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Abstract

We take a new look at transient, or time-dependent Little laws for queueing systems.
Through the use of Palm measures, we show that previous laws (see Bertsimas and
Mourtzinou (1997)) can be generalized. Furthermore, within this framework, a new law
can be derived as well, which gives higher-moment expressions for very general types of
queueing system; in particular, the laws hold for systems that allow customers to overtake
one another. What is especially novel about our approach is the use of Palm measures
that are induced by nonstationary point processes, as these measures are not commonly
found in the queueing literature. This new higher-moment law is then used to provide
expressions for all moments of the number of customers in the system in an M/G/1
preemptive last-come–first-served queue at a time t > 0, for any initial condition and
any of the more famous preemptive disciplines (i.e. preemptive-resume, and preemptive-
repeat with and without resampling) that are analogous to the special cases found inAbate
and Whitt (1987c), (1988). These expressions are then used to derive a nice structural
form for all of the time-dependent moments of a regulated Brownian motion (see Abate
and Whitt (1987a), (1987b)).
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1. Introduction

Little’s law is one of the most fundamental laws of queueing theory. For a queueing system
in steady state, it relates L, the expected number of customers present in the system, to λ, the
rate at which customers arrive to the system, and W , the expected waiting time of a customer
that arrives during steady state; more precisely, L = λW . Numerous papers devoted to this law
have appeared in the literature over the past forty years: a nice overview of what was discovered
through 1991 can be found in Whitt [22].

In this paper we will focus on transient, or time-dependent versions of Little’s law, and their
applications. To the best of the authors’ knowledge, the first paper that specifically focused on
these sort of laws for queueing systems was Bertsimas and Mourtzinou [6]. Their method of
proof involved the use of sample-path arguments to compute the first moment of the number
of customers present in a queueing system at time t (denoted Q(t)). They also used the same
type of argument to establish a distributional relationship between Q(t) and the waiting times
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460 B. H. FRALIX AND G. RIAÑO

of all customers that arrive in the system during the interval (0, t], as long as customers depart
from the system in the same order in which they arrived. They allowed for arbitrary initial
conditions, and they also considered multiclass queueing systems as well. What is important
to note is that the proofs of these results require that the necessary waiting time distributions
can be expressed in terms of a limit (this is needed in order to ‘condition’ on having an arrival
at a fixed time), and that the mean measure of the arrival process is absolutely continuous with
respect to the Lebesgue measure. In particular, if N represents the point process of arrivals
(made up of points {Tn}n≥1), they assumed that there exists a function h and a random process
{W(t); t ≥ 0} such that, for each t ≥ 0,

h(t) = lim
δ→0

E[N(t)] − E[N(t − δ)]
δ

and that, for each t, τ > 0,

h(t) dt P(W(t) > τ) :=
∞∑

n=1

P(t − dt < Tn ≤ t) P(Wn > τ | Tn = t),

where Wn represents the sojourn time of the nth arrival to the system in (0, ∞). From this
definition, P(W(t) > τ) can be intuitively interpreted as the probability that a customer that
arrives to the system at time t stays in the system for at least τ units of time.

We will begin by showing how Palm theory can be used to generate the laws given in [6] under
less restrictive conditions, in that this approach no longer requires that the limits mentioned
above exist, nor do we have to assume that the mean measure is absolutely continuous. Putting
these laws into a Palm framework is nice, because it gives us a natural analogue of the known
Palm interpretation for the classical versions of Little’s law. Furthermore, our approach also
leads to a new law that allows us to relate any moment of Q(t) to the sojourn times of customers
that interact with the system in [0, t]. What is especially interesting about this law is that it is
very general: it even holds for queueing systems that allow customers to overtake one another.

Typically, the type of Palm measure that is found in the queueing literature is the one that is
induced by a stationary point process. These measures are often used to analyze systems from
the perspective of an arriving or departing customer that interacts with the system while it is
in equilibrium. Introductions to the theory can be found in many places; see, for instance, [5]
and [21]. We will instead use a family of Palm measures that are induced by point processes
that do not necessarily have to be stationary, and the reader will see that their use will allow
us to ‘condition’ on an arrival occurring at a fixed time t in the appropriate way. These were
first introduced in [20], and a nice discussion on these measures can be found in the book of
Kallenberg [13]. Usage of these measures is rare in the queueing literature, which adds to the
novelty of the approach used in this paper. However, they have been applied in queueing studies
before; see, for example, [8], [9], and [19].

The application we present is as follows. Abate and Whitt [3], [4] were interested in how
the moments of Q(t) behave as a function of t , where {Q(t); t ≥ 0} corresponds to an M/M/1
queue with arrival rate λ and service rate µ. One of the main results of [3, Theorem 3.2] showed
that

E[(Q(t))n | Q(0) = 0] = n! (λ E[τ ])n P

( n∑
j=1

Rτj
≤ t

)
, (1.1)

where {Rτk
}k≥1 is an independent and identically distributed (i.i.d.) sequence of residual busy

periods, and, for a given x ∈ R and an integer n ≥ 1, (x)n = x(x−1) · · · (x−n+1). The proof
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of this result involved using the fact that, when Q(0) = 0, Q(t)
d= M(t) (here ‘

d=’ denotes
equality in distribution), where M(t) represents the maximum value over [0, t] of a birth–death
process that moves along the integers, with a birth rate λ and a death rate µ. Later, in [4]
transform techniques were used to derive a decomposition of the queue length at an exponential
time, and this was then used to study the behavior of E[Q(t)n | Q(0) = k] for any n, k ≥ 1;
however, even though they were able to generate equations that give insight into how these
moments behave (see Theorems 8.4 and 8.5 of [4]), they did not give an expression for this
quantity that is as clear as, or is analogous to, (1.1). This approach does give a nice expression
when n = 1, for arbitrary k, but it is not clear how it can be immediately used to compute
the second and higher moments for such k. We should also point out that the time-dependent
moments of regulated Brownian motion were also studied in another series of papers by Abate
and Whitt (see [1] and [2]), which do not rely on the results found for the M/M/1 queue.
Similarly, in these papers it was shown that the moments are much more difficult to compute
when the process does not start at the origin, and only the first two moments are given for any
initial condition; moreover, their derived form for the second moment does not immediately
allow one to guess what the higher moments should look like.

We will show how to use our new transient versions of Little’s law to very quickly derive
the time-dependent moments of an M/GI/1 preemptive last-come–first-served (LCFS) queue
for any initial condition. Our use of the term preemptive LCFS queue will refer to systems that
operate under either the preemptive-resume or preemptive-repeat disciplines. It is also worth
observing that our results will also hold for queueing systems that ‘mix’ both the preemptive-
resume and preemptive-repeat disciplines, i.e. each time a server returns to serve a customer, it
either continues where it left off (preemptive-resume), restarts from where it began the last time
(preemptive-repeat without resampling), or restarts with a new amount of work (preemptive-
repeat with resampling), where the choice of preemption used is governed by another random
element. The expressions we find are as pleasing as (1.1), in that they are in terms of probabilities
that can be approximated with moment-matching techniques, in the same way as (1.1) was
approximated within Section 4 of [3].

It is interesting to note that, for Q(0) = 0, the factorial moments of Q(t) were also
implicitly computed for the M/G/1 preemptive-resume LCFS queue by Kella et al. [16], who
were interested in various time-dependent properties of symmetric M/G/1 queues (see [15,
Section 3.3] for a definition). They were able to compute the distribution of Q(τ(q)), where
τ(q) is an exponential random variable with rate q, by making use of the fact that, when
Q(0) = 0, the distribution of Q(t) can be expressed in terms of a Lévy process. In particular,

Q(t)
d= �

{
s ∈ [0, t] : X(s−) = inf

r∈[s,t] X(r)
}
,

where {X(t); t ≥ 0} represents the ‘net-input’ process, i.e.

X(t) =
N(t)∑
k=1

Sk − t,

and �{s : S(s)} denotes the number of s values for which the statement S(s) is true. Equa-
tion (1.1) then quickly follows from inverting the transform of Q(τ(q)). In a sequel to this
paper [11], we show how a transient analogue of results found in the classical ASTA (arrivals
see time averages) literature can be used to derive the distributions of Q(τ(q)) for queueing
models that are more general than the ones considered here.
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We begin in Section 2 by setting up the mathematical framework in which we will work
throughout this study. The derivation of our transient Little laws will be given in Section 3.
In Section 4 we will show how these results can be used to gain additional insight into the
time-dependent behavior of the moments of the M/G/1 preemptive LCFS queue, and we will
conclude in Section 5 by demonstrating how the time-dependent moments of the M/M/1 queue
can be used to derive all of the corresponding moments for a regulated Brownian motion.

2. Palm measures

Suppose that N := {N(t); t ≥ 0} is a point process on (0, ∞), whose points consist of
the arrival times of customers to a given queueing system. We identify these points with the
sequence {Tn; n ≥ 1}, where Tk denotes the arrival time of the kth customer to the system in the
interval (0, ∞). Associated with the kth arrival is its waiting time Wk , and these waiting times
generate a real-valued stochastic process {W(s); s ∈ R+}, where W(s) represents the waiting
time of the last customer to arrive at or before time s; we assume that W(s) = 0 if no customers
have arrived in (0, s]. Finally, let µ denote the mean measure of N , i.e. µ(A) = E[N(A)],
which we will assume is σ -finite, in that µ(K) < ∞ for all compact sets K . Throughout
this paper, it is further assumed that all of our processes reside on the space (�, F , P), where
� is a complete separable metric space, F is its associated collection of Borel sets, and P is
an arbitrary probability measure that determines the laws of all processes on the space. Such
assumptions should not be considered to be too restrictive, due to the fact that many interesting
processes associated with queueing networks reside on the space D[0, ∞) that consists of right-
continuous functions with left-hand limits, and it is well known that this space can be equipped
with a metric that satisfies such properties.

To show how some of our transient laws simplify to their well-known stationary variants,
we will also consider stationary versions of the processes given above, which will actually
be defined on the entire real line. We will refrain from giving explicit definitions of all our
stationary processes, as their proper definitions can easily be inferred from our current setting.
Rather, to signify that a process is stationary, we will merely place a tilde over each random
element, e.g. Ñ , Q̃(t), W̃ (s), etc.

Under these assumptions, we know that there exists a µ-almost everywhere (µ-a.e.) unique
collection of Palm measures {Ps}s∈R+ induced by N that satisfy, for any Borel set B ⊂ R and
A ∈ F ,

E[N(B)1A] =
∫

B

Pt (A)µ(dt),

where 1A denotes the indicator function 1A(ω) with ω ∈ �, which is 1 if ω ∈ A and 0 otherwise.
A major well-known consequence of this definition is what is known as the Campbell–Mecke

formula, which relates the Palm distributions to expectations of stochastic integrals with respect
to a point process.

Theorem 2.1. For a given stochastic process {X(t); t ≥ 0}, the following equality holds:

E
∫

R

X(s)N(ds) =
∫

R

Es[X(s)]µ(ds).

The proof of this theorem follows by applying an extension argument to our local definition
of the Palm kernel, and is well known in the literature.

The reader should note that the more classical (from a queueing perspective) definition of
a Palm probability follows from this definition, when we further assume the existence of a
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measurable flow {θt }t∈R on our underlying space such that all processes of interest are adapted
to the flow, and that P is θt -invariant, i.e. P(θtA) = P(A) for any A ∈ F . By measurable flow
we mean that, for each θt : � → �, (i) θ0 is the identity mapping, (ii) θt is a (jointly measurable)
bijection, and (iii) θs+t = θsθt for any s, t ∈ R. Readers that are uncomfortable with the notion
of such a flow can think of it as a stationary process that contains all the information about
a process we may be interested in, so that all stationary processes of interest (i.e. the queue
length and workload processes) are nice (i.e. shift invariant) functionals of the flow. As a matter
of fact, when the underlying probability space is D[0, ∞), the standard shift operator on this
space plays the role of the measurable flow.

Under these assumptions, the locally defined Palm measures are related to the classical
Palm measure in the following way: Pt (θtA) = P0(A). This will also be used at various points
throughout the paper.

3. Little laws

Throughout this section, we will assume that Q(0) = 0, but it is not difficult to extend the
formulae given below to the case where Q(0) = n for any n ≥ 1. Indeed, we will do this when
we compute the time-dependent moments of the M/G/1 preemptive LCFS queue in Section 4.

Our first result is a generalization of Theorem 1 in Section 3 of [6]. It was used in the PhD
thesis of Riaño [18], and can also be found for the case of Poisson arrivals in [19].

Theorem 3.1. The first moment of Q(t) satisfies the following equality:

E[Q(t)] =
∫ t

0
Ps(W(s) > t − s)µ(ds).

Proof. As is shown in [19], the proof of this result immediately follows from applying the
Campbell–Mecke formula:

E[Q(t)] = E

[∫ t

0
1(W(s) > t − s)N(ds)

]
=

∫ t

0
Ps(W(s) > t − s)µ(ds).

This completes the proof.

Remark. It is interesting to note that the well-known version of Little’s law immediately
follows from this result. If we assume that Q̃ := {Q̃(t); t ∈ R} is stationary then

E[Q̃(0)] =
∫ 0

−∞
P̃s(W̃ (s) > −s)λ ds = λ

∫ 0

−∞
P̃0(W̃ (0) > −s) ds = λẼ0[W̃ (0)].

For queueing systems that satisfy the following assumptions, it has been shown that even
stronger relationships hold between the steady-state number of customers in the system and the
steady-state sojourn time. These assumptions are also given in Theorem 1 of [7].

Assumption 3.1. All arriving customers enter the system one at a time, and remain in the
system until their service requirements are satisfied.

Assumption 3.2. The customers leave the system in the same order in which they arrived, i.e.
the system is overtake-free.

Assumption 3.3. The sojourn time of a tagged customer is independent of all other customers
that arrive after the tagged customer.
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Our next result is a generalization of Theorem 6 of [6].

Theorem 3.2. Suppose that a queueing system satisfies Assumptions 3.1, 3.2, and 3.3. Then
the generating function of Q(t) is

E[zQ(t)] = 1 + (z − 1)

∫ t

0
Ps(W(s) > t − s) Es[zN(s,t]]µ(ds).

Proof. Proving this involves applying the Campbell–Mecke formula to

1(Q(t) ≥ n) =
∫ t

0
1(W(s) > t − s, N(s, t] = n − 1)N(ds).

In other words,

P(Q(t) ≥ n) =
∫ t

0
Ps(W(s) > t − s, N(s, t] = n − 1)µ(ds)

=
∫ t

0
Ps(W(s) > t − s) Ps(N(s, t] = n − 1)µ(ds).

The generating function of Q(t) can now be obtained after some simple algebra has been
performed.

Remark. Again, it is easy to see that this result can be related to the steady-state distributional
version of Little’s law. Note that if the arrival process is a renewal process then

E[zQ̃(0)] = 1 + (z − 1)

∫ 0

−∞
P̃s(W̃ (s) > −s)Ẽs[zÑ(s,0]]λ ds

= 1 + (z − 1)

∫ ∞

0
P̃0(W̃ (0) > s)Ẽ0[zÑ(0,s]]λ ds.

The form of this result is different from the standard Q̃(0)
d= Ñe(0, W̃ ) representation of this law

(see [7] and [12], and also [14] for the Poisson arrival case), where W̃ is the stationary waiting
time and Ñe is the equilibrium version of the renewal process. However, it is equivalent, and,
moreover, the appearance of the z − 1 term allows for very simple calculations of all factorial
moments E[(Q̃(0))n]:

E[(Q̃(0))n] = nλ

∫ ∞

0
P̃0(W̃ (0) > s)]Ẽ0[(Ñ(0, s])n−1] ds.

It is theoretically interesting that the following alternative transient distributional law can
also be derived, when P∗

s is the Palm measure induced by the departure process of our overtake-
free system, if we assume in addition that our arrival process is Poisson. Let {V (t); t ≥ 0}
denote a stochastic process, where V (t) represents the sojourn time of the first customer to
depart at or after time t . This result is a transient analogue of the main result of [14].

Theorem 3.3. For 0 < z < 1, we find that

E∗
t [zX(t)] = E∗

t [zN(t−V (t),t]].
Furthermore,

E∗
t [X(t)] = E∗

t [N(t − V (t), t]] = λ E∗
t [V (t)]. (3.1)
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Proof. The proof of this statement is simple: it merely follows from the fact that, since the
system is overtake-free, X(t) = N(t − V (t), t] if we have a departure at time t (which occurs
with probability 1 under P∗

t ). The rest of the proof then follows from differentiation.

Note that (3.1) is in the classical form of Little’s law, even though the expected values are
with respect to time-dependent Palm probabilities. If we generalize our setting by assuming
that N is stationary, and that the number of arrivals observed by a customer that departs at time
t is independent under P∗

t of the sojourn time of that customer, we end up with this form as well.
Eventually, for large t , E∗

t [X(t)] is approximately E[X(t)], which gives the classical version
of Little’s law.

At this point we will begin to discuss a result that not only does not appear to be previously
known in any sense, but also does not have any type of stationary interpretation. In particular,
we will show that, regardless of the service discipline invoked by the queueing system, there
is still a relationship between all moments of the number of customers in the system, and their
waiting times. To do this, we will have to briefly introduce a collection of multi-indexed Palm
measures. These are discussed in [13], and a queueing application can be found in [8] and [9],
where higher-order (reduced) Palm measures were used to derive approximations for various
performance measures associated with queues experiencing light traffic.

We will now give a very rough sketch as to how these measures are derived; the details can
be found in [13, Chapter 11]. Based on our assumptions we know that there exists a µ2-a.e.
unique probability kernel {Ps1,s2}s1,s2∈R such that, for A ∈ F and B1, B2 ∈ B(R),

E[N(B1)N(B2)1A] =
∫

B1

∫
B2

Ps1,s2(A)µs1(ds2)µ(ds1),

where µ(B1 × B2) = E[N(B1)N(B2)] = ∫
B1

µs1(B2)µ(ds1). Such a construction can also be
found in [13, Chapter 11]; furthermore, it is known that we can also derive measures Ps1,s2,...,sn

for any n ≥ 1, and we can still interpret Ps1,s2,...,sn(A) as the probability of A, given that N has
points at s1, s2, . . . , sn. Moreover, from Lemma 11.2 of [13] (see also Proposition 2.4 of [8]
for the reduced case), we also know that these Palm measures are consistent under iterations,
in that the Palm measure Ps2 induced by N , with respect to the probability measure Ps1 , is the
same as Ps1,s2 . This result can be used to prove the following.

Theorem 3.4. The factorial moments of Q(t) satisfy the following relationship: for each n ≥ 1,

E[(Q(t))n]
=

∫ t

0

∫ t

0
· · ·

∫ t

0
Ps1,s2,...,sn(W(s1) > t − s1, W(s2) > t − s2, . . . , W(sn) > t − sn)

× µs1,s2,...,sn−1(dsn) · · · µs1(ds2)µ(ds1), (3.2)

where µs1,...,sk (A) = Es1,...,sk [N(A − {s1, . . . , sk})].
Proof. We will provide the details for the proof when n = 2; it will be obvious to the reader

that the same argument follows for any arbitrary n. Note that

E[Q(t)(Q(t) − 1)]
= E

[∫ t

0
(Q(t) − 1)1(W(s) > t − s)N(ds)

]

=
∫ t

0
Es[1(W(s) > t − s)(Q(t) − 1)]µ(ds)
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=
∫ t

0
Es

[
1(W(s) > t − s)

[∫ t

0
1(W(u) > t − u)N(du) − 1(W(s) > t − s)

− 1(W(s) ≤ t − s)

]]
µ(ds)

=
∫ t

0
Es

[
1(W(s) > t − s)

[∫ t

0,u �=s

1(W(u) > t − u) − 1(W(s) ≤ t − s)

]]
µ(ds)

=
∫ t

0

∫
(0,s)∪(s,t]

Pu,s(W(u) > t − u, W(s) > t − s)µs(du)µ(ds).

Therefore, we see that the nth factorial moment of Q(t) can be expressed in terms of the
joint distribution of the waiting times of n customers that arrive at times s1, s2, . . . , sn ∈ (0, t].
Unfortunately, applying this result is typically a very difficult task, mainly because the mean
factorial measures found in the integral typically do not have a nice form.

For queues with Poisson arrivals, however, it is actually possible to simplify this relationship.
If N is a stationary Poisson process with rate λ > 0 then it is known that

µs1,...,sn−1(dsn) · · · µ(ds1) = λn dsn · · · ds1, (3.3)

which gives us the following corollary.

Corollary 3.1. If N is a stationary Poisson process with rate λ > 0 then

E[(Q(t))n] = n! λn

∫ t

0

∫ s1

0
· · ·

×
∫ sn−1

0
Ps1,s2,...,sn(W(s1) > t − s1, W(s2) > t − s2, . . . , W(sn) > t − sn)

× dsn · · · ds2 ds1. (3.4)

Proof. The proof of this result involves applying (3.3) to (3.2), along with the fact that
Ps1,...,sn(W(s1) > t − s1, . . . , W(sn) > t − sn) is symmetric with respect to (s1, . . . , sn).

Remark. Clearly, if we also assume that our queueing system is stationary and satisfies
Assumptions 3.1, 3.2, and 3.3, we find that

E[(Q̃(0))n] = n! λn

∫ 0

−∞
· · ·

∫ sn−1

−∞
P̃s1,s2,...,sn(W̃ (sn) > −sn) dsn · · · ds1

= n! λn

∫ 0

−∞
· · ·

∫ sn−1

−∞
P̃sn(W̃ (sn) > −sn) dsn · · · ds1

= n! λn

∫ 0

−∞
· · ·

∫ sn−1

−∞
P̃0(W̃ (0) > −sn) dsn · · · ds1

= n! λnẼ0[W̃ (0)]
∫ 0

−∞
· · ·

∫ sn−2

−∞
P̃0(RW̃(0)

> −sn−1) dsn−1 · · · ds1

= · · ·

= n! λn
n−1∏
k=0

E[R
k,W̃(0)

],

where, for an arbitrary random variable X, R0,X = X and R1,X is the residual version of X,
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i.e. for any t ≥ 0,

P(R1,X ≤ t) = 1

E[X]
∫ t

0
P(X > s) ds,

and, for any n ≥ 1, Rn+1,X = R1,Rn,X
. However, it is well known that

n−1∏
k=0

E[R
k,W̃(0)

] = E[W̃ (0)n]
n! ,

and so we conclude that E[(Q̃(0))n] = λnẼ0[W̃ (0)n], which is of course known, and can also
be computed from the distributional Little’s law.

Remark. Let us consider the case where Q(0) = 0, and suppose that the sojourn time of
each customer that enters the system is its service time, where each service time is equal in
distribution to a random variable B. If all services are independent of one another then, from
the proof of (3.4) (without making use of symmetric properties of the integrand), we see that

E[(Q(t))n] = λn

∫ t

0

∫ t

0
. . .

×
∫ t

0
Ps1,s2,...,sn(W(s1) > t − s1, W(s2) > t − s2, . . . , W(sn) > t − sn)

× dsn · · · ds2 ds1

= (λ E[B] P(R1,B ≤ t))n.

This of course agrees with the well-known, elementary fact that, for an M/G/∞ queue, the
distribution of Q(t) is Poisson with mean λ E[B] P(R1,B ≤ t).

4. Time-dependent moments of a preemptive LCFS queue

Consider an M/GI/1 preemptive LCFS queue, where we assume that the arrival rate is λ and
that each customer brings with it a generally distributed amount of work S, with mean E[S].
We will assume throughout that the first moment of the busy period is finite for each type of
preemptive model considered (recall the discussion of our use of the term ‘preemptive LCFS
queue’ in the introduction). With that being said, the reader should realize that the transient
Little laws themselves are valid for any choice of parameter values associated with our arrival
and service times. The main reason why this assumption is being made is because it will make
the form of our final results more pleasing, from an interpretation standpoint.

We begin by first computing E[(Q(t))n], while assuming that Q(0) = 0. Then, from our
previous observations,

E[(Q(t))n] = n! λn

∫ t

0
· · ·

∫ s2

0
Ps1,...,sn(W(s1) > t − s1, . . . , W(sn) > t − sn) ds1 · · · dsn.

(4.1)
However, a little thought shows that, under this queue discipline, if s1 < s2 < · · · < sn then

Ps1,s2,...,sn(W(s1) > t − s1, W(s2) > t − s2, . . . , W(sn) > t − sn)

= Ps1,s2,...,sn(W(s1) > s2 − s1, W(s2) > s3 − s2, . . . , W(sn) > t − sn)

= P(τ > s2 − s1) P(τ > s3 − s2) · · · P(τ > t − sn),

where τ is a random variable that represents the busy period. Here the first equality comes from
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the fact that, on the set where {W(sn) > t − sn}, W(sn−1) > t − sn−1 if and only if W(sn−1) >

sn − sn−1. The second equality follows from the fact that each event {W(si) > si+1 − si} can
be expressed in terms of the work Si that the customer arriving at time si brings to the system,
along with the points of N in (si, si+1) and their respective marks. These facts, along with N

being Poisson, show that the events are independent. Substituting this into (4.1) gives

E[(Q(t))n]
= n! λn

∫ t

0
· · ·

∫ s2

0
P(τ > s2 − s1) P(τ > s3 − s2) · · · P(τ > t − sn) ds1 ds2 · · · dsn

= n! λn E[τ ]
∫ t

0
· · ·

∫ s3

0
P(τ > s3 − s2) · · · P(τ > t − sn) P(Rτ ≤ s2) ds2 · · · dsn

= n! λn E[τ ]
∫ t

0
· · ·

∫ s3

0
P(τ > s2) · · · P(τ > t − sn) P(Rτ ≤ s3 − s2) ds2 · · · dsn

= · · ·

= n! (λ E[τ ])n P

( n∑
k=1

Rτk
≤ t

)
,

where {Rτk
}k≥1 represents an i.i.d. sequence of residual busy periods. This of course agrees

with the double transform computed in [16], and it is also in agreement with what is found in
[3] and [4].

Similarly, if there is one customer in the system at time 0 with an amount of service that is
equal in distribution to S, we see that if W1 represents its sojourn time,

E[1(W1 > t)(Q(t))n]
= n! λn

∫ t

0
· · ·

∫ s2

0
Ps1,...,sn(W1 > t, W(s1) > t − s1, . . . , W(sn) > t − sn) ds1 · · · dsn

= n! λn

∫ t

0
· · ·

∫ s2

0
P(τ > s1) P(τ > s2 − s1)

× P(τ > s3 − s2) · · · P(τ > t − sn) ds1 · · · dsn

= n! (λ E[τ ])n
(

P

( n∑
j=1

Rτj
≤ t

)
− P

(
τ +

n∑
j=1

Rτj
≤ t

))

= n! (λ E[τ ])n
(

P

(
τ +

n∑
j=1

Rτj
> t

)
− P

( n∑
j=1

Rτj
> t

))
.

Note that if there are two customers in the system at time 0 instead of one, the τ found in
the above expression would have to be replaced with a convolution of two busy periods, and
similarly for any other number of customers that happen to be present at time 0.

With these calculations in mind, we are now ready to derive an expression for the time-
dependent moments.

Theorem 4.1. Suppose that Q(0) = n0 ≥ 0, where the customers are labeled 1, 2, . . . , n0,
with service times that are independent and equal in distribution to S, and are served in this
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order (but still under preemptive LCFS). Then

E[Q(t)n] =
n∑

l=0

S(n, l)l! (λ E[τ ])l P

( l∑
k=1

Rτ,k ≤ t

)

+
n∑

m=1

(
n

m

) n0∑
r=1

[(n0 − r + 1)m − (n0 − r)m]
n−m∑
k=0

S(n − m, k)k! (λ E[τ ])k

×
[

P

( r∑
j=1

τj +
k∑

l=1

Rτl
> t

)
− P

( k∑
l=1

Rτl
> t

)]
.

Here the sequences {τk}k≥1 and {Rτ,k}k≥1 represent two independent, i.i.d. sequences of
busy periods and residual busy periods, respectively. Moreover, the doubly indexed sequence
of integers {S(n, k)}n≥1, 1≤k≤n represent the Stirling numbers of the second kind.

Proof of Theorem 4.1. Our new Little’s result will allow us to write down a closed-form
expression for the nth moment of Q(t). Note that we can write

Q(t) =
n∑

k=1

1(Wk > t) + Q0(t),

where Q0(t) = ∫ t

0 1(W(s) > t − s)N(ds). Furthermore, it is also clear that

Q(t)n =
n∑

m=0

(
n

m

) ∑
1≤r1,...,rm≤n0

1(Wmin(ri ,1≤i≤m) > t)Q0(t)
n−m

=
n∑

m=0

(
n

m

) ∑
1≤r1,...,rm≤n0

1(Wmin(ri ,1≤i≤m) > t)

n−m∑
k=0

S(n − m, k)(Q0(t))k. (4.2)

We can further simplify this expression by noting that, for a fixed nonnegative integer m ≤ n

and a fixed positive integer r ≤ m, the number of times r appears as the index of W in (4.2) is
just

1 +
m−1∑
k=1

(
m

k

)
(n0 − r)m−k = (n0 − r + 1)m − (n0 − r)m,

which follows from a simple counting argument. Thus, after making use of this fact and taking
expectations in (4.2), we find that

E[Q(t)n] =
n∑

m=0

(
n

m

) m∑
r=1

[(n0 − r + 1)m − (n0 − r)m]

×
n−m∑
k=0

S(n − m, k) E[1(Wr > t)(Q0(t))k],

so it suffices to compute the expectations found within the sum. But, by applying the Campbell–
Mecke formula in the same way as before, it is easy to see that

E[(Q0(t))k] = k! (λ E[τ ])k P

( k∑
j=1

Rτj
≤ t

)
.
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Furthermore, we see from our previous calculations that, for a positive integer r ,

E[1(Wr > t)(Q0(t))k] = k! (λ E[τ ])k
[

P

( r∑
j=1

τj +
k∑

l=1

Rτl
> t

)
− P

( k∑
l=1

Rτl
> t

)]
.

This completes the proof.

Remark. It would be very interesting to see if there is still a connection between the marginal
distributions of the M/G/1 queues under preemptive-resume LCFS and processor sharing, for an
arbitrary initial condition. In general, it appears very difficult to make use of the work of Kitaev
[17] in the hopes of establishing that they are indeed the same. Indeed, it is easy to see that the
argument given in the proof of Theorem 2.2 of [10] cannot be used to prove this statement, if
we assume that each customer present in the system at time 0 has a remaining amount of work
that is equal in distribution to the service time of all customers that arrive after time 0.

5. Moments of a regulated Brownian motion

As mentioned in [3], it is possible to rescale time and space in such a way so that the sample
path of the M/M/1 queue converges in distribution (under the Skorokhod metric) to a regulated
Brownian motion (RBM) {R(t); t ≥ 0}, with drift parameter µ = −1 and diffusion coefficient
σ 2 = 1, as ρ → 1. In particular, as ρ → 1, it is known that since the sample paths of an RBM
are continuous with probability 1, we see that, for each t ≥ 0,

1 − ρ

2
Q

(
2t

(1 − ρ)2

)
⇒ R(t),

where ‘⇒’ is used to denote weak convergence. Therefore, we can use our time-dependent
moments of the M/M/1 queue length to derive the time-dependent moments of an RBM for any
initial condition x ≥ 0, which complements and extends the results given in [1] and [2].

Theorem 5.1. For each n ≥ 1 and x ≥ 0, we find that

E[R(t)n | R(0) = x]

= n!
2n

P

( n∑
k=1

Ik ≤ t

)
+

n∑
m=1

n!
2n−m

∫ x

0

[
P

(n−m∑
l=1

Il ≤ t

)

− P

(
Tx−u,0 +

n−m∑
l=1

Il ≤ t

)]
um−1

(m − 1)! du,

where Tx,0 := inf{t > 0 : R(t) = 0} (assuming that R(0) = x) and {Ik}k≥1 is an i.i.d. sequence
of random variables such that

P(I1 ≤ t) =
∫ ∞

0
P(Tx,0 ≤ t)2e−2x dx.

Proof. To prove the result, we define a sequence of M/M/1 queues Qn0 that begin in state
Qn0(0) = 2n0+1, with a service rate of 1 and a traffic intensity ρn0 = 1 − x/2n0 . We will
assume throughout this proof that x > 0, but the case where x = 0 is easier to handle, and this
will be obvious once we go through this proof.
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From Theorem 4.1 we find that

E

[(
1 − ρn0

2

)n

Qn0

(
2t

(1 − ρn0)
2

)n]

=
(

1 − ρn0

2

)n n∑
l=0

S(n, l)l!
(

ρn0

1 − ρn0

)l

P

(
(1 − ρn0)

2

2

l∑
k=1

Rτk
≤ t

)

+
(

1 − ρn0

2

)n n∑
m=1

(
n

m

) 2n0+1∑
r=1

[(2n0+1 − r + 1)m − (2n0+1 − r)m]

×
n−m∑
k=0

S(n − m, k)k!
(

ρn0

1 − ρn0

)k

×
[

P

(
(1 − ρn0)

2

2

k∑
l=1

Rτl
≤ t

)

− P

(
(1 − ρn0)

2

2

r∑
j=1

τj + (1 − ρn0)
2

2

k∑
l=1

Rτ,l ≤ t

)]

= 1

2n

n∑
l=0

S(n, l)l! ρl
n0

(1 − ρn0)
n−l P

(
(1 − ρn0)

2

2

l∑
k=1

Rτk
≤ t

)

+
n∑

m=1

(
n

m

) 2n0+1∑
r=1

[(
x

(
1 − r − 1

2n0+1

))m

−
(

x

(
1 − r

2n0+1

))m]
1

2n−m

×
n−m∑
k=0

S(n − m, k)k! ρk
n0

(1 − ρn0)
n−m−k

×
[

P

(
(1 − ρn0)

2

2

k∑
l=1

Rτl
≤ t

)

− P

(
(1 − ρn0)

2

2

r∑
j=1

τj + (1 − ρn0)
2

2

k∑
l=1

Rτl
≤ t

)]
.

Note that, as n0 → ∞, ρn0 → 1, and so all terms that are multiplied by the constant 1 − ρn0

disappear. Hence, as n0 → ∞, the limit of the scaled nth moment is the same as the limit of

n!
2n

ρn
n0

P

(
(1 − ρn0)

2

2

n∑
k=1

Rτk
≤ t

)

+
n∑

m=1

n!
2n−m

1

m!ρ
n−m
n0

2n0+1∑
r=1

[(
x

(
1 − r − 1

2n0+1

))m

−
(

x

(
1 − r

2n0+1

))m]

×
[

P

(
(1 − ρn0)

2

2

n−m∑
l=1

Rτl
≤ t

)
− P

(
(1 − ρn0)

2

2

r∑
j=1

τj + (1 − ρn0)
2

2

n−m∑
l=1

Rτl
≤ t

)]
.
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It has already been established in Corollary 5.2.2(a) of [4] that, as n0 → ∞,

(1 − ρn0)
2

2
Rτ1 ⇒ I1, (5.1)

where the distribution of I1 is as given in the theorem. Hence, we see that, for each t ≥ 0,

lim
n0→∞

n!
2n

ρn
n0

P

(
(1 − ρn0)

2

2

n∑
k=1

Rτk
≤ t

)
= n!

2n
P

( n∑
k=1

Ik ≤ t

)
.

Furthermore, it is also clear that, for each t ≥ 0,

lim
n0→∞

n∑
m=1

n!
m! 2n−m

ρn−m
n0

2n0+1∑
r=1

[(
x

(
1 − r − 1

2n0+1

))m

−
(

x

(
1 − r

2n0+1

))m]

× P

(
(1 − ρn0)

2

2

n−m∑
l=1

Rτl
≤ t

)

=
n∑

m=1

n!
m! 2n−m

xm P

(n−m∑
l=1

Il ≤ t

)
.

To complete the proof, it will suffice to compute, for each t ≥ 0,

lim
n0→∞

n∑
m=1

n!
m! 2n−m

ρn−m
n0

2n0+1∑
r=1

[(
x

(
1 − r − 1

2n0+1

))m

−
(

x

(
1 − r

2n0+1

))m]

× P

(
(1 − ρn0)

2

2

r∑
j=1

τj + (1 − ρn0)
2

2

n−m∑
l=1

Rτl
≤ t

)
.

To evaluate this limit, first define a sequence of functions fn0 , where

fn0(z) = P

(
(1 − ρn0)

2

2

r∑
j=1

τj ≤ t

)

for z ∈ [r/2n0+1, (r + 1)/2n0+1). Note that P(((1 − ρn0)
2/2)

∑r
j=1 τj ≤ t) can be interpreted

as the probability that the properly time- and space-scaled M/M/1 queue that starts in state
r/2n0+1 reaches level 0 before time t . Thus, since the sample paths of an RBM are continuous
and leave 0 immediately after reaching it, we can apply the continuous mapping theorem to
conclude that

lim
n0→∞ fn0(z) = f (z),

where f (z) = P(Tz,0 ≤ t). Similarly, by defining a sequence of functions gn0,k , where

gn0,k(z) = P

(
(1 − ρn0)

2

2

r∑
j=1

τj + (1 − ρn0)
2

2

k∑
l=1

Rτl
≤ t

)

for z ∈ [r/2n0+1, (r + 1)/2n0+1), we can combine the previous continuous mapping
argument with (5.1) to conclude that gn0,k(z) → gk(z) as n0 → ∞, where gk(z) = P(Tz,0 +∑k

j=1 Ij ≤ t). Combining these results with the dominated convergence theorem completes
the proof.
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