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THE FIXED POINT PROPERTY FOR SOME UNIFORMLY
NONOCTAHEDRAL BANACH SPACES

A. JIMENEZ-MELADO

Roughly speaking, we show that a Banach space X has the fixed point property
for nonexpansive mappings whenever X has the WORTH property and the unit
sphere of X does not contain a triangle with sides of length larger than 2.

INTRODUCTION

Let C be a nonempty subset of a Banach space X, with norm || -||. A mapping
T:C — X is called nonexpansive if ||T(z) — T(y)|| < llz — y|| for all z,y € C. We
say that X has the weak fixed point property (w-fpp) if every nonexpansive mapping
T:C — C defined on a nonempty convex and weakly compact subset C of X has a
fixed point.

It is well known that the w-fpp holds for Banach spaces with nice geometric prop-
erties. In this note we are interested in one of these properties which is closely related
to an open question in fixed point theory (for details, see for example [4]). Recall that
for a Banach space X the modulus of convexity of X is the function 4 : [0,2] — [0, 1]
defined by

. 1
o) =inf{1-Z le+yll Iz I<LIyI< LIz -y > e}

and the characteristic of convexity of X is defined by eo(X) = sup{e € [0,2] : é(¢) =
0}. It is known that the condition €9(X) < 1 implies that X has the w-fpp. In
fact, those Banach spaces X with €¢(X) < 1 have normal structure and then Kirk’s
theorem applies [7]. Nevertheless, it remains unknown whether the w-fpp holds for
every uniformly nonsquare Banach space X (that is, £6(X) < 2). In the positive, some
partial answers have been established. For instance, we mention a result of J. Garcia
who proved in [3] that a uniformly nonsquare Banach space X has the w-fpp provided
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that X satisfies the additional assumption of WORTH property, a concept introduced
by Sims in [10] as follows: X has the WORTH property if

liznlllzn—z||—||z,,+z|||=0

for all £ € X and for all weakly null sequences {z,) in X. A generalisation of the
result of Garcia can be found in [6] and [11]. In the second one Sims relaxed the
hypothesis €0(X) < 2 by showing that a stronger conclusion than the w-fpp holds
under the presence of WORTH property and the condition “X is eg-inquadrate in
every direction for some £g9 < 2”. In this paper we improve the result of [3] by replacing
the coefficient €9(X), which has a “two-dimensional character”by a coefficient with a
“three-dimensional character”.

MAIN RESULT

Let X be a Banach space with norm ||-|| and let Bx be its closed unit ball. Denote
by 6(X) the supremum of the set of numbers ¢ € [0,2] for which there exist points z1,
3, 3 in Bx with min{||z;—z;||:i # j} > €. Define the function é : [0,5(X)) — [0,1]
by '

~ 1
d(e) = inf{l - 3”11 4+ zo+z3f|: z; € Bx, 1=1,2,3, and min{||z,~ ~zjl:i# 5} 2 e} .

and let £o(X) be the number £,(X) = sup{e € [O,S(X)): b(e) = O}.

We remark that for any ¢ € [0, 5(X )) we have that 8(¢) > 6(¢) since for any z1,
z3, z3 in Bx with min{||z; — z;||:¢ # j} > ¢ we have that

z1+a:2+x3” 1 “:c1+a:2” “x1+x3” “x2+x3”
2Tl = £1- .
” 3 3 7z It 1Tl S1-06)

Hence £0(X) <€ €0(X) and, in some cases, the inequality is strict. To see this we
consider the following example.

ExaMPLE. Consider the classical real sequence space £ endowed with its usual Eu-
clidean norm || -||. Let |-| be a norm on #; such that

lizll < || < bllz| (z € &)

for some b > 1 and let X be the Banach space (¢2,]-|).
We claim that £0(X) < 2 for b < /7/3. Indeed, if this were not true there would
exist sequences (z}), (z2) and (z3) in Bx such that

lim|zl + 22 +22]=3 and limjz} —z|=2 foralli#j.
n n
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Since || - || is an Euclidean norm we have that

3
llzh + 2% + 23> = 33 llzhll® = > llzh, — 73 )1?

i=1 i#j
3. 1 o 1 :

<3N - 5 Y lah — TP <9 o S Iekh — a2,
i=1 i] i#5

Then it follows that

9= li'11n|:z:}‘+:1:,2,+:t:i|2 < b2<9— g—) ,
which is impossible unless b2 > 7/3.

Now consider the space Eg = (£2,]- |g), where |z|g = max{||z||, B||z||lw} - Since
llzll < |zlg < Blizl|2 for all z € £, then &(Eg) < 2 for B < 1/7/3. On the other hand,
for B > V2 we have €9(Eg) = 2 and, since Eg has the WORTH property, this shows
that the fixed point result of [3] is strictly included in the following theorem.

THEOREM 1. If X isa Banach space with WORTH property such that £5(X) < 2
then X has the w-fpp.

Before proving our theorem, we shall state some basic results which will be used
in the proof.

Suppose that C is a nonempty, convex and weakly compact subset of the Banach
space X and that T:C — C is nonexpansive. Standard arguments show that C
contains a subset K which is minimal for the properties of being nonempty, convex,
weakly compact and T'-invariant, and that K contains an approximate fixed point
sequence (afps) for T (that is, a sequence (z,) in K such that ||z, — T(.’L‘n)” — 0).
The well known Goebel-Karlovitz lemma (see [4]) ensures that if K is minimal for T
and {z,) is an afps for T in K, then (z,) is diametral, that is, ||z, — z|| — diam (K)
for every z € K.

We denote by [X] the quotient space (loo(X))/(Co(X)) endowed with the norm
||{zn]|| = limsup ||z, || where [z,] denotes the equivalence class of (25) € loo(X). Any
z € X will be considered as an element of [X] by identifying z with the class which
contains the constant sequence (z,z,...). If C is a subset of X and T:C —» C is a
nonexpansive mapping, we denote by [C] the set

[C] = {len): (cn) is a sequence in C'}

and by (T] the mapping [T):[C] — [C] defined by [T]([cn]) = [T(cs)]. With these
notations we can state the following version of the Goebel-Karlovitz lemma (see [1, 8]):
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LEMMA. Let K be a nonempty, convex and weakly compact subset of X which
is minimal for the nonexpansive mapping T: K — K. If W is any nonempty, closed
and convex subset of [K] which is invariant under [T}, then

sup {||[wn] — z||: [ws] € W} = diam (K)

for every x € K.
Now we proceed to the proof of the theorem 1.

PRrROOF OF THEOREM 1: We shall argue by contradiction. Hence, suppose that X
is as in Theorem 1 but lacks the w-fpp. Then there exist a nonempty, convex and weakly
compact set K C X and a fixed point free || - ||-nonexpansive mapping T: K — K such
that K is minimal for T'. Since T has no fixed point in K, then d = diam (K) > 0 and
we can suppose that d = 1. Let (z,) be an afps for T in K. Since every subsequence
of (z,) is again an afps for T and K is weakly compact, we may assume that (z,)
is itself a weakly convergent afps. By translating K if necessary, we may also assume
that 0 € K, K is minimal for T and (z,) is weakly null.

Appealing to the Goebel-Karlovitz lemma and the WORTH property of X we
obtain that

(1) lim|lv+ zp| = lim|lv - z,)| =1

n n
for all v € K. Hence, we may assume, passing to a subsequence if necessary, that
(2) lirflnllzn + Znp1ll = lirrln lzn — Znall = 1.

Consider the subset W of [X] defined by
1
W = {[zn] € [K):max {||(zn] = [@a]|}s [|[2a] = [£n1]|)s [lzn] = 2|} < 3 for some z € K} .

W is nonempty since [(z,, +xn+1)/2] € W. It is also closed, convex and [T]-
invariant. Since 0 € K, we have, by the lemma, that

(3) sup {||[wn]||: [wa] € W} =1.

Let [z,] be any element of W, where without loss of generality we may assume
that z, € K for all n. By definition of W, there exists £ € K such that

DI =

liznl ~ lzalll < 50 Nlzn) = [Ensall| < 5 and  [flza] - 2] <
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Fix € > 0 with £(X) < € < 2 and choose b arbitrarily in (¢/2,1).
For every positive integer n define

vl = 26(20 — 2,), VE = 2b(2n — Tpy1), VS =2b(z, —x).
Then our previous considerations lead to the following:
limsuplvi]] <b<1 (1=1,2,3) and lim|vi —vl||=2b>¢ (i#37).
n n

Then, for n large enough we have,

1

T2

In+ZTpnt1+ 2

3

v} + 02 + 3
3

<5 (1-50)),

2n

and since b is arbitrary in (g/2,1),
Tn+ZTn41+ 2 1 ~
onomrl TPl 21 - .
3 S 2 (1-5@)
On the other hand, it follows from (1) and (2) that
()

. 1. . .
limsup ||Zn + Zny1 + z|| € 3 [11'1‘11 |z + za|l + hfr'n [l + Zps1ll + h,{n |zn + 1:,.+1||]
n

Zn —

(4) lim sup

n

B =

. . . 3
== [llm |z = zn|l + lim ||z — Tp41]| + lim ||z, — 1:,,+1||] =-.
n n n 2

From (4) and (5) we get that

|lza]|| = limsup||2,]] < limsup ||z, — W%” + lim sup W
n n n
1 ~ 1

<=-(1- z

N2 (1 6(5)) *a
and since {z,] is arbitrary in W and &(X) < ¢,

1 ~ 1
sup {“[wn]” [wa] € W} < 3 (1 - 6(6)) + 3 < 1,

which contradicts (3). 0

REMARK 1. Following James [5] we say that a Banach space X is uniformly nonocta-
hedral if it does not contain £3 uniformly.

It is known that every uniformly nonsquare Banach space is reflexive, whereas there
exists a nonreflexive uniformly nonoctahedral Banach space [5].

Since any Banach space X with £,(X) < 2 is uniformly nonoctahedral, this sug-
gests the following question: Does every uniformly nonoctahedral Banach space with
WORTH property have the w-fpp? And also: Does £¢(X) < 2 imply that X is reflex-
ive?
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REMARK 2. There are some generalisations of uniform convexity which may be linked
with the coefficient introduced in this note. We mention for instance the concept of
a uniformly noncreasy Banach space introduced by Prus [9] and the concept of a 2-
uniformly rotund Banach space, introduced by Sullivan [12]. Recall that a Banach
space X is said to be 2-uniformly rotund if for each £ > 0 there is § > 0 such that if
T, y, z are points in the unit sphere of X with ||z +y+ 2| >3 —é then

1 1 1

A(zy,T2,23) =supq [ f(z) fly) f@)|:fi9e X" IfI<L, llgll<1y <e.
9(z) g(y) 9(2)

It is known that A(zi,z2,z3) > D(xy,T2,2Z3), where
D(z1,z2,23) = ||z2 — 23| ‘diSt(Il, [-’132,133])

and [z2,z3] is the affine span of x5, z3.

Bernal and Sullivan proved in [2] that a Banach space X has normal structure
(and hence the w-fpp) whenever X satisfies the following property: there exist § > 0,
0 < € < 1 and a positive integer m such that if z,,...,z,, are points in the unit sphere
of X with |[(z1+ -+ zm)/m|| > 1 -6 then D(zy,...,zm) <e.

The next theorem shows, via theorem 1, that the w-fpp still holds if in the above
property, with m = 3, we replace the condition “0 < e < 1”by “0 < € < 2 and X has
the WORTH property”.

THEOREM 2. Suppose that there exist 6 > 0 and 0 < € < 2 such that for all
points 1, T2, z3 in the unit sphere of X with ||(zy + z2 + 23)/3|| > 1 — § we have
D($1,$2,IL‘3) <E.

Then €9(X) < 2.

PROOF: Suppose that £(X) = 2. Then there exist sequences (zl), (z2) and
(z3) in Bx such that

n

(6) lim|jz + 22+ 23| =3 and lim|z} —~zZ||=2 foralli##j.
n n

Since this implies that ||z || — 1, i = 1,2,3, we may assume without loss of
generality that (z%), 2 =1,2,3 are sequences in the unit sphere of X .
On the other hand, since

D(zp, 22, 23) = lleh - 23| - dist (z3, 23, 73])
. 1
> l122 a2l (min{l - =31, b - 231} - 312 - 331 ),

and ||z}, —zi|| 2 for all i # j, then liminf, D(z},z2,23) > 2. This together with
(6) gives a contradiction. 0
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