. Choose a basis \//1,...,il/m for it. For
j=l,...,n and <xeZs, 4>j(' — «)|G can be uniquely represented as follows:

* j ( - - a ) | G = I flyOWi, (3-3)
i= 1

where the coefficients al}{d)eC and are zero for |a|>JV. In terms of (3.3), (3.1) is
equivalent to

m / n
E E E a,>KT7,)(a) (^ = 0 forall0EZs. (3.4)

Note that T^/(a)=/(a + ^) = T°[/(^)- Since i//1,...,il/m are linearly independent, (3.4) is
equivalent to

I ( E a;,(a)TaN)/,=0, i=l, . . . ,m.
j=l \|«|SiV /

Let y be the s-vector (N,...,N) and define pti to be the polynomial given by

Pij(x)'-= E a . 7 ( a ) x a + y. i=l,...,m, j=l,...,n.
\a\SN

Then K((D) = T(P) for the matrix P: = (pu)lstSm.1*jSl,. D

The following lemma is a consequence of the Poisson summation formula (see [13,
Lemma 2.1]).

Lemma 3.2. Let <j> be a compactly supported distribution on W. Then for a given
£eCs, the sequence (e'4'a)a6z« lies in K((p) if and only if

$(Z + 2n<x) = 0 forall<xeZs. (3.5)

Theorem 3.3 Let <pi,...,<f>n be compactly supported distributions on W. Then the
following conditions are equivalent.

(i) * « ) ! , . . . , </>„) #0.

(ii) There exists some 0e(C\{O})s and ( a 1 , . . . , a n ) eC\{0} such that

(a,/„, . . . , an/f l)e/C(^,...,0n). (3.6)

(iii) There exists some % e Cs such that the sequences

https://doi.org/10.1017/S0013091500005903 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500005903


LINEAR INDEPENDENCE FOR INTEGER TRANSLATES 77

are linearly dependent.

Proof. By Lemma 3.1., /C(01,...,0n) = t(P) for some matrix P of polynomials; hence
the equivalence between (i) and (ii) follows from Theorem 2.1.

Suppose (3.6) is true. Choose £eCs so that e'4 = 0, and set

cp:= £ arfj. (3.7)

Then (3.6) and (3.7) imply

In other words, feeK{<j>); hence by Lemma 3.2, (3.5) is valid. It follows from (3.5) and
(3.7) that

£ fl^(£ + 2»ra)=0 forallaeZ5. (3.8)
J=I

Since (a1 ; . . . ,an)#0, this proves that (ii) implies (iii).
Finally, suppose (iii) holds. Then there exists some (a1 , . . . ,an)eC\{0} such that (3.8)

is true. With 0 = eli and <j) given by (3.7), we obtain (3.5); hence feeK((t>), and then (3.6)
follows. •

4. Kernel spaces

Let P = (p,j)igigm,isjsn be an mxn matrix with all its entries plj6ll(/cs). The kernel
spaces D(P) and T(P) are of independent interest. Some special cases of these kernel
spaces in connection with box splines have been studied in [1] and [6]. When «=1,
[7] gave necessary and sufficient conditions for D(P) or T(P) to be finite dimensional, see
also [2], [4] and [11]. In this section we investigate the kernel spaces D(P) and T(P) in
the general case (n > 1) and then apply the results to the study of linear dependence
relations among integer translates of a finite number of functions.

Theorem 4.1. Let P be an mxn matrix whose entries are elements of n(fcs). Then the
linear space x(P) is finite dimensional if and only if the set

0(P): = {9 e (k\{0})s: rank(P(0)) < n}

is finite, and in this case every element f = (fi,---,fn)ei(P) has the form

https://doi.org/10.1017/S0013091500005903 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500005903


78 RONG-QING JIA AND CHARLES A MICCHELLI

OeB(P)

where <7,-,fl en(fc*), j=l,...,n and 8e®(P).

(4.1)

Proof. If 0€&(P), then rank(P(0))<n; hence there exists (alifl,...,an(,)ek'I\{0} such
that

By (2.1) it follows that

(auefe,...,ani6fe)ez(P).

Observe that the set of elements

{(a1.ef,,...,aK,,fB):6e®(P)}

is linearly independent. Thus if T(P) is finite dimensional, then &(P) must be a finite set.
Conversely, suppose that ®(P) is a finite set. We wish to show that the dimension of

T(P) is finite and every element (fi,...,ftt) of z(P) has the form (4.1). The proof
proceeds with induction on n. The case n = 1 was proved in [7, Proposition 2.2] and
[11, Theorem 4.1]. Let n>\. For 1=1,...,m, let ^ e l l ^ ) be given by

Pi\ Pij

Pn Pa

and form the matrix

Note that if p(1(0)#O, then

Form the matrix

Q' = (q\j)lZi£m 2<,j<.tr

rank(P(0)) = rank(Q'(0)) +

Q1'

and consider the linear space
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From the construction of Q we see that

( / i , / 2 , - , / . ) e t ( F ) = > ( / 2 , . . . , / l l ) e t ( e ) . (4.2)

Let

0(0): = {9e (k\{0})s: rank(Q(0)) < n - 1 } .

We claim that

0«2)£0(J>). (4.3)

Suppose 9$G(P). Then rank(P(0)) = n. Moreover, p(1(0)#O for some le{l,...,m}, for
otherwise Pu(0) = O for all le{l,...,m} would imply 0 E 0 ( P ) . It follows that

rank(g(0)) ^ rank((?'(0)) = rank(P(0)) - 1 = n - 1 .

Hence 6$Q(Q). This proves (4.3). Thus 0 (6 ) is a finite set; hence by the induction
hypothesis, T(Q) is finite dimensional. Let TT, (je{l,...,n}) be the projection operator
from S" to S given by

(/"i,-, / . )>-/,•

We have proved that 7iJ<T(i))) is finite dimensional for j = 2,...,n. The same is true for
7 = 1. We conclude therefore that x(P) is finite dimensional. Moreover, by (4.2) and the
induction hypothesis, / , has the form (4.1) for j = 2,...,n. The same is true for j=l.
This completes the induction step. •

Similar results hold for the kernel space D(P).

Theorem 4.2. Let P be an mxn matrix whose entries are elements of FI(fes). Then the
linear space D(P) is finite dimensional if and only if the set

is finite, and in this case every element (fl,...,fn)eD(P) has the form

fj= I eiaJ.i
«eH(P)

where qj^eTlilc1), j=l,...,n and £eE(P).
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In the rest of this section we assume that k is the complex field C and <S> = {(j>l,...,<pn)
is a finite set of compactly supported distributions on W. By virtue of Lemma 3.1, the
above results can be applied to K(<D). We denote by N{Q>) the set of all £ e Cs satisfying
Re (<J) e [0,2n)s and the condition that the sequences

are linearly dependent.

Theorem 4.3. The kernel space K(<S>) is finite dimensional if and only if N(Q>) is a finite
set, and in this case any linear dependence relation ( / ! , . . . , /JeK(O) has the form

where qJt t e TI(CS), j = 1 , . . . , n, £ e N(<*>).

Proof. The case n=\ was proved in [4, Theorem 2.1]. The general case (n>l)
follows from Lemmas 3.1 and 3.2 and Theorem 4.1. •

5. Linear independence on / ' (Is)

Let us assume now that <f)1,...,<f>neC0(W), the space of complex-valued continuous
functions on W having compact support. For every p, l ^p^oo , and ( / 1 , . . . , / n )eS" we
define

where \\fj\\p denotes the standard /P(ZS) norm of /,-; the LP(W) norm of functions is
denoted similarly.

Let T be the mapping as defined in (1.3). In the previous sections we were concerned
with the algebraic aspects of T. In this section we shall investigate the properties of the
operator T when/!,...,/,, are restricted to be elements of lp(Zs), l ^p^oo .

First, we show that T maps (/p(Zs))n into LP(IRS). For this purpose we make use of the
generalized Young inequality (see [9, pp. 13-14]) to estimate the Lp-norm of [<£,/],
where </>eC0(R

s) and /e/p(Zs). We view Zs as a measure space by defining the measure
of any subset of Zs to be its cardinality. If a is fixed, we have

J \<Hx-a)\dx =

if x is fixed, then

i>
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£ |Mc-a)|g max £ |0(x-a)| = : |*L (5.1)

which is finite because <j)eC0(U
s). Evidently, ||^|| 1 ^ |̂ |oo- Thus by the generalized Young

inequality,

||

It follows that

In other words, T is a bounded operator from {l"(Zs))n to L"(US). Also, from the
definition of the norm | • \x we find that

ell(Z'). (5.2)

Let 4>, i//eC0(U
s) and let b be the sequence on Zs given by

b(<x): = J 4>(<x - x) \l/(x) dx, a e Z s .
a'

Again, we can invoke the generalized Young inequality to obtain

(5.3)

The following result has found important applications in the study of wavelets (see
R. Q. Jia and C. A. Micchelli, Using the refinement equation for the construction of
pre-wavelets II: Powers of two, in Curves and Surfaces, P. J. Laurent, A. Le Mehaute
and L. L. Schumaker (eds.), Academic Press, New York, 1991, pp. 209-246).

Theorem 5.1. Let (/>l,...,<l)neC0(M
s). Then the following conditions are equivalent.

(i) There is no ( / , , . . . , /„) 6 (/-(Zs))"\{0} such that £ j = , [tf>,, fj\ = 0.

(ii) There exists no £eMs such that the sequences

($jiZ + 2na))asZ., j=l,...,n, (5.4)

are linearly dependent.

(iii) There exists a constant 5>0 such that for all p, 1 ^ p ^ o o , and any

E [ ,̂/J (5.5)
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Proof. Suppose the sequences in (5.4) are linearly dependent for some £eMs. Then
there exists a vector (ax,..., an) e C\{0} such that

n

X aj$j( £ + 2rax) = 0 for all a e Zs.

By Lemma 3.2, it follows that

X t *,(•-«)*/«••=o,
aeZ' j=l

which contradicts the condition (i). Thus (i) implies (ii). Also, (iii) implies (i) trivially. It
remains to prove (ii)=>(iii).

For j , k = 1,..., n, let

(5.6)
R*

where $ denotes the complex conjugate of <j), and let

Ajk(S):= Z M«K'V*> < ^ s - (5-7)

We claim that the Gram matrix

is positive definite for all £eRs. Evidently, A(£) is hermitian. To prove that A{£,) is
positive definite, it suffices to show that

1(0: = t ajAjk(Odk>0 (5.8)

for all (alJ. . . ,an)eCn\{0}. It follows from (5.6) and (5.7) that

j,k=l R«

(5.9)

where ^: = X"=i a ^y N o t e t h a t R s is t h e disjoint union of 0 + [O,l)s, /3eZs; hence (5.9)
implies

https://doi.org/10.1017/S0013091500005903 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500005903


LINEAR INDEPENDENCE FOR INTEGER TRANSLATES 83

Z J <j>(x + a + fl)(f>(x + P)e "z'idx= J |/i(x)|2dx,

a,PeZ» [0,1)* 10, 1)»

where

h(x):= Z 4>(x + a)e~"z'^.

If the condtion (ii) is satisfied, then for any given <J e Us the continuous function h is not
identically zero by Lemma 3.2. This verifies (5.8).

Let Ajk
l denote the (j,k)t\\ entry of the inverse matrix (A^))'1. Every entry AJk is a

trigonometric polynomial in £, by (5.7), so is detA By Cramer's rule, every AJk
l is a

quotient of two trigonometric polynomials for which the denominator never vanishes.
By Wiener's lemma (e.g., see [14, p. 266]), each AJk

l can be expanded into a
trigonometric series

such that the coefficient sequence gikeI1 {!.'). Define

7t-= t I4>m,glml 1 = 1 , . . . , n . (5.10)
m = l

Fix k and / for the moment. Let

By (5.6) and (5.10) we have

<#)= Z Z \<t>
m = l aeZ' R'

= £ I bmk(
^j ^^ tnk\

m = l xeZ'

It follows that for all £ e W,

n

CitflS = > >

n

~ L, A
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where dkl is the Kronecker symbol. This shows that

<&(• -/9,7i( •-«)> = <**(• -/» + «),?«> = M « -

Thus for the function

* : = £ l<t>j,fj-]

we obtain the equation

/,(«) = <*,?/•-«)>, *e2s-

This in connection with (5.2), (5.3) and (5.10) implies that for 1 ^p5£

from which (5.5) follows with

•
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