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Branching Rules for n-fold Covering
Groups of SL2 over a Non-Archimedean
Local Field

Camelia Karimianpour

Abstract. Let G be the n-fold covering group of the special linear group of degree two over a non-
Archimedean local ûeld. We determine the decomposition into irreducibles of the restriction of the
principal series representations of G to a maximal compact subgroup. Moreover, we analyse those
features that distinguish this decomposition from the linear case.

1 Introduction

In this paper, covering groups, also known in the literature as metaplectic groups,
are central extensions of a simply connected simple and split algebraic group over a
non-Archimedean local ûeld F by the group of the n-th roots of unity, µn . _e two-
fold covering group of the symplectic group was ûrst constructed by AndréWeil in
1964 [32]. _e problem of determining the class of covering groups was then stud-
ied by Steinberg [31],Moore [21], and further examined by Matsumoto [18] for sim-
ply connected Chevalley groups. Around the same time, Kubota independently con-
structed n-fold covering groups of SL2 [15] and GL2 [16], by means of presenting an
explicit 2-cocycle. Kubota’s cocycle is expressed in terms of the n-th Hilbert symbol.

Representation theory of covering groups is an active area of research. _ere have
been a number of studies in this area from diòerent perspectives, and there are still
many open questions. Among these studies are thework ofH.Aritürk [1], D.A. Kazh-
dan, and S. J. Patterson [14], C. Moen [20], D. Joyner [11, 12], G. Savin [28],M.Weiss-
man and T. Howard [10], P. J. McNamara [19], and D. Szpruch [9]. Principal series
representations of the n-fold covering group G of SL(2) over F are explicitly con-
structed in [19]. One of the open questions we address in this paper is to analyse the
decomposition of the restriction to a maximal compact subgroup of these principal
series representations. We refer to this decomposition as the K-type decomposition.

_e study of the decomposition of the restriction of representations to a particu-
lar subgroup (branching rules) is a common technique in representation theory. In
the theory of real Lie groups, restriction to maximal compact subgroups retains a lot
of information from the representation; in fact, such a restriction is a key step to-
wards classifying irreducible unitary representations. In the case of reductive groups
over p-adic ûelds, investigating the K-type decomposition reveals a ûner structure of
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the representation; for instance, in this decomposition, in many cases one can iden-
tify types, in the sense of [3], and typical representations, in the sense of [2, 22]. _e
K-type problem for reductive p-adic groups is visited and solved in certain cases, in-
cluding the principal series representations of GL(3) [4, 5, 26], and SL(2) [23, 24],
representations of GL(2) [6], and supercuspidal representations of SL(2) [25].

_e main idea of our method, which is aligned with the one in [23], is to use
Mackey theory to reduce theK-type problem to calculating the dimensions of certain
ûnite-dimensional Hecke algebras (Propositions 4.4, 4.5, and 4.10). Despite the sim-
ilarity with the linear group SL(2) in [23], the K-type decomposition (_eorem 6.1)
is fairly diòerent; there are several interesting features in this K-type decomposition
that were not present in the linear case.

Let m denote the conductor of the central character of themetaplectic torus, and
set n = n if n is odd, and n = n

2 if n is even. _e K-type decomposition (_eo-
rem 6.1) consists of the level-m representations, and their complement, the tail. _e
tail does not detect the non-triviality of the cover; it consists of n copies of a li� to
covering groups of similar terms in the K-type decomposition for the linear group
(Corollary 4.11(i)). _e K-type decomposition for the n-fold covering group of GL2
is a side-product of understanding the tail (Corollary 5.3).

On the other hand, the level-m representations demonstrate interesting diòerent
traits. For instance, the level-m piece almost always consists of n multiplicity-free ir-
reducible representations, with the exception of certain level-one (also called depth-
zero) representations. _ese level-one representations, which arise from twists of
metaplectic quadratic characters by the characters of the groupO×/O×n , are either re-
ducible or appearwithmultiplicity two. In this case, thenumber of reducible level-one
components interestingly depends on whether n is divisible by four (Proposition 4.8
and Corollary 4.11(ii)).
Apart from its intrinsic value, the K-type decomposition can be used to answer

other questions about the metaplectic principal series representations. For instance,
the question of when these representations are reducible has not yet been fully an-
swered. _e author found the reducibility points for unramiûed principal series rep-
resentations of G in [13]. Note that, unlike the case for the linear group SL(2) [8], a
concrete description of the irreducible pieces is not known. In an ongoing project,
we have some early results that make it feasible to describe these irreducible pieces in
terms of the K-type components we found in _eorems 6.1 and 6.2.
Another interesting, and yet open, problem in the representation theory of cover-

ing groups is about their theory of types. _ere are several approaches to this ques-
tion, among which is to describe the typical representations, deûned by Henniart in
an Appendix to [2], of a maximal compact subgroup. _is approach is also visited
by [17, 22, 27] for certain linear groups. We conjecture, based on some preliminary
work, that our level-m pieces in theK-type decomposition in _eorem 6.1 are typical.
If one can extend the local Langlands conjecture to the covering groups, such results
on typical representations have implications for the so-called “inertial Langlands cor-
respondence”.

_is paper is organized as follows. In Section 2, we present Kubota’s construction
of the covering group G of SL(2). In Section 3, we overview the structure of this cov-
ering group and compute some subgroups of our interest. We compute the K-type
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decomposition for the principal series representations of G in Section 4. _is decom-
position is completed by considering a similar problem for the n-fold covering group
of GL(2) in Section 5. Our main results,_eorem 6.1 and Corollary 6.2, are stated in
Section 6.

2 Notation and Background

Let F be a non-Archimedean local ûeldwith the ring of integersO and let themaximal
ideal p of O. Let κ ∶= O/p be the residue ûeld and q = ∣κ∣ be its cardinality. Let O×

denote the group of units in O. We ûx a uniformizing element ϖ of p. For every
x ∈ F×, the valuation of x is denoted by val(x), and ∣x∣ = q− val(x). Let 1 denote the
trivial character on O×, and let sgn denote the non-trivial character of O×/O×2. We
refer to 1 and sgn as quadratic characters of O×. Let n > 2 be an integer such that
n∣q − 1. Set n = n if n is odd, and n = n

2 if n is even. We assume that F contains the
group µn of n-th roots of unity.

Set G = GL2(F), and G = SL2(F). Let B (resp. B) be the standard Borel subgroup
of G (resp. G), let N (resp. N) be its unipotent radical, and let T (resp. T) be the
standard torus in G (resp. G). Set K = SL2(O) (resp. K = GL2(O)) to be a maximal
compact subgroup ofG (resp. G). By the Iwasawa decomposition, we haveG = TNK
(resp. G = TNK). Our object of study is the central extension G of G by µn ,

(2.1) 0Ð→ µn
ǐ
Ð→ G

p̌
Ð→ G Ð→ 0,

where ǐ and p̌ are natural injection and projection maps, respectively. _e group G,
whichwe call the n-fold covering group ofG, is constructed explicitly byKubota [15].
In order to describe Kubota’s construction, we need knowledge of the n-th Hilbert
symbol ( ⋅ , ⋅ )n ∶ F× × F× → µn . Under our assumption on n, the n-th Hilbert symbol
is given via (a, b)n = c (q−1)/n , where c = (−1)val(a) val(b)aval(b)/bval(a), and c is the
image of c in κ×. We beneût from the properties of the n-th Hilbert symbol, which
can be found in [29, Ch XIV]. In particular,we beneût extensively from the following
fact: (a, b)n = 1 for all a ∈ F× if and only if b ∈ F×n .
Deûne themap β∶G ×G → µn by

β(g1 , g2) = (
X(g1g2)

X(g1)
,
X(g1g2)

X(g2)
)

n
, where X( (

a b
c d)) =

⎧⎪⎪
⎨
⎪⎪⎩

c if c /= 0,
d if c = 0.

In [15] Kubota proved that β is a non-trivial 2-cocycle in the continuous second co-
homology group of G with coeõcients in µn ; whence, G = G × µn as a set, with the
multiplication given via (g1 , ζ1)(g2 , ζ2) = (g1g2 , β(g1 , g2)ζ1ζ2), for all g1 , g2 ∈ G and
ζ1 , ζ2 ∈ µn . In [16,_m. 1], Kubota extends themap β to a 2-cocycle β′ for G, which
deûnes the n-fold covering group G ≅ F× ⋉ G of G. _e covering group G ûts into the
exact sequence

0Ð→ µn
ǐ
Ð→ G

p̌
Ð→ G Ð→ 0.

Our notational convention is to use upper case (underlined) letters in roman font
(for example B, B) for subgroups of the linear group G (G), lower case letters in bold-
face font (for example g) for elements of G (G), upper case (underlined) letters in
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typewriter font (for example B, B) for subgroups of the covering groups G (G), lower
case letters in typewriter font (for example g) for elements of the covering groups G
and G, and lower case letters in roman fonts (for example b) for the elements of the
base ûeld F.
For all t, s ∈ F×, set dg(t) = ( t 0

0 t−1 ) ∈ T , dg (t, s) = ( t 0
0 s ) ∈ T , and ι(t) =

(dg(t), 1) ∈ T. Set w = ( 0 1
−1 0 ), and w = (w , 1) ∈ G. Moreover, for matrices x and

y, with y invertible, set xy ∶= y−1xy and yx ∶= yxy−1.

3 Structure Theory

For any subgroup H of G, the inverse image H ∶= p̌−1(H) is a subgroup of G. In
particular, we are interested in the subgroups T, B, and K of G. We say the central
extension splits over the subgroup H of G if there exists an isomorphism that yields
p̌(H)−1 ≅ H × µn .

It is not diõcult to see that T is not commutative, and hence, the central extension
does not split over T (and therefore not over B). _e commutator subgroup [T, T] ≅
µn is central in (2.1), which implies that T is a two-step nilpotent group, also known
as aHeisenberg group. Clearly, µn ⊂ Z(T), indeed, under proper identiûcations, one
can see that

Z(T) = {(dg(t), ζ) ∣ t ∈ F×n , ζ ∈ µn} ≅ O×n
× nZ × µn .

When n is odd, (ϖ,ϖ)n = −1, in which case, the isomorphism map is not trivial. A
straightforward application of theHensel’s lemma shows that [T ∶Z(T)] = n2.

In order to construct principal series representations of G in Section 4, we need to
construct irreducible representations of the Heisenberg group T. To do so, we need
to identify a maximal abelian subgroup of T. Let A = CT(T ∩ K) be the centralizer of
T ∩ K in T. It is not diõcult to calculate that

A = {(dg(a), ζ) ∣ a ∈ F× , n∣ val(a), ζ ∈ µn},

which, under proper identiûcations, is isomorphic to O× × nZ × µn (similar to the
case of Z(T), the isomorphismmap is not trivialwhen n is odd), and that A is abelian.
Observe that T∩K ⊂ A implies that A is amaximal abelian subgroup. Note that [T ∶A] =
[Z ∶nZ] = n.

Let N be the unipotent radical of B. It follows directly from the Kubota’s formula
for β that β∣N is trivial, so N × {1} is a subgroup of G. We identify N with N × {1}.
Under this identiûcation, we have the covering analogue of the Levi decomposition:
B = T ⋉ N .

Next,we describe a family of compact open subgroups of G. Under the assumption
n∣q − 1, it was proved in [16,_m. 2] that

KÐ→ K × µn ,

(k, ζ)z→ (k, s(k)ζ), where s( (
a b
c d)) =

⎧⎪⎪
⎨
⎪⎪⎩

(c, d)n if 0 < val(c) <∞,
1 otherwise,

(3.1)

is an isomorphism. _e image of K in K under the isomorphism (3.1) is the subgroup
K0 ∶= {(k, s(k)−1) ∣ k ∈ K} of K. Consider the compact open congruent subgroups
K j ∶= {g ∈ K ∣ g ≡ I2 mod p j}, for j ≥ 1, of K. Noticing that 1 + p ⊂ O×n , it is
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a straightforward consequence of the properties of the n-th Hilbert symbol that the
central extension (2.1) splits trivially over each of the subgroups K j , j ≥ 1, T ∩ K, and
B ∩ K.

We identify K j ≅ K j ×{1}, j ≥ 1, B∩K ≅ (B ∩ K)×{1}, and T ∩K ≅ (T ∩ K) × {1}
as subgroups of K. Observe that T × K ≅ O× × µn via the trivial map.

In a similar way, we deûne the subgroups T, B, and K of G to be the inverse images
of the standard torus, Borel, and the maximal compact K = GL(O) subgroups of G,
respectively. _e central extensionGdoesnot split overT . Moreover, T is aHeisenberg
group. It is not diõcult to see that

Z(T) = {(dg(s, t), ζ) ∣ s, t ∈ F×n , ζ ∈ µn} ,

and [T ∶Z(T)] = n4. Moreover, set

A = CT(T ∩ K) = {(dg(s, t), ζ) ∣ s, t ∈ F× , n∣ val(s), n∣ val(t), ζ ∈ µn} .

_en A is amaximal abelian subgroup of T, and [T ∶A] = n2. Regardless of parity of n,
Z(T) and A are trivially isomorphic to F×n

× F×n
× µn and O× ×O× × nZ× nZ× µn ,

respectively. In addition, β′∣N is trivial, hence,we can identify N with N ×{1}. Under
this identiûcation,we have the Levi decomposition: B = T⋉N . It is shown in [16] that
the central extension G splits over K. For j ≥ 1, let K j denote the family of compact
open congruent subgroups {g ∈ K ∣ g ≡ I2 mod p j} of K. _e central extension G

splits over K j , T ∩ K, and B ∩ K.

4 Branching Rules for G

First, we present the construction of the principal series representations of G follow-
ing [19]. Fix a faithful character є∶ µn → C×. A representation of G is genuine if the
central subgroup µn acts by є. Such representations do not factor through represen-
tations of G. _e construction of principal series representations of G is based on
the essential fact that T is a Heisenberg subgroup, and hence its representations are
governed by the Stone-von Neumann theorem, which we state here. See [19] for the
proof.

Stone–von Neumann _eorem Let H be aHeisenberg group with center Z(H) such
thatH/Z(H) is ûnite, and let χ be a character of Z(H). Suppose that ker(χ)∩[H,H] =
{1}. _en there is a unique (up to isomorphism) irreducible representation π of H with
central character χ. Let A be any maximal abelian subgroup of H and let χ0 be any
extension of χ to A. _en π ≅ IndH

A χ0.

Note that [T ∶Z(T)] = n2 < ∞. Let χ be a genuine character of Z(T), so that
χ∣µn = є. _us, ker(χ)∩[T, T] is trivial. Hence, Stone–vonNeumann_eorem applies:
genuine irreducible smooth representations ρ of T are classiûed by genuine smooth
characters of Z(T). Moreover, dim(ρ) = [T ∶A] = n.

Let χ0 be a ûxed extension of χ to A, so that (ρ, IndTA χ0) is the unique smooth
genuine irreducible representation of T with central character χ. Let us again write
ρ for the genuine smooth irreducible representation of T, with central character χ,
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extended trivially over N to a representation of B = T ⋉ N . _en the genuine prin-
cipal series representation of G associated with ρ is (π, IndGB ρ), where Ind denotes
the smooth (non-normalized) induction. In the rest of this section, we decompose
ResK IndGB ρ into irreducible constituents. We drop the adjective “genuine” for brevity.
Every element K can be decomposed as k(I2 , ζ) for some k ∈ K0 and ζ ∈ µn . Deûne

1̃∶K→ C to be the character of K given by 1̃(k(I2 , ζ)) = є(ζ). Deûne the character

(4.1) ϑ∶ F× Ð→ C× , a z→ є((ϖ, a)n) .

Observe that ϑ is ramiûed of degree one. Observe that a typical element of A can
be written as (a, r, ζ), and a typical element of T ∩ K can be written as (a, ζ), where
a ∈ O×, r ∈ Z, and ζ ∈ µn . We can express every character χ of Z(T) as χ = τ⊗ νs ⊗ є,
where τ is a character of O×n and νs ∶ nZ → C, νs(nr) = q−nr , s ∈ C. _en the ûxed
extension χ0 of χ to A is of the form τ0 ⊗ νs ⊗ є, where τ0 is a ûxed extension of τ to
O×. For brevity, set τ0O×2 ∶= τ0∣O×2 and set ϑO×2 ∶= ϑ∣O×2 .

Lemma 4.1 Let ρ be the unique irreducible representation of T with central character
χ. _en ResA ρ ≅⊕n−1

i=0 χ i , where χ i = τ i ⊗ νs ⊗ є, and the τ i ’s are n distinct characters
of O× deûned by τ i(a) = τ0(a)ϑ2i(a), for all a ∈ O×, and 0 ≤ i < n.

Proof By the Stone–von Neumann _eorem, ρ ≅ IndTA χ0. By Mackey theory,

ResA IndTA χ0 = ⊕
r∈Sn

IndAA∩rA χ0r ,

where Sn is a complete set of coset representatives for A/T/A. We can choose Sn =

{(dg(ϖ i), 1)∣0 ≤ i < n}. Since A is stable under conjugation by Sn , IndAA∩rA χ0r = χ0r.
Let a = (a, k, ζ) ∈ A and r = (dg(ϖ i), 1) ∈ Sn . Note that r−1 = (dg(ϖ−i), (ϖ i ,ϖ i)n).
A simple calculation shows that r−1ar = (a, k, (ϖ, a)2i

n ζ). Hence,

χ0r(a, k, ζ) = χ0( a, k, (ϖ, a)2i
n ζ) = τ0(a)νs(k)є((ϖ, a)2i

n ζ)

= τ(a)ϑ2i(a)νs(k)є(ζ).

Denote this character by χ i . To show that the χ i , 0 ≤ i < n, are distinct, it is enough
to show that ϑ2i ∣O× = 1 if and only if i = 0. Observe that ϑ2i(a) = a−1(q−1)2i/n

, which
is equal to one for all a ∈ O× if and only if n∣2i.

_e characters χ i deûned in Lemma 4.1 are clearly distinct when restricted to T ∩
K ≅ O× × µn and, again writing χ i for these restrictions,

(4.2) ResT∩K ρ =
n−1

⊕
i=0
χ i .

Proposition 4.2 Let χ i , 0 ≤ i < n, also denote the trivial extension of the characters
in (4.2) to B ∩ K. _en

ResK IndGB ρ ≅
n−1

⊕
i=0

IndKB∩K χ i .
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Proof By Mackey theory, we have ResK IndGB ρ ≅ ⊕x∈X IndK
Bx
−1
∩K

ResBx−1
∩K ρx , where

X is a complete set of double coset representatives ofK andB inG. _e Iwasawa decom-
position KB = G implies that X = {(I2 , 1)}, and hence ResK IndGB ρ = IndKB∩K ResB∩K ρ.
_e result follows from (4.2).

Hence, in order to calculate theK-types, it is enough to decompose each IndKB∩K χ i ,
0 ≤ i < n, into irreducible representations. Note that IndKB∩K χ i is smooth and admis-
sible. Fix i ∈ {0, . . . , n − 1}. _e smoothness of IndKB∩K χ i implies that

IndKB∩K χ i = ⋃
l≥1

(IndKB∩K χ i)K l .

By admissibility, (IndKB∩K χ i)K l is ûnite-dimensional for every l ≥ 1, and since K l is
normal in K, it is K-invariant. Hence, to decompose IndKB∩K χ i into irreducible con-
stituents, it is enough to decompose each (IndKB∩K χ i)K l into irreducible constituents.
For any character γ of any subgroup D of T, we say γ is primitive mod m if m

is the smallest strictly positive integer for which ResD∩Km γ = 1. From now on, let
m ≥ 1 be a positive integer such that χ is primitive mod m. Because 1 + p ⊂ F×n ,
Z(T) ∩ Km = T ∩ Km , for all m ≥ 1. Note that since χ i ∣Z(T) = χ, χ i ∣T∩Km = χ∣Z(T)∩Km .
Hence, χ is primitivemod m if and only if the χ i for 0 ≤ i < n are primitivemod m.
Set Bl ∶= (B ∩ K)K l .

Lemma 4.3 For every 0 ≤ i < n,

( IndKB∩K χ i)
K l
=

⎧⎪⎪
⎨
⎪⎪⎩

{0} if 0 < l < m,
IndKBl χ i otherwise.

Proof Suppose 0 < l < m, and that f is a vector in (IndKB∩K χ i)K l . Because χ i ∣B∩K l /= 1
for l < m, we can choose b ∈ B ∩ K l such that χ i(b) /= 1. Let g ∈ K. Note that K l is
normal in K, and hence g−1bg ∈ K l . On the one hand, f (bg) = χ i(b) f (g); on the
other hand, f (bg) = f (gg−1bg) = (g−1bg) ⋅ f (g) = f (g), since f is ûxed by K l . It
follows that χ i(b) f (g) = f (g). Our choice of b implies that f (g) = 0, and because
g is arbitrary, f = 0. However, if l ≥ m, then χ i ∣K l = 1 and because K l is normal in
K, it is not diõcult to see that every K l -ûxed vector f translates on the le� by Bl and
vice-versa. Hence, the result follows.

Lemma 4.3 tells us that, in order to decompose (IndKB∩K χ i)K l into irreducible con-
stituents, it is enough to decompose IndKBl χ i . Hence,we are interested in counting the
dimension of HomK(IndKBl χ i , Ind

K
Bl
χ i). By Frobenius reciprocity, this latter space is

isomorphic to HomBl (ResBl Ind
K
Bl
χ i , χ i). It follows from Mackey theory that

ResBl Ind
K
Bl
χ i ≅⊕

x∈S
IndBl

Bx
−1
l ∩Bl

χxi ,

where S is a set of double coset representatives of Bl /K/Bl . _e set S is a li� to the
covering group K of a similar set of double coset representatives calculated in [23, Eqn
(4.1)]. Using the latter set, and because µn ⊂ Bl , it is easy to see that

(4.3) S = {(I2 , 1), w, lt(xϖr) ∣ x ∈ {1, ε}, 1 ≤ r < l} ,
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where lt(xϖr) = (( 1 0
xϖr 1 ), 1) , and ε is a ûxed non-square. For 0 ≤ i , j < n, let Hi , j

be theHecke algebra

Hi , j ∶=H(Bl /K/Bl , χ i , χ j)

= { f ∶K→ C ∣ f (l gh) = χ i(l) f (g)χ j(h), l , h ∈ Bl , g ∈ K} .

Proposition 4.4 Let 0 ≤ i , j < n. _en dimHomK(IndKBl χ i , Ind
K
Bl
χ j) = dimHi , j .

Proof On the one hand, observe that

HomK(IndKBl χ i , Ind
K
Bl
χ j) =⊕

x∈S
HomBl (Ind

Bl

Bx
−1
l ∩Bl

χxi , χ j),

which by Frobenius reciprocity is equal to ⊕x∈S Hom
Bx
−1
l ∩Bl

(χxi , χ j). Let S i , j be the
set of all x ∈ S such that χ i(g) = χ j(h), whenever h, g ∈ Bl and xgx−1 = h. _en
dimHomK(IndKBl χ i , Ind

K
Bl
χ j) = ∣S i , j ∣. On the other hand, observe that for every x ∈

S, there exists a function f ∈ Hi , j with support on the double coset represented by
x if and only if h = xgx−1 implies χ i(g) = χ j(h) for all h, g ∈ Bl . Moreover, the
basis ofHi , j is parametrized by such double coset representatives. Hence, dimHi , j =
∣S i , j ∣.

Set (T ∩ K)2 ∶= {dg(t2) ∣ t ∈ O×}, Tl ∶= {ι(t) ∣ t ∈ O×(1 + pl)}, and (Tl)
2 ∶=

{ι(t2) ∣ t ∈ O×(1 + pl)}. It is not diõcult to see that Tl and (Tl)
2 are subgroups of

(T ∩ K)K l .

Proposition 4.5 Let l ≥ m and 0 ≤ i < n. _en

dimHi , i =

⎧⎪⎪
⎨
⎪⎪⎩

1 + 2(l −m) if χ i ∣O×2 /= 1,
2l otherwise.

Proof Assume l ≥ m. Note that f (bkb′) = χ i(b) f (k)χ i(b′) for all f ∈ Hi , i ,
b, b′ ∈ Bl , and k ∈ K. Hence, for every double coset representative x in (4.3), there
exists a function f ∈ Hi , i , with support on the double coset represented by x if and
only if bxb′ = x implies that χ i(bb′) = 1 for all b, b′ ∈ Bl . _e set of such double
cosets parameterizes a basis for Hi , i . We now determine these double cosets. Let
b = (b, ζ) = (( t s

0 t−1 ), ζ) and b′ = (b′ , ζ′) = (( t′ s′
0 t′−1 ), ζ′) , where t, t′ ∈ O×(1 + pl),

s, s′ ∈ pl and ζ , ζ′ ∈ µn , denote arbitrary elements of Bl .
A function f ∈Hi , i has support on the identity coset Bl if and only if f (b) = χ i(b),

for all b ∈ Bl . So there is always a function with support on the identity coset, namely
f = χ i .

Next, we consider the coset of w. For b and b′ in Bl , bwb′ = w implies, via a quick
calculation, that b = b′ = dg(t), for some t ∈ O×(1 + pl) and ζ′ = ζ−1. _erefore,
χ i(bb′) = χ i((dg(t), ζ)(dg(t), ζ−1)) = χ i(dg(t2), (t, t)n) = χ i(dg(t2), 1). So,Hi , i
contains a function with support on this coset if and only if χ i(ι(t2)) = 1 for all
t ∈ O×(1 + pl); that is if and only if χ i ∣(Tl )2 = 1. Observe that for 0 ≤ i < n, χ i ∣(Tl )2 = 1,
where l ≥ m, if and only if χ i ∣O×2 = 1. Suppose that χ i ∣O×2 = 1 for some 0 ≤ i < n. We
show that in this case, m = 1. Suppose that α ∈ 1 + p, and consider f (X) = X2 − α.
Observe that f (1) = 0 mod p, and f ′(1) = 2(1) /= 0 mod p. By Hensel’s lemma,
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f (X)has a root inO; that is, α ∈ O×2. _erefore, 1+p ⊂ O×2,which implies χ i ∣T∩K1 = 1,
so m = 1.
Finally, for b and b′ in Bl , blt(xϖr)b′ = lt(xϖr) implies that tt′ ∈ 1 + pr and ζ =

ζ′−1. _erefore,

χ i(bb′) = χ i(bb′ , 1) = χ i( (
tt′ ts′ + st′−1

0 t−1 t′−1 ) , 1) .

Note that ( t t′ ts′+st′−1

0 t−1 t′−1 ) ∈ B∩Kr . Hence, χ i(bb′) = 1 if and only if B∩Kr ⊆ ker(χ i). _e
latter holds if and only if r ≥ m, since χ i is primitivemod m. Now, let us summarize
our result. _ere is always one function with support on the identity coset, and 2(l −
m) functions on cosets represented by lt(xϖr), x ∈ {1, ε}, m ≤ r < l . If χ i ∣O×2 /= 1, no
function in Hi , i has support on the double coset represented by w; otherwise, there
exists an additional function in Hi , i with support on the double coset represented
by w.

We will also calculate the dimHk , i , when i /= k, in Proposition 4.10. _e next two
lemmas elaborate on the condition χ i ∣O×2 = 1 that appears in Proposition 4.5.

Lemma 4.6 For each 0 ≤ i < n, χ i ∣O×2 = 1 if and only if τ0O×2 = ϑ−2i
O×2 .

Proof Let s ∈ O×2. By Lemma 4.1, χ i(s, 0, 1) = τ0(s)ϑ2i(s), which is equal to one if
and only if τ0O×2 = ϑ−2i

O×2 .

Lemma 4.7 If 4∤n, then the characters ϑ−2i
O×2 , 0 ≤ i < n are distinct. Otherwise, the

ϑ−2i
O×2 , 0 ≤ i < n/4, are distinct, and for n

4 ≤ i < n
2 , ϑ

−2i
O×2 = ϑ−2(i− n

4 )

O×2 .

Proof By deûnition of ϑ in (4.1), ϑ−2i(s) = 1 for all s ∈ O×2 if and only if t2
(q−1)2i/n

=
1 for all t ∈ O×, or equivalently when n∣4i. _erefore, the equality holds only for i = 0
unless 4∣n, in which case the equality holds for both i = 0 and i = n

4 .

For 0 ≤ i < n, set Vi ∶= IndKB∩K χ i . Moreover, for l > m, let the Wi , l denote the level-l
representations VK l

i /VK l−1
i .

Proposition 4.8 Assume l ≥ m. We can decompose ResK IndGB ρ as follows:

ResK IndGB ρ ≅
n−1

⊕
i=0

(VKm
i ⊕⊕

l>m
(W+i , l ⊕ W−i , l)) ,

where W+i , l ⊕ W−i , l ≅ Wi , l . All the pieces are irreducible, except when m = 1 and χ0∣O×2 =

ϑ−2i
O×2 for some 0 ≤ i < n, in which case, we are in one of the following situations:

(i) If 4∤n, then there is exactly one 0 ≤ i < n for which VK1
i decomposes into two

irreducible constituents. All other constituents are irreducible.
(ii) If 4∣n, then there are exactly two 0 ≤ i , k < n, ∣i−k∣ = n

4 forwhich VK1
i decomposes

into two irreducible constituents. All other constituents are irreducible.
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Proof It follows from Lemma 4.3 and Proposition 4.5 that for l > m,
dimHom(Wi , l , Wi , l) = 2. Hence, Wi , l decomposes into two inequivalent irreducible
subrepresentations. Moreover,

dimHom(VKm
i , VKm

i ) =

⎧⎪⎪
⎨
⎪⎪⎩

1 if χ i ∣O×2 /= 1,
2 otherwise.

It follows from Lemma 4.6 that VKm
i is irreducible except when m = 1 and χ0∣O×2 =

ϑ−2i
O×2 , where it decomposes into two irreducible constituents. If the latter is the case,

situations (i) and (ii) follow from Lemma 4.7.

_e characters χ i forwhich χ i ∣O×2 = 1 are exactly of the form 1⊗νs⊗є or sgn⊗νs⊗є
for some s ∈ C. Proposition 4.8 tells us that when 4∤n, only one of these two choices
occurs among χ i ’s. Whereas, when 4∣n, both characters 1 ⊗ νs ⊗ є and sgn⊗νs ⊗ є
occur among χ i ’s.

Note that in the light of the isomorphism(3.1), the K-spaces VK1
i can be though of as

K1-invariant representations ofK×µn , or equivalent as representations ofK/K1×µn ≅
SL2(κ) × µn . Conversely, one can li� every genuine representation of SL2(κ) × µn to
a K1-invariant representation of K, by letting K1 act trivially. Let S̃t denote such a li�
of St ⊗ є, where St is the q-dimensional Steinberg representation of the ûnite group
of Lie type SL2(κ).

Lemma 4.9 If χ i = 1⊗νs⊗є, then VK1
i ≅ 1̃⊕S̃t. If χ i = sgn⊗νs⊗є, then VK1

i ≅ Ξ+⊕Ξ−,
where Ξ± are two inequivalent irreducible constituents of the same degree.

Proof _e result follows from observing that VK1
i ≅ (IndK

B∩K τ i)
K1 ⊗ є, and identify-

ing (IndK
B∩Kτ i)

K1 with the corresponding representation of the ûnite group of Lie type
SL2(κ), whose representation theory is well understood and can be found in [7].

Next, we determine the multiplicity of each constituent in the decomposition in
Proposition 4.8. To do so,we count the dimension ofHomK(IndKBl χk , Ind

K
Bl
χ i),which

is equal to the dimension of theHecke algebraHk , i =H(Bl /K/Bl , χk , χ i).

Proposition 4.10 Let l ≥ m, 0 ≤ k, i < n, and i /= k. _en

dimHk , i =

⎧⎪⎪
⎨
⎪⎪⎩

2l − 1 if τ0O×2 = ϑ−(k+i)
O×2 ,

2(l −m) otherwise.

Proof Similar to the proof of Proposition 4.5, we determine which double cosets in
Bl /K/Bl support a function in Hk , i . For every double coset representative x in (4.3),
there exists a function f ∈ Hk , i with support on the double coset represented by x if
and only if bxb′ = x, b, b′ ∈ Bl , implies that χk(b)χ i(b′) = 1. Let t, t′ ∈ O×(1 + pl),
s, s′ ∈ pl , and ζ , ζ′ ∈ µn , so that

b = (b, ζ) = ( (
t s
0 t−1) , ζ) and b′ = (b′ , ζ′) = ( (

t′ s′
0 t′−1) , ζ′)

are arbitrary elements of Bl .
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Because χk /= χ i , there is no function in Hk , i with support on the identity double
coset. For the double coset of w, bwb′ = w implies that b = b′ = dg(t) for some
t ∈ O×(1 + pl) and ζ′ = ζ−1. _erefore,

χk(b)χ i(b′) = χk(t, 0, ζ)χ i(t, 0, ζ−1) = τ0(t)ϑ2k(t)є(ζ)τ0(t)ϑ2i(t)є(ζ−1)

= τ0(t2)ϑ2(k+i)(t) = τ0(t2)ϑk+i(t2).

_erefore, because l ≥ m, χk(b)χ i(b′) = 1 if and only if τ0O×2 = ϑ−(k+i)
O×2 . In

this case, m = 1 and w supports a function in Hk , i . Finally, for the double cosets
represented by lt(xϖr), x ∈ {1, ε}, 1 ≤ r < l , blt(xϖr)b′ = lt(xϖr) implies that ζ′ =
ζ−1, and t + sϖr = t′−1 mod pl , or equivalently, t = t′−1 mod pr , and t−1ϖr = ϖr t′−1

mod pl , or equivalently t−1 = t′−1 mod pl−r . Observe that, in general, χk(b)χ i(b′)
is equal to

χk(t, 0, ζ)χ i(t′ , 0, ζ′) = τ0(t)ϑ2k(t)є(ζ)τ0(t′)ϑ2i(t′)є(ζ′)

= τ0(tt′)ϑ2k(t)ϑ2i(t′)є(ζζ′).

(4.4)

Note that ϑ is primitivemod one. Observe that r ≥ 1 and l − r ≥ 1. _erefore, t = t′−1

mod p and t = t′ mod p, which implies that t = t′ = α mod p where α ∈ {±1}.
Hence, ϑ2(t) = ϑ2(t′) = 1, and (4.4) simpliûes to τ0(tt′)є(ζζ′). We are in one of the
following situations:
Case 1: Suppose r ≥ m. _en we have ζ′ = ζ−1, and t = t′−1 mod pm ; that is

tt′ ∈ 1 + pm . Hence, τ0 (tt′) є(ζζ′) = τ0(tt′) = 1, because χ0, and hence τ0,
is primitive mod m. _erefore, in this case, there is always a function in Hk , i
with support on these double cosets.

Case 2: Suppose r < m. _en ζ′ = ζ−1, so τ0(tt′)є(ζζ′) = τ0(tt′), which equals
one if and only if tt′ ∈ 1 + pm , which is not the case in general. Hence, in this
case, there is no function in Hk , i with support on these double cosets.

To summarize the result, the coset represented by w supports a function in Hk , i if
and only if τ0O×2 = ϑ−(k+i)

O×2 . If r ≥ m, then the cosets represented by lt(xϖr) support
a function in Hk , i . Otherwise, there is no function in Hk , i with support on these
double cosets.

Corollary 4.11 Assume the decomposition of ResK IndGB ρ given in Proposition 4.8.
(i) For each 0 ≤ i < n and l > m, there exists a way of decomposing Wi , l as W+i , l ⊕ W−i , l

such that for l > m, W+i , l ≅ W
+

j, l and W
−

i , l ≅ W
−

j, l for all 0 ≤ i , j < n.
(ii) For l = m, {VKm

i ∣ 0 ≤ i < n} consists of mutually inequivalent representations,
except when m = 1 and τ0∣O×2 = ϑ− j

O×2 , for some 0 ≤ j < n, where VK1
i ≅ VK1

k ,
exactly when i + k ≡ j mod n.

Proof It follows from Proposition 4.10 that for l > m, dimHomK(Wi , l , Wk , l) = 2, and
when i + k ≡ j mod n

dimHomK(V
Km
i , VKm

k ) =

⎧⎪⎪
⎨
⎪⎪⎩

1 if τ0O×2 = ϑ− j
O×2 ,

0 otherwise,

and hence the result.
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In order to further investigate the irreducible spaces W+i , l and W
−

i , l ,wewill show that
Wi , l , 0 ≤ i < n, is the restriction to K of an irreducible representation of the maximal
compact subgroup K of the covering group G of GL2(F).

5 Branching Rules for G

We deûne the genuine principal series representations of G similarly, by startingwith a
genuine smooth irreducible representation ρ′ of Twith the central character χ′,which
is constructed via the Stone–von Neumann theorem. Observe that dim ρ′ = [T ∶A] =
n2. _en, a�er extending ρ′ trivially over N , the genuine principal series represen-
tation π′ of G is IndGBρ′. Applying a similar machinery as in Section 4, we obtain the
K-type decomposition for ResK π′. Since the argument in Section 4 goes through al-
most exactly, here we only overview themain steps and point out the diòerences. For
detailed calculations, see [13].

Similar to Lemma 4.1, it follows that ResA ρ′ ≅⊕n−1
i , j=0 χ′i , j ,where the χ′i , j denote n2

distinct characters of A, deûned by

χ′i , j( dg(aϖnu , bϖnv), ζ) = χ′0( dg(aϖnu , bϖnv), ζ) ϑ− j(a)ϑ−i(b),

where a, b ∈ O×, u, v ∈ Z and ζ ∈ µn and ϑ(a) = є((ϖ, a)n) was deûned in (4.1), and
χ′0 is a ûxed extension of χ′ to A. _e χ′i , j remain distinct when restricted to T ∩ K,
and again writing χ′i , j for there restrictions, ResT∩K ρ′ ≅ ⊕n−1

i , j=0 χ′i , j . _en similar to
Proposition 4.2, we have ResK(Ind

G
B ρ′) ≅⊕n−1

i , j=0 Ind
K
B∩K χ′i , j , which reduces the prob-

lemof decomposing theK-type to the one of decomposing each IndKB∩K χ′i , j ,which by
smoothness can be written as the union of its K l , l ≥ 1, ûxed points.

Suppose χ′ is primitive mod m. It follows that the χ′i , j are also primitive mod m.
Set Bl = (B ∩ K)K l . It can be seen that each level l representation (IndKB∩Kχ′i , j)K l =

IndKBl χ
′

i , j if l ≥ m, and is zero if l < m. Similar to Proposition 4.4, one can see that

dimHomK(Ind
K
Bl
χ′i , j , Ind

K
Bl
χ′i , j) = dimH′

i , j(Bl /K/Bl , χ
′

i , j , χ′i , j).

To count the dimension ofH′

i , j , we need to calculate a set of double coset represen-
tatives of Bl in K.

Lemma 5.1 A complete set of double coset representatives of Bl in K is given by

{(I2 , 1), w, lt(ϖr) ∣ 1 ≤ r < l} .

Proof Note that this set is a subset of the set S in (4.3). Observe that under the
isomorphism

(5.1) F× ⋉ G ≅ G, ( y, (g, ζ)) z→ ( dg(1, y)g, ζ) ,

O××Kmaps toK andO××Bl maps toBl . For everyk
′ ∈ K, let (y, k)be the inverse image

of k′ under the isomorphism (5.1), and let b1 , b2 ∈ Bl be such that b1xb2 = k, for some
x ∈ S. Let b′1 and b′2 be the image of (y, b1) and (y, b2) under (5.1), respectively. It
follows from themultiplication of F×⋉G and the isomorphismmap (5.1), that b′1xb′2 =
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k′. _us, K = ⋃x∈S BlxBl . A short calculation shows that

( dg(ε−1 , 1), 1) lt(ϖr)( dg(ε, 1), 1) = ( lt(εϖr), (ϖr , ε)n(ε,ϖr)n) = lt(εϖr),

where ε is a ûxed non-square and 1 ≤ r < l . It is not diõcult to see that other cosets
of S remain distinct in K.

_e following proposition can be proved similarly to Proposition 4.5.

Proposition 5.2 Let l ≥ m. _en

dimH′

i , j =

⎧⎪⎪
⎨
⎪⎪⎩

1 + (l −m) if χ′i , j ∣ T∩K /= 1,
2 + (l −m) otherwise.

It follows from the deûnition of χ′i , j that for 0 ≤ i , j < n, χ′i , j ∣T∩K = 1 if and only
if χ′0,0∣T∩K = ϑ j−i . For l > m, let W′ i , j, l denote the level-l quotient representation
(IndKB∩K χ′i , j)K l /(IndKB∩K χ′i , j)K l−1 . _e K-type decomposition ResK(Ind

G
B ρ′) is given

in the following corollary.

Corollary 5.3 We can decompose ResK(Ind
G
B ρ′) as follows:

ResK(Ind
G
B ρ′) ≅

n−1
⊕
i , j=0

((IndKB∩K χ
′

i , j)
Km ⊕⊕

l>m
W′ i , j, l) .

If χ′0,0∣T∩K /= ϑk ∣O× for all 0 ≤ k < n, then all the pieces are irreducible. Otherwise, there
are exactly n pairs (i , j), 0 ≤ i , j < n, such that j − i ≡ k mod n, and (IndKB∩K χ′i , j)Km

decomposes into two irreducible constituents. _e rest of the constituents are irreducible.

Proof It follows fromProposition 5.2, and the fact that the kernel of themap (i , j)→
j − i mod n is of size n.

5.1 Restriction of IndGB ρ′ to K

Fix a genuine irreducible representation ρ of T with central character χ, where χ is
primitive mod m. Let Wk , l , W+k , l , and W−k , l be the representations of K that appear in
the K-type decomposition of ResK IndGB ρ in Proposition 4.8. In this section, we show
that, for each 0 ≤ k < n, Wk , l ≅ ResKW ′, whereW ′ is some irreducible representation
of K. We deduce that W+k , l and W

−

k , l have the same dimension.
Let ρ′ be a genuine irreducible representation of T with central character χ′ such

thatdepthof χ′ is equal todepthof χ, and that ρ appears inResT ρ′. Let χ′i , j , 0 ≤ i , j < n
be all possible extensions of χ′ to A. To ûnd W ′, we consider the restriction of the
principal series representation IndGBρ′ to K. Because the structure of T depends on the
parity of n, we consider the cases for even and odd n separately.

5.1.1 n Odd

Observe that when n is odd, Z(T) ∩ T = Z(T) and A ∩ T = A.
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We compute ResK ResK Ind
G
B ρ′, where the decomposition of ResK Ind

G
B ρ′ is given

in Corollary 5.3. _e assumption that ρ appears in ResT ρ′ implies χ′∣Z(T) = χ. We
further assume that the choice of χ0 is such that ResA χ′0 = χ0. So that, for 0 ≤ i , j < n,
and k ∈ {0, ⋅ ⋅ ⋅ , n − 1} such that k ≡

i− j
2 mod n, we have ResT∩K χ′i , j = χk . Note for

each k, there are exactly n distinct characters χ′i , j of T ∩ K that restrict to χk on T ∩ K.

Lemma 5.4 Assume n is odd. Let i , j, and k be in {0, . . . , n − 1} such that χ′i , j ∣T∩K =
χk . _en, for all l ≥ m,

ResK ( IndKB∩K χ
′

i , j)
K l ≅ ( IndKB∩K χk)

K l .

Proof It is enough to show that ResK Ind
K
Bl
χ′i , j ≅ IndKBl χk , which follows from the

Mackey theory, and the choice of i , j, and k.

5.1.2 n Even

Observe that for even n,

Z(T) ∩ T ≅ F×n
× µn ⊂ F×

n
× µn and A ∩ T ≅ O× × nZ × µn ⊂ O× × nZ × µn .

Unlike the case for odd n, the centre Z(T) and themaximal abelian subgroup A of
T do not restrict to those of T upon restriction to T. In fact,

[Z(T) ∶Z(T) ∩ T] = 4, [A ∶A ∩ T] = 2.

_is mismatch makes the computation of ResK Ind
G
B ρ′ more delicate. Indeed, our as-

sumption that ρ appears inResT ρ′ doesnot imply that ρ′ is ρ isotypic, upon restriction
to T. We show that ρ is one of the four distinct irreducible representations of T that
appear in ResT ρ′.

Set χ ∶= ResZ(T)∩T χ′. Note that ∣nZ/nZ∣ = ∣O×n
/O×n

∣ = 2. We denote the coset
representatives of the former by {e , o}. Let L denote the set of coset representatives
for Z(T)/(Z(T)∩T), so ∣L∣ = 4. _e representation IndZ(T)Z(T)∩Tχ decomposes into four
distinct characters ℓ χ:

(5.2) IndZ(T)Z(T)∩T χ =⊕
ℓ∈L

ℓ χ.

We denote the irreducible genuine representation of T with central character ℓ χ
by ρℓ .

Proposition 5.5 Assume n is even. Let ℓ χ, ℓ ∈ L be as in (5.2). _en ResT ρ′ =
⊕ℓ∈L[(ρℓ)⊕n/2], where ρℓ aremutually inequivalent and ρ ≅ ρℓ for some ℓ ∈ L.

Proof Note that X = {(dg(1,ϖ j), 1) ∣ 0 ≤ j < n} is a system of coset representatives
for T/T/A, and that A is stable under conjugation by x ∈ X. Moreover, it is not diõcult
to see that for x = (dg(1,ϖ j), 1), χ′0

x
= χ′0, j . _erefore, by Mackey theory,

ResT ρ′ =⊕
x∈X

( IndT
(T∩Ax) χ′0

x
) =

n−1
⊕
j=0

IndTA ( IndAT∩A χ′0, j) .
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Observe that [A ∶T ∩ A] = 2, with coset representatives {e , o}. _erefore, for every
0 ≤ j < n, IndAT∩A χ′0, j is a two-dimensional representation of the abelian group A and
hence decomposes into direct sum of two characters: e χ′j ⊕ o χ′j .

Note that for 0 ≤ j < n, ResT∩A IndAT∩A χ′0, j ≅ χ′0, j ⊕ χ′0, j . Suppose 0 ≤ i , j < n, by
Frobenius reciprocity

HomA ( IndAT∩A χ′0, j , Ind
A
T∩A χ′0, i) = HomT∩A ( ResT∩A IndAT∩A χ′0, j , χ′0, i)

= HomT∩A(χ′0, j ⊕ χ′0, j , χ′0, i).

We can easily see that χ′0, j and χ′0, i coincide on T ∩ A if and only if i = j. Whence,

dimHomA ( IndAT∩A χ′0, j , Ind
A
T∩A χ′0, i) =

⎧⎪⎪
⎨
⎪⎪⎩

2 if i = j,
0 otherwise.

_erefore, the elements of {e χ′j , o χ′j ∣ 0 ≤ j < n} are 2n distinct characters of A,
which, because [A ∶Z(T)] = n/2, implies that they restrict to at least four distinct
characters upon restriction to Z(T). Moreover, because ρ appears in ResT ρ′, at least
one of these four central characters is χ. Observe that for 0 ≤ j < n, and α ∈ {e , o},
ResZ(T)∩T α χ′j = χ.
Consider

IndAZ(T)∩T χ = IndAZ(T) Ind
Z(T)
Z(T)∩T χ = IndAZ(T)⊕

ℓ∈L
ℓ χ = ⊕

ℓ∈L ,0≤k<n/2
ℓ χk .

Observe that the ℓ χk are 2n distinct characters that restrict to χ on Z(T) ∩ T and
exhaust every such character. Hence, the sets {e χ′0, j , o χ′0, j ∣ 0 ≤ j < n} and {ℓ χk ∣ ℓ ∈
L, 0 ≤ k < n/2} are equal. In particular,

ResT ρ′ ≅ IndTA ⊕
0≤ j<n

e χ′j ⊕ o χ′j = IndTA ( ⊕
ℓ∈L ,0≤k<n/2

ℓ χk) ≅⊕
ℓ∈L

ρ⊕
n
2

ℓ .

We compute ResK ResK Ind
G
B ρ′. First, we need to study ResT∩K χ′i , j . Note that

ResT∩K χ′i , j( dg(t), ζ) = χ′0,0( dg(t), ζ) ϑ i− j(t),

for all (dg(t), ζ) ∈ T ∩ K. _erefore, {ResT∩K χ′i , j ∣ 0 ≤ i , j < n} consists of n distinct
characters of T ∩ K. In the next lemma and proposition, we realize these characters as
characters of T ∩ K that come from central characters ℓ χ, ℓ ∈ L, of Z(T).

Lemma 5.6 Each ResT∩K χ′i , j appears exactly twice in⊕ℓ∈L ,0≤k< n
2 ℓ χk .

Proof Note that ResT∩K IndAZ(T)∩T χ = ResT∩K(⊕ℓ∈L ,0≤k< n
2 ℓ χk). Consider

(5.3) HomT∩K ( ResT∩K χ′i , j ,ResT∩K Ind
A
Z(T)∩T χ) .

Observe that T ∩ K/A/Z(T) ∩ T ≅ nZ/nZ. So, by Mackey theory and Frobenius reci-
procity, (5.3) is

HomT∩K ( ResT∩K χ′i , j , (Ind
T∩K
Z(T)∩K χ)⊕2) ≅

HomZ(T)∩K(ResZ(T)∩K χ′i , j ,ResZ(T)∩K χ⊕2).
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Because ResZ(T) χ′ = χ, for all 0 ≤ i , j < n, ResZ(T)∩K χ′i , j = ResZ(T)∩K χ, and
hence, (5.3) is two-dimensional, which shows that ResT∩K χ′i , j appears exactly twice
in⊕ℓ∈L ,0≤k<n ℓ χk .

It is easy to see that {ResT∩K χ′0, j ∣ 0 ≤ j < n} consists of n distinct characters
of T ∩ K, each appearing exactly twice in⊕ℓ∈L ,0≤k<n ℓ χk by Lemma 5.6. By a simple
counting argument, we deduce that for every 0 ≤ k < n and ℓ ∈ L, there exists a
0 ≤ j < n, such that ResT∩K χ′0, j = ℓ χk . Similar to Lemma 5.4, we see that, for n even,
if 0 ≤ j < n, 0 ≤ k < n and ℓ ∈ L are such that ResT∩K χ′0, j = ℓ χk , then, for all l ≥ m,

(IndKB∩K ℓ χk)K l ≅ ResK(Ind
K
B∩K χ

′

0, j)
K l .

_e following proposition and corollary sum up the results in this section.

Proposition 5.7 Let ρ and ρ′ be irreducible representations of T and T with central
characters χ and χ′, primitive mod m, respectively, such that ρ appears in ResT ρ′. For
l > m, 0 ≤ k < n, 0 ≤ i , j < n, let Wk , l = W

−

k , l ⊕W
+

k , l and W
′

i , j, l be the quotient spaces that
appear in the decompositions in Proposition 4.8 and Corollary 5.3, respectively. _en,
for each 0 ≤ k < n, l > m, Wk , l = ResK W′ i , j, l , for some 0 ≤ i , j < n.

Proof If n is odd, it follows from Lemma 5.4 that for a given k and l there exists
0 ≤ i , j < n such that (IndKB∩K χk)K l ≅ ResK(Ind

K
B∩K χ′i , j)K l . Without loss of generality,

we can assume i = 0. For n even, it follows from Proposition 5.5 that χ = ℓ χ for some
ℓ ∈ L, where ℓ χ are deûned in (5.2). It is a consequence of Lemma 5.6 that, for a
given k and l , there exists 0 ≤ j < n such that (IndKB∩K ℓ χk)K l ≅ ResK(Ind

K
B∩K χ′0, j)K l .

Consider W′0, j, l = (IndKB∩K χ′0, j)K l /(IndKB∩K χ′0, j)K l−1 .
Observe that

ResK W′0, j, l = ResK [(Ind
K
B∩K χ

′

0, j)
K l ]/ResK [(Ind

K
B∩K χ

′

0, j)
K l−1]

= (IndKB∩K χk)K l /(IndKB∩K χk)K l−1 = W−k , l ⊕ W+k , l .

Corollary 5.8 _e inequivalent irreducible representations W−k , l and W
+

k , l , 0 ≤ k < n,
l > m, that appear in theK-type decomposition ResK IndGB ρ in Proposition 4.8 are of the
same dimension.

Proof By Proposition 5.7, for any 0 ≤ k < n, l > m, Wk , l = W−k , l ⊕ W+k , l , is restriction
of some irreducible representation W′i , j of K, for some 0 ≤ i , j < n. Hence, there exists
an element of K ∖ K that maps W−k , l to W+k , l bijectively.

Remark 5.9 Note that the isomorphism (3.1) implies that, for any 0 ≤ k < n, l > m,
Wk , l is isomorphic to a representation of K, of the same dimension as Wk , l , tensored
with the faithful character є. _e dimension of Wk , l can be calculated directly. One
can then explicitly identify these representations using the classiûcation of irreducible
representations of K given by Shalika [30] as done in [23, Sec.5].
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6 Main Result

Finally, we put all of our results together to obtain themain result of this paper.

_eorem 6.1 Let ρ be a genuine irreducible representation of Twith central character
χ, primitivemod m, and let χk , 0 ≤ k < n, be all the possible extensions of χ to A. _en

ResK IndGB ρ ≅
n−1

⊕
k=0

(VKm
k )⊕⊕

l>m
(W+0, l ⊕ W−0, l)

⊕n ,

where Vk = IndKB∩K χk , and W+0, l and W
−

0, l are two inequivalent irreducible representations
of Kwith the same dimension, and (W+0, l⊕W

−

0, l) ≅ V
K l
0 /VK l−1

0 . _e level-m representations
VKm

k , where 0 ≤ k < n, are irreducible and mutually inequivalent, except when m = 1
and for some k, χk ∣O× is a quadratic character.

Proof _e decomposition and irreducibility results follow fromProposition 4.8. _e
multiplicity results follow from Corollary 4.11 and the fact that W+0, l and W

−

0, l have the
same degree is proved in Corollary 5.8.

_e next corollary states what happens when χk ∣O× is a quadratic character for
some 0 ≤ k < n. Up to relabelling, we can assume that χ0∣O× is a quadratic character.
In this case, indeed, both the irreducibility and being multiplicity-free fails.

Corollary 6.2 In the setting of _eorem 6.1, suppose that m = 1, and χ0∣O× is a
quadratic character. _en we are in one of the following situations:
(i) If 4∤n, then VK1

k is reducible if and only if k = 0, in which case, VK1
0 ≅ 1̃ ⊕ S̃t if

χ0∣O× = 1, and VK1
0 ≅ Ξ+ ⊕ Ξ− otherwise. Moreover, VK1

i ≅ VK1
k exactly when

i + k = n.
(ii) If 4 ∣ n, then VK1

k is reducible exactly when k = 0 or k = n
4 , in which case,

VK1
0 ⊕ VK1

n/4 ≅ 1̃⊕ S̃t⊕ Ξ+ ⊕ Ξ−. Moreover, VK1
i ≅ VK1

k exactly when i + k = n.

Proof It follows from Proposition 4.8, Lemma 4.9, and Corollary 4.11.

Remark 6.3 _e fact that when 4 ∣ n, all four of 1̃, S̃t, Ξ+ and Ξ− appear in the top
piece of theK-type decomposition is curious; its roots lies in the fact that in this case,
1 and sgn are both characters of O×/O×n .

Remark 6.4 Most of the information about the principal series representation is en-
coded in the level-m piece. _e tail piece in _eorem 6.1 (the level-l pieces for l > m)
does not see the twists of the extension of the central character to A by characters of
O×/O×n , and hence fails to see the non-triviality of the cover; thus, it behaves exactly
like its counterpart in theK-type decomposition of the linear group. In particular, for
l ≥ 2m the tail only depends on τ0(−1) ([23, Proposition 4.5]).

Remark 6.5 If one can generalizes the local Langlands correspondence to the cov-
ering groups, representations of the covering analogue of the Weil–Deligne group
are associated with L-packets of representations of G. _e analogy with the linear
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case suggests that the restriction to the inertia subgroup of these representations is
parametrized, up to isomorphism, by the Bernstein components. Inertial Langlands
correspondence relates such representations to representations of K. To establish such
a correspondence, one needs to understand the Bernstein support of a representation
of G from its restriction to K. To that end, we are interested in classifying all irre-
ducible representations of K whose occurrence in ResK π, for a representation π of G,
guarantees a given cuspidal support; such representations are called typical represen-
tations. Our result in this paper suggests that the irreducible pieces in the top level of
the K-type decomposition are typical.
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