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Abstract

Shallit and Wang showed that the automatic complexity �(G) satisfies �(G) ≥ =/13 for almost all G ∈ {0, 1}=. They

also stated that Holger Petersen had informed them that the constant 13 can be reduced to 7. Here we show that it

can be reduced to 2 + n for any n > 0. The result also applies to nondeterministic automatic complexity �# (G). In

that setting the result is tight inasmuch as �# (G) ≤ =/2 + 1 for all x.

1. Introduction

Kolmogorov’s structure function for a word x is intended to provide a statistical explanation for x. We

focus here on a computable version, the automatic structure function ℎG . For definiteness, suppose x

is a word over the alphabet {0, 1}. By definition, ℎG (<) is the minimum number of states of a finite

automaton that accepts x and accepts at most 2< many words of length |G |. The best explanation for the

word x is then an automaton witnessing a value of ℎG that is unusually low, compared to values of ℎH for

most other words y of the same length. To find such explanations we would like to know the distribution

of ℎG for random x. In the present paper we take a step in this direction by studying the case ℎG (0),

known as the automatic complexity of x.

The automatic complexity of Shallit and Wang [9] is the minimal number of states of an automaton

accepting only a given word among its equal-length peers. Finding such an automaton is analogous to

the protein-folding problem, where one looks for a minimum-energy configuration. The protein-folding

problem may be NP-complete [2], depending on how one formalises it as a mathematical problem.

For automatic complexity, the computational complexity is not known, but a certain generalisation to

equivalence relations gives an NP-complete decision problem [4].

Here we show (Theorem 18) that automatic complexity has a similar incompressibility phenomenon

as that of Kolmogorov complexity for Turing machines, first studied in [6, 7, 11, 12].

1.1. Incompressibility

Let C denote Kolmogorov complexity, so that � (f) is the length of the shortest program, for a fixed

universal Turing machine, that outputs f on empty input. Letl = {0, 1, 2, . . . } be the set of nonnegative

integers and let l<l = l∗ be the set of finite words over l.

As Solomonoff and Kolmogorov observed, for each n there is a word f ∈ {0, 1}= with � (f) ≥ =.

Indeed, each word with � (f) < = uses up a description of length < =, and there are at most
∑=−1

:=0 2: =

2= − 1 < 2= = |{0, 1}= | of those.
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Similarly, we have the following:

Lemma 1 (Solomonoff, Kolmogorov). For each nonnegative integer n, there are at least 2=−
(

2=−: − 1
)

binary words f of length n such that � (f) ≥ = − : .

Proof. For each word with � (f) < = − : , we use up at least one of the at most 2=−: − 1 many possible

descriptions of length less than = − : , leaving at least

|{0, 1}= | −
(

2=−: − 1
)

words f that must have � (f) ≥ = − : . �

1.2. Almost all words of a given length

Shallit and Wang connected their automatic complexity �(G) with Kolmogorov complexity in the

following theorem:

Theorem 2 (Shallit and Wang [9, proof of Theorem 8]). For all binary words x,

� (G) ≤ 12�(G) + 3 log2 |G | +$ (1).

They mention ([9, proof of Theorem 8]), without singling it out as a lemma, the result that is our

Lemma 4. Since they used, but did not give a definition of, the notion of almost all, we give a definition

here. The notion is also known by the phrase natural density 1.

Definition 3. A set of strings ( ⊆ {0, 1}∗ contains almost all G ∈ {0, 1}= if

lim
=→∞

|( ∩ {0, 1}= |

2=
= 1.

Lemma 4. � (G) ≥ |G | − log2 |G | for almost all x.

Proof. Let ( = {G ∈ {0, 1}∗ : � (G) ≥ |G | − log2 |G |}. By Lemma 1,

lim
=→∞

|( ∩ {0, 1}= |

2=
≥ lim

=→∞

2= −
(

2=−log2 = − 1
)

2=
= lim

=→∞
1 −

(

1

=
−

1

2=

)

= 1.

�

Shallit and Wang then deduced the following:

Theorem 5 ([9, Theorem 8]). For almost all G ∈ {0, 1}=, we have A(x)≥ n/13.

Proof. By Lemma 4 and Theorem 2, there is a constant C such that for almost all x,

|G | − log2 |G | ≤ � (G) ≤ 12�(G) + 3 log2 |G | + �.

Let � ′ = �/12. By taking n large enough, we have

=

13
≤
=

12
−

1

3
log2 = − �

′ ≤ �(G).

�

Our main result (Theorem 18) implies that for all n > 0, �(G) ≥ =/(2 + n) for almost all words

G ∈ {0, 1}=. Analogously, one way of expressing the Solomonoff–Kolmogorov result is as follows:

Proposition 6. For each n > 0, the following statement holds: � (G) ≥ |G | (1 − n) for almost all

G ∈ {0, 1}=.
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The core idea for Theorem 18 is as follows. Consider an automaton processing a word x of length

n over = + 1 points in time. We show that there exist powers G
U8

8
within x with U8 ≥ 2, and all distinct

base lengths |G8 |, that in total occupy
∑

1 + U8 |G8 | time, and such that all other states are visited at most

twice. Since most words do not contain any long powers, this forces the number of states to be large.

Automatic complexity, introduced by [9], is an automaton-based and length-conditional analogue

of �� complexity [10]. �� complexity is in turn a computable analogue of the noncomputable

Kolmogorov complexity. �� stands for ‘complexity of distinguishing’. Buhrman and Fortnow [1] call

it ��, whereas Sipser called it  �.  �C (G) is the minimum length of a program for a fixed universal

Turing machine that accepts x, rejects all other strings and runs in at most C (|H |) steps for all strings y.

The nondeterministic case of automatic complexity was studied in [3]. Among other results, that

paper gave a table of the number of words of length n of nondeterministic automatic complexity �#

equal to a given number q for = ≤ 23, and showed the following:

Theorem 7 (Hyde [9, Theorem 8], [3]). For all x, �# (G) ≤ ⌊=/2⌋ + 1.

In this article we shall use 〈01, . . . , 0:〉 to denote a k-tuple and denote concatenation by ⌢. Thus, for

example, 〈3, 6〉⌢〈4, 4〉 = 〈3, 6, 4, 4〉. When no confusion is likely, we may also denote concatenation

by juxtaposition. For example, instead of*⌢+⌢*⌢�⌢�⌢+ we may write simply*+*��+ .

Definition 8. Let Σ be finite a set called the alphabet and let Q be a finite set whose elements are called

states. A nondeterministic finite automaton (NFA) is a 5-tuple M = (Q, O , X, q0, F). The transition

function X : &×Σ → P(&) maps each (@, 1) ∈ &×Σ to a subset of Q. Within Q we find the initial state

@0 ∈ & and the set of final states � ⊆ &. As usual, X is extended to a function X∗ : & × Σ∗ → P(&) by

X∗ (@, f⌢8) =
⋃

B∈X∗ (@,f)

X(B, 8).

Overloading notation, we also write X = X∗. The set of words accepted by M is

!(") = {G ∈ Σ
∗ : X(@, G) ∩ � ≠ ∅}.

A deterministic finite automaton is also a 5-tuple M = (Q, O , X, q0, F). In this case, X : & × Σ → & is a

total function and is extended to X∗ by X∗ (@, f⌢8) = X(X∗(@, f), 8). Finally, the set of words accepted

by M is

!(") = {G ∈ Σ
∗ : X(@, G) ∈ �}.

We now formally recall our basic notions.

Definition 9 ([3, 9]). The nondeterministic automatic complexity �# (G) of a word G ∈ Σ= is the minimal

number of states of an NFA M accepting x such that there is only one accepting walk in M of length n.

The automatic complexity �(G) of a word G ∈ Σ= is the minimal number of states of a deterministic

finite automaton M accepting x such that !(") ∩ Σ= = {G}.

Insisting that there be only one accepting walk enforces a kind of unambiguity at a fixed length. This

appears to reduce the computational complexity of �# (G), compared to requiring that there be only one

accepted word, since one can use matrix exponentiation. It is not known whether these are equivalent

definitions [5].

Clearly, �# (G) ≤ �(G). Thus our lower bounds in this paper for �# (G) apply to �(G) as well.

2. The power–complexity connection

The reader may note that in the context of automatic complexity, Definition 8 can without loss of

generality be simplified as follows:
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1. We may assume that the set of final states is a singleton.

2. We may assume that whenever @, A ∈ & and 11, 12 ∈ Σ, if A ∈ X(@, 11) ∩ X(@, 12), then 11 = 12.

Indeed, having multiple edges from q to r in an automaton witnessing the automatic complexity of

a word would would violate uniqueness.

3. Each automaton M may be assumed to be generated by a witnessing walk. That is, only edges used

by a walk taken when processing x along the unique accepting walk need to be included in M.

Let us call an NFA M witness generated if there is some G ∈ Σ∗ such that x is the only word of

length |G | that is accepted by M, and M accepts x along only one walk and every state and transition

of M is visited during this one walk. In this case we also say that M is witness generated by x. When

studying nondeterministic automatic complexity, we may without loss of generality restrict attention to

witness-generated NFAs.

Definition 10. Two occurrences of words a (starting at position i) and b (starting at position j) in a word

x are disjoint if G = D0E1F, where D, E, F are words and |D | = 8, |D0E | = 9 .

Definition 11. A digraph � = (+, �) consists of a set of vertices V and a set of edges � ⊆ +2. Set

B, C ∈ + . Set = ≥ 0, = ∈ Z. A walk of length n from s to t is a function Δ : {0, 1, . . . , =} → + such that

Δ (0) = B, Δ (=) = C and (Δ (:),Δ (: + 1)) ∈ � for each 0 ≤ : < =.

A cycle of length = = |Δ | ≥ 1 in D is a walk from s to s, for some B ∈ + , such that Δ (C1) = Δ (C2), C1 ≠

C2, =⇒ {C1, C2} = {0, =}. Two cycles are disjoint if their ranges are disjoint.

Theorem 12. Let n be a positive integer. Let � = (+, �) be a digraph and set B, C ∈ + . Suppose

that there is a unique walk Δ on D from s to t of length n, and that for each 4 ∈ � there is a t with

(Δ (C),Δ (C + 1)) = 4. Then there is a set of disjoint cycles C such that

E ∈ +
∖

⋃

�∈C

range(�) =⇒ |{C : Δ (C) = E}| ≤ 2,

and such that for each � ∈ C there exist `� ≥ 2 |� | and C� such that

{C : Δ (C) ∈ range(�)} = [C� , C� + `� ],

Δ (C� + :) = � (: mod |� |) for all 0 ≤ : ≤ `� . (1)

Proof. Suppose E ∈ + with
{

C : Δ
(

C 9
)

= E
}

= {C1 < C2 < · · · < C: } and : ≥ 3. Let us write Δ [0,1] for

the sequence (Δ (0), . . . ,Δ (1)) for any 0, 1.

Claim. The vertex sequence ( = Δ [C 9 ,C 9+1] does not depend on j.

Proof of claim. For : = 3, E ∈ + with Δ (C1) = Δ (C2) = Δ (C3) for some C1 < C2 < C3. Then the same

vertex sequence must have appeared in [C1, C2] and [C2, C3],

Δ [C1 ,C3 ] = Δ [C2 ,C3 ]
⌢
Δ [C1+1,C2 ] ,

or else the uniqueness of the path would be violated, since

Δ [0,C1−1]
⌢
Δ [C2 ,C3 ]

⌢
Δ [C1+1,C2 ]

⌢
Δ [C3+1,=]

would be a second walk on D from s to t of length n. For : > 3, the only difference in the argument is

notational. �

By definition of the C 9s, S is a cycle except for reindexing. Thus, let � (A) = ((C1 + A) for all r, let

C� = C1 and let ` = `� be defined by equation (1). We have

C� + `� ≥ C: = C1 +

:−1
∑

9=1

C 9+1 − C 9 = C1 + (: − 1) |� | ,

and hence `� ≥ (: − 1) |� | ≥ 2 |� |. �
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3. Main theorem from power–complexity connection

Definition 13. Let w be an infinite word over the alphabet Σ, and let x be a finite word over Σ. Let U > 0

be a rational number. The word x is said to occur in w with exponent U if there is a subword y of w with

H = G0G0, where G0 is a prefix of x, a is the integer part of U and |H | = U |G |. We say that y is an U-power.

The word w is U-power-free if it contains no subwords which are U-powers.

Here in Section 3 we show how to establish our main theorem (Theorem 18).

Definition 14. Let M be an NFA. The directed graph � (") has the set of states Q as its set of vertices

and has edges (B, C) whenever C ∈ X(B, 1) for some 1 ∈ Σ.

Theorem 15. Set @ ≥ 1 and = ≥ 0, and let x be a word of length n such that �# (G) = @. Then x contains

a set of powers G
U8

8
, U8 ≥ 2, 1 ≤ 8 ≤ <, satisfying the following equations with V8 = ⌊U8⌋:

<
∑

8=1

V8 |G8 | =

<
∑

8=1

W8 |G8 | , W8 ∈ Z, W8 ≥ 0 =⇒ W8 = V8 for each 8, (2)

= + 1 − < −

<
∑

8=1

(U8 − 2) |G8 | ≤ 2@. (3)

Proof. Let M be an NFA witnessing that �# (G) ≤ @. Let D be the digraph � ("). Let C be a set of

disjoint cycles in D as guaranteed by Theorem 12. Let < = |C| and write C = {�1, . . . , �<}. Let G8 be

the word read by M while traversing �8 and let U8 = `�8
from Theorem 12.

Since the �8 are disjoint, there are Ω := @ −
∑<

8=1 |G8 | vertices not in
⋃

8 �8 . Let % =

|{C : Δ (C) ∈ �8 , for some 8}| and let # = = + 1 − %. By Theorem 12, # ≤ 2Ω, and so % = = + 1 − # ≥

= + 1 − 2Ω. On the other hand, % =
∑<

8=1 (1 + U8 |G8 |), since a walk of length k is the range of a function

with domain of cardinality : + 1. Substituting back into the inequality % ≥ = + 1 − 2Ω now yields

<
∑

8=1

(1 + U8 |G8 |) ≥ = + 1 − 2

(

@ −

<
∑

8=1

|G8 |

)

and hence formula (3). �

Theorem 16. Set @ ≥ 1 and let x be a word such that �# (G) ≤ @. Then x contains a set of powers G
U8

8
,

U8 ≥ 2, 1 ≤ 8 ≤ <, such that all the |G8 | , 1 ≤ 8 ≤ <, are distinct and nonzero, and satisfying formula (3).

Proof. This follows from Theorem 15 once we note that unique solvability of equation (2) implies that

all the lengths are distinct.

The unique solution is V: = ⌊U:⌋ ≥ 1. Suppose |G8 | =
�

�G 9
�

�, 8 ≠ 9 . Then another solution is W: = V:
for : ∉ {8, 9}, W8 = V8 − 1, W 9 = V 9 + 1. �

For a word G = G1 · · · G= with each G8 ∈ {0, 1}, we write G [0,1] = G0G0+1 · · · G1 .

Definition 17. Let G = G1 · · · G= with each G8 ∈ {0, 1}. Lookback(<, :, C, G) is the statement that

G<+1+D = G<+1+D−: for each 0 ≤ D < C – that is,

Lookback(<, :, C, G) ⇐⇒ G [<+1:<+C ] = G [<+1−::<+C−: ] .

We can read Lookback(<, :, C, G) as ‘position m starts a continued run with lookback amount k of

length t in x’.

Theorem 18. Let P= denote the uniform probability measure on words G ∈ Γ=, where Γ is a finite

alphabet of cardinality at least 2. For all n > 0,

lim
=→∞
P=

(�

�

�

�

�# (G)

=/2
− 1

�

�

�

�

< n

)

= 1.
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Proof. Let us write log = log |Γ | in this proof. Let 3 = 3, although any fixed real number 3 > 2 will do

for the proof. For 1 ≤ < ≤ = and 1 ≤ : ≤ <, let '<,: = {G ∈ Γ= : Lookback(<, :, ⌈3 log =⌉, G)}. By

the union bound,1

P=

(

=
⋃

<=1

<
⋃

:=1

'<,:

)

≤

=
∑

<=1

<
∑

:=1

|Γ|−3 log =
= =−3

=
∑

<=1

< =
=(= + 1)

2
· =−3 =: n=,3 . (4)

By Theorem 16, if �# (G) ≤ @ then x contains powers G
U8

8
with all U8 ≥ 2 and all |G8 | distinct and

nonzero such that formula (3) holds:

= + 1 − < −

<
∑

8=1

(U8 − 2) |G8 | ≤ 2@.

Applying this with @ = �# (G),

= + 1 − < −

<
∑

8=1

(U8 − 2) |G8 | ≤ 2�# (G). (5)

Let (8 = (U8 − 1) |G8 | and ( =
∑<

8=1 (8 . Using |G8 | ≥ 1 and formula (5), we have

= + 1 − ( ≤ = + 1 − ( − < +

<
∑

8=1

|G8 | ≤ 2�# (G). (6)

Using U8 ≥ 2, and the observation that if m many distinct positive integers |G8 | are all bounded by

⌈3 log =⌉, then it follows that < ≤ ⌈3 log =⌉, we have

{

G :
<

max
8=1

(8 ≤ ⌈3 log =⌉

}

⊆

{

G :
<

max
8=1

|G8 | ≤ ⌈3 log =⌉)

}

⊆ {G : < ≤ ⌊3 log =⌋}. (7)

By equation (4) (since (8 is the length of a continued run in x), we have

P=

(

<
max
8=1

(8 ≤ ⌈3 log =⌉

)

≥ 1 − n=,3 . (8)

Using ( ≤ <max<
8=1
(8 and formulas (7) and (8),

P=

(

( ≤ (⌈3 log =⌉)2
)

≥ P=

(

<max
8
(8 ≤ (⌈3 log =⌉)2

)

≥ P=

(

<
max
8=1

(8 ≤ ⌈3 log =⌉

)

≥ 1 − n=,3 .

So by formula (6),

P=

(

�# (G) ≥
= + 1

2
−

1

2
(⌈3 log =⌉)2

)

≥ 1 − n=,3 . (9)

Letting =→ ∞ completes the proof. �
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