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THE GENERALIZED WIELANDT SUBGROUP OF A GROUP 

To Otto Kegel on his sixtieth birthday 

JAMES C. BEIDLEMAN, MARTYN R. DIXON AND DEREK J. S. ROBINSON 

ABSTRACT. The intersection IIV(G) of the normalizers of the infinite subnormal 
subgroups of a group G is a characteristic subgroup containing the Wielandt subgroup 
W{G) which we call the generalized Wielandt subgroup. In this paper we show that if 
G is infinite, then the structure of IW(G)/ W(G) is quite restricted, being controlled by a 
certain characteristic subgroup S(G). If S(G) is finite, then so is lW{G)j W(G), whereas 
if S(G) is an infinité Priifer-by-finite group, then IW(G)/W{G) is metabelian. In all 
other cases, IW{G) = W(G). 

1. Introduction. If G is a group, the Wielandt subgroup of G, denoted by W(G), is 
defined to be the intersection of the normalizers of all the subnormal subgroups of G. This 
subgroup has been the subject of a number of papers since its introduction by Wielandt 
in [13]. Wielandt obtained many of the basic properties of W(G), showing in particular 
that all non-abelian simple subnormal subgroups of G are contained in W(G), as are all 
minimal normal subgroups with min — n (see [12, 13.3.2 and 13.3.7]). The Wielandt sub­
group has also been discussed in Camina [2] and more recently in Casolo [3], Cossey [4] 
and Brandi, Franciosi and de Giovanni [1]. Of course, W(G) always contains the centre 
Z(G), but the example of the infinité dihedral group shows that W(G) can be trivial. 

A closely related concept is that of a T-group, or group in which normality is a transi­
tive relation. The Wielandt subgroup of a group G is always a 7-group, and G is a T-group 
if and only if G = W(G). The basic properties of T-groups are elucidated in [10]. In [5], 
de Giovanni and Franciosi introduced the notion of an IT-group. This is a group in which 
every infinite subnormal subgroup is normal. Soluble 7T-groups were classified in [5], 
while Heineken [6] studied /^-groups in general. These two papers have influenced much 
of the current work, which provides a substantial generalization of them. 

In this paper we shall consider the generalized Wielandt subgroup IW{G) of a group 
G; this is defined to be the intersection of the normalizers of all the infinite subnormal 
subgroups of G. Of course, if G has no infinite subnormal subgroups, then IW(G) = G. 
It is clear that IW(G) is a characteristic subgroup of G containing the Wielandt subgroup. 
Also IW(G) is an 7T-group and G is an //"-group precisely when G = IW(G). 
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In Section 2 we show that the structure of a group G with IW(G) ^ W(G) is quite 
restricted. The crucial result here is that in such a group the normal abelian subgroups 
are Priifer-by-finite; this enables us to show that the Baer radical of G is also of this type. 
Here, and throughout this paper, we shall allow the term Priifer-by-finite to include the 
possibility that the group is finite. 

In Section 3 we obtain our main results concerning the structure of IW{G)/ W{G). An 
important role is played by a characteristic subgroup S(G), which is defined to be the join 
of all the finite soluble subnormal subgroups of G. In fact S(G) controls the structure of 
IW(G)j W(G). Our main results can be summarized in the following surprisingly strong 
form. 

THEOREM. Let G be a group and write I = IW(G), W = W(G), S = S(G). Then the 
following hold. 

(i) 1/ W is residually finite, 
(iï) If G is infinite, then 1/ W is a T-group. 

(Hi) If S is not Prufer-byfinite, then I = W. 
(iv) If S is an infinite Priifer-by-finite group, then 1/ W is metabelian. 
(v) If S is finite, then 1/ W is finite. 

Some of the conclusions of this theorem follow from the interesting fact (Corollary 1) 
that if/ does not normalize a subnormal subgroup H of G, then H has only finitely many 
conjugates in G. The theorem is complemented by a number of examples. The finite in­
soluble subnormal subgroups or lack thereof also play a decisive role, as is demonstrated 
by the following result. 

COROLLARY 5. Suppose that G is a group in which all the finite subnormal sub­
groups are soluble. Then IW(G)/ W(G) is finite. 

We use our results to obtain large classes of groups for which IW{G) = W(G). For 
example, according to Theorem 7, this is the case if G is an infinite residually finite group. 

In Section 4 we show that our results are particularly strong for soluble groups, obtain­
ing necessary and sufficient conditions for a soluble group G to satisfy IW(G) ^ W(G). 

Section 5 contains several examples which indicate the limitations of the theory. 
In particular we show that if S(G) is finite, then IW(G)j W{G) can be an arbitrary fi­
nite group. We have also modified an example of Heineken [6] to demonstrate that 
IW{G)I W(G) need not be torsion. 

Our notation is standard and, where not explained, can be found in [11]. 

2. The Baer radical. We begin with a fundamental result which shows that the 
structure of the normal abelian subgroups of a group G with IW{G) ^ W{G) is very 
restricted. 

LEMMA 1. Let G be a group with IW(G) ^ W(G). Then every abelian normal 
subgroup A of G is Prùfer-byfinite. 

PROOF. By hypothesis there is a finite subnormal subgroup H and an element g G 
IW(G) such that Hg ^ H. We first show that A is torsion. Let a G A be of infinite order. 
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Then B0 — (aH) is a finitely generated abelian group, so there is a positive integer n such 
that B — BQ is a non-trivial torsion-free subnormal subgroup of G. Since H is finite and 
subnormal, [B, H] = 1 and HB is an infinite subnormal subgroup of G. Therefore HB = 
(HBy = HgB and H = Hg, since H is the torsion subgroup of HB. This contradiction 
shows that A is torsion. 

Next we show that A is a Cernikov group. Suppose that ir(A), the set of primes dividing 
the orders of elements of A, is infinite, and put B — A^^. Then B is infinite, and HB is 
subnormal. Thus HgB = ///?, which yields Hg = H, a contradiction. 

Now assume that ^ has infinite p-rank for some prime p. Then ^[p] := {<2 G /ï | 
^ = 1} is infinite. There is a subgroup Bo of A[p] such that \A\p\ : Z?o| < °° an (i 
/ / H 5 0 = 1. Put 5 = HAG// 5O^ t h e n MW '• #1 < °°5

 B i s infinite and // H B = 1. Also 
HB is subnormal in G since (BH) is. As usual HgBg = 7/5 and thus 

/^ <f]HB = H, 

where the intersection is taken over all //-invariant subgroups B with finite index in A\p] 
which satisfy H D B = 1. It follows that A has finite /?-rank and hence is a Cernikov 
group. 

Finally we need to show that the divisible subgroup/? of A is of type/?00. Suppose that 
Rp 2LX\àRq are non-trivial primary components of R with/? 7̂  q. Then//g < HRpDHRq = 
H(HRpnRq).Now 

HRP HRq< (HH(RP x Rq))Rp H Rq 

= ((HnRp)x(HnRq))RpnRq 

= HHRq, 

which yields H8 — H. Thus ir(R) = {/?} or else R = 1. 
Suppose that HC\ R is contained in a proper divisible subgroup Pi of R; then R = 

Pi x P2 where P2 ^ 1. Since [//,/?] = 1, the subgroups//Pi and//P2 are subnormal in 
G. Therefore 

H8 < HP\ n//p2 = //(//Pi np2) = //((//n7?)P, np2) = // 

since HC\R < P\. Hence the minimal divisible subgroup containingHHRis R itself; it 
is now easy to deduce that R\p] < //, so that we can pass to G/R\p]. By repeating the 
argument if necessary, we eventually obtain a contradiction and the result follows. 

The preceding result is crucial throughout this paper. We use it immediately to obtain 
the structure of the Baer radical of a group G with IW{G) ^ W(G). 

THEOREM 1. Let G be a group such that IW(G) ^ W(G). Then the Baer radical 
B(G) is Prufer-by-finite and hence is nilpotent. 

First we prove: 
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LEMMA 2. Let G be a Baer group which satisfies the minimal condition on subnor­
mal abelian subgroups. Then G is a nilpotent Cernikov group. 

PROOF. In the first place note that G is a torsion group and ir(G) is finite. Next we 
show that Fit(G), the Fitting subgroup of G, is nilpotent. 

Here we can assume that G is a/?-group. Consider a chain of subgroups N\ < N2 < • • • 
where TV, is a normal nilpotent subgroup of G. Assume that U = U/ M is not nilpotent and 
put Z/ = {xG Z(Ni) | xp = 1}. Then (Zi,Z2,...) is an elementary abelian normal sub­
group of G, so it is finite. Hence for sufficiently large / we have Zi+\ < (Z\, Z2,. . . , Z,-) < 
Ni and Z/+i < Z/. Thus, if /' is large enough, Z/ = Z/+i = • • • and Z/ ^ 1, which shows 
thatZ(L0^ 1. 

Next observe that U/Z(U) inherits the finiteness property of G. For let A/Z(U) be a 
subnormal abelian subgroup of U/Z(U). Then^ is a subnormal nilpotent subgroup of G. 
Let B be a maximal abelian normal subgroup of A. Then B satisfies the minimal condition 
(min) by hypothesis, and CA(B) = B by 5.2.3 of [12]. Since A is torsion, A/CA(B) has 
min by [11, Theorem 3.29] and hence A has min. Then U/Z(U) is not nilpotent, and the 
preceding argument gives 

1 <Zl(U)<Z2(U)<--. 

Next Z^U) is a normal hypercentral torsion group whose subnormal abelian sub­
groups satisfy min. By 1.G.2 of [7] the group Z^U) is Cernikov. Also the divisible part 
of ZJJJ) is contained in Z\(U) by 12.2.9 of [12]. Thus ZU(U)/Z\(U) is finite, a contra­
diction which shows that U is nilpotent, as must be Fit(G). 

Now let A be a subnormal abelian subgroup of G. We show that A < Fit(G). Let 
A = An <An-\ <• • • <A\ <Ao = G. Note that,41 inherits the properties of G. By induction 
on n > 1 we obtain^ < Fit(v4i). However Fit(^i) is nilpotent by the first part of the 
proof, so ¥it(A\) < Fit(G), and the required conclusion follows. Therefore G = Fit(G) 
is nilpotent and so G is Cernikov. 

PROOF OF THEOREM 1. By hypothesis there exists a finite subnormal subgroup H 
of G and g G IW(G) such that H ^ Hg. Let B = B(G) and assume that B is not Prufer-
by-finite. Since there is a positive integer / such that [B, tH\ < H, there is a largest r 
for which B\ — [B,rH] is not Prvifer-by-finite. Then [B\,H] is Prufer-by-finite, whence 
[Z?i,//,//] is finite since H centralizes a subnormal Priifer subgroup. 

Letrf= |//|.Then 

[BuH]d = [B,r+lH]d < [B.rH^m^H] 

= [B9*2H]9 

which is finite. Since [B\,//] is Prufer-by-finite, it must be finite. 
If B\ is Cernikov, then Lemma 1 implies that the divisible part of B\ is of rank at most 

1, a contradiction. Thus Lemma 2 shows that B \ does not satisfy the minimal condition on 
subnormal abelian subgroups. If h G H, then [B\, h] is finite, and so\B\ : CB{ (h)\ is finite. 
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Therefore B2 := CB{{H) has finite index in B\, and thus B2 does not satisfy the minimal 
condition on subnormal abelian subgroups. Now B2 is a torsion subgroup. For if c E B2 

has infinité order, then (cH) is a finitely generated nilpotent group, and it is subnormal in 
G (being contained in B). Hence there exists a non-trivial free abelian subgroup V such 
that V < (cH) and[V,H]= 1. Then IP < f]p HW = //, a contradiction. It is also easy 
to see that ir(B2) is finite. Consequently B2 has for some prime/? an infinite elementary 
abelian/?-subgroup^, and [H,A] = 1. If A\ < A and \A : A\\ < oo, then HA\ is an 
infinite subnormal subgroup of G. Thus H8 < f]A[ HA\ — H, a final contradiction. 

Recall that a group G is called subsoluble if it has an ascending subnormal series 
whose factors are abelian. Every group G has a subsoluble radical, which contains all 
subnormal subsoluble subgroups; this radical is also the limit of the upper Baer series 
of G. (For these facts see [9] or [11].) We shall be particularly concerned with 5(G), the 
subgroup generated by all the finite soluble subnormal subgroups of G. This subgroup, 
which is always a locally soluble torsion group, has a decisive influence on the struc­
ture of IW(G)/W(G). For groups G with IW(G) ^ W(G) we have the following result 
concerning the structure of the subsoluble radical. 

THEOREM 2. Let G be a group such that IW(G) ^ W{G). Then the subsoluble 
radical H = H{G) is soluble and has a torsion subgroup T(H) with H/ T(H) torsion-free 
abelian and T(H) Priifer-by-finite. If P is the divisible part of T(H), then CT(H)(P) = 
C„(P) = S(G). 

PROOF. Let B = B{G) be the Baer radical of G. Then B = B(H) and CH(B) < B 
by [9]. According to Theorem 1 the subgroup B is Priifer-by-flnite and nilpotent. Now 
Aut(Z?) is flnite-by-torsion free abelian, as is H/B since B/CH(B) is finite. The indicated 
structure of H now follows. 

Since P is the divisible part of T(H), we have P < B and either P = 1 or P is a p°°-
group by Lemma 1. Also \B : P\ is finite and hence C//(P) = CT{H)(P)- Put C = CH(P) 

and note that S = S(G) < C. Since C/P is finite, there is a finite soluble subgroup F of C 
such that C — PF. Then F is normal in C and hence is subnormal in G. Therefore F < S 
and so C — S. 

3. The structure of IW{G)j W(G). For any group G let V(G) denote the subgroup 
generated by all the finite subnormal subgroups of G. Thus S(G) < V(G). Then V(G) 
is locally finite by 1.3.3 of [8]. The subgroup V(G) plays a particularly important role 
in Heineken's paper [6], whereas in the present work it is S(G) that plays the dominant 
role. Theorem 2 shows that if 5(G) is not Prufer-by-flnite, then IW(G) = W(G). Thus the 
ensuing discussion is concentrated on two cases, where S(G) is finite and where S(G) is 
a finite extension of a/?°°-group. 

We denote the completely reducible radical of a group G by cr(G). This is the join 
of all the non-abelian simple subnormal subgroups of G (see [12, p. 85]). The following 
result may be well known. 
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LEMMA 3. Let G — (H, K) be a group with H and K subnormal in G. Then cr(G) = 
(cr(//),cr(K)). 

PROOF. It is clear that (cr(7/), cr(K)) < cr(G). Let T be a simple non-abelian subnor­
mal subgroup of G. Assume that T is not contained in H or K. Then TP\H — 1 = TDK 
and so T < Z(G) by 13.3.1 of [12], a contradiction. Therefore T is contained in H or K, 
so that T < (cr(/Y), cr(X)) and the result follows. 

The next result is critical for most of our major theorems. 

THEOREM 3. Let G be any group, let S = S(G) and let d > 0. Then IW(G) normal­
izes almost all subnormal subgroups H of G such that \HDS\ < d. 

PROOF. Let I = IW(G). Assume that the result is false and H\, H2,... are infinitely 
many finite subnormal subgroups such that H\ ^ Ht and \Hi Pi S\ < d. Consider the 
groups HiS/S and suppose that these contain only finitely many subnormal non-abelian 
simple subgroups. Put J/ = (H\ ,Hi,...,Hj)\ then by Lemma 3, 

crÇJiS/S) = (cv(HjS/S) \ 1 <j < i). 

Let R/Sbe generated by all the finite non-abelian simple subnormal subgroups ofG/S 
which are contained in the subgroups HiS/S. By Theorem 1.3.3 of [8] R/S is a fi­
nite subnormal subgroup of G/S. Note also that R/S is completely reducible. Hence 
cr(JiS/S) < R/S, so that the order of CY(JJS/S) is bounded. Now JtS/S is a finite 
semisimple group with centreless completely reducible radical of order < \R/S\. By 
3.3.18 of [12], we have |^-5/5| < \Aut(cr(JiS/S))\ and so \JtS/S\ < \R/S\\. Hence 
JS/S is finite where J = (H\,H2,...). Since \HiC\S\ < d, it follows that \H-\ is bounded 
by some integer e. But J is Cernikov, so it has only finitely many subnormal subgroups 
of given order. Thus J is finite, which is impossible. 

These considerations show that we can proceed to a subsequence of the ///'s and as­
sume that each H[S/ S contains a subnormal non-abelian simple subgroup T/ S where 
the T/'s are all distinct. 

Note that T\ < H[[S, Hi\S'. Thus, since /// is subnormal in G, there is a positive integer 
k such that 7JA) < Ht[S, kHi\S' < HiS'. Therefore, since S is soluble by Theorem 2, there 
is a positive integer k[ for which ff^ < Hi. Put Vt — ff^ and note that Vi is subnormal 
in G. 

Next we observe that there are only finitely many subgroups Vi D S. Proceeding to 
a subsequence again, we can assume that U — Vi Pi S < Hi is independent of /. Then 
Tt — ViS since T/S is simple. Hence T/S = ViS/S = Vt/U, a non-abelian simple 
group. 

Let L be the subgroup of G generated by all the Vj. By 13.3.1 of [12] Lj U is the normal 
product of the non-abelian simple groups Vi/U. In addition (V(/U)n Ylj^Vj/U) = 1 
since all the Vj/U are distinct, so that L/U = Dry Vj/U. The subgroup S normalizes 7/ 
and hence Vi9 so Dt = (Vj\j> t) is normal in DeS. Further, D^S/S = (Tj/S \ j > I) 
is subnormal in G/S, so Di is subnormal in G. 
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Now choosey and fix it, and put H = Hj. Then HS/S is a finite subnormal subgroup 
of G/S, so there is a positive integer lo such that 

(HS/S)n(l[Tl)/S=\. 

Hence HDDEo < Hn(Ui>t0 T) < S, which yields// H Dto < {Vt \ i > l0)nS. Nowthe 
Til S generate Dr^T/S) and Vt < Th It therefore follows that HHDfo < (^ H S | / > 
io) = U. Since (HS/S) D (T/S) = 1 if / > lo, we see that H normalizes 7} and hence 
Vj. Also U= Vk^S for all k, so H also normalizes U. Therefore U<(H\,H2,...). 

Put M = (Hu / /2 , . . . ) and let g G / be such that Hg ^ H. We know that F//U is a 
subnormal non-abelian simple subgroup ofM/U. Thus, by 13.3.1 of [12], it centralizes 
H/Uifi > £o- For £ > £0 the subgroup D^ normalizes //, from which it follows that 
HDi is subnormal in G. Therefore 

TP < f| //D^ = / / ( fl D^) =HU=H. 

This contradiction completes the proof. 

COROLLARY 1. Let G be a group. If H is a finite subnormal subgroup of G which is 
not normalized by IW(G), then H has only finitely many conjugates in G. Thus (//G) is 
finite. 

PROOF. We apply Theorem 3 with d = \H\. Since IW(G) does not normalize //, 
it cannot normalize any conjugate of//. Furthermore, if g G G, then {H8 H S(G)\ = 
\H(1S(G)\. 

An immediate consequence of this is 

COROLLARY 2. Let G be a group and let I — IW(G). If H is a subnormal subgroup 
ofG, then \I : N/(H)\ is finite 

The next corollary is a useful special case of Theorem 3. 

COROLLARY 3. Let G be a group such that S(G) is finite. Then IW(G) normalizes 
all but a finite number of subnormal subgroups ofG. 

COROLLARY 4. For each group G there is a normal subgroup R such that IW{G) D 
R = W(G) and G/R is residually finite. 

PROOF. Let R = f]H Nc(H) where H is subnormal in G and is not normalized by 
IW(G). Then R has the desired properties. 

In particular we have from Corollaries 2 and 3 

THEOREM 4. Let G be any group. Then 
(i) IW(G)/W(G) is residually finite; 

(ii) ifS(G) is finite, then IW{G)/W(G) is finite. 

We know of no example of a group G with IW(G) ^ W(G) containing a finite sub­
normal subgroup H with infinitely many conjugates. 

If G is infinite, we can point to an additional property of IW(G)/ W(G). 
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THEOREM 5. If G is an infinite group, then IW(G)j W(G) is a T-group. 

PROOF. Clearly we may assume / = IW{G) ^ W(G) = W, and that W is finite. Then 
S(G) is finite. Let W < H <I, with H subnormal in G. LetH\ , . . . , / /„ be the finitely many 
subnormal subgroups of G that are not normalized by/, and set U = corec^/Li ^ ( f t ) ) -
Then Corollary 1 shows that Gj U is finite, so U must be infinite. Therefore HU is nor­
malized by / and 

Hl <HUni=H(Unl) <HW = H 

since UC\ I < W <H. Hence H <3 /, as required. 

We remark that Theorem 5 is not valid for finite groups (see Example 4 in Section 5). 
The reader should compare Theorems 4 and 5 with Proposition 3a of [6]. In Example 1 
of [6] Heineken shows that in general IW(G)/ W(G) can be infinite, so Theorem 4 is in 
some sense best possible. We provide a similar example in Section 5 of this paper which 
shows that IW(G)/ W{G) can have elements of infinite order. 

In the case where V(G) is Cernikov we can improve upon Theorem 5 as follows. 

THEOREM 6. Let G be a group for which V(G) is a Cernikov group. Then 

(i) IW(G)/W(G) is finite; 

(ii) G possesses a finite normal subgroup N such that IW(G)/N is a T-group. 

PROOF. Put / = IW{G) and W = W(G). Clearly we may assume that I ^ W. First 
suppose that V = V(G) is finite. Then S{G) is finite and there are only finitely many 
finite subnormal subgroups not normalized by / by Corollary 3. The join U of these 
subgroups is a finite normal subgroup of G. Then / / UHlis a T-group. (We can also use 
Proposition 1 of [6] to see this.) Thus we may assume that V is infinite. 

By Lemma 1 the finite residual P of V is a p°°-group for some prime p. Note that 
P <V < CG(P)- There is a finite characteristic subgroup E of V such that V = PE\ put 
J — Vni. Then J — P(J Pi E). Now I/J C\ E is an extension of a p°°-group by a group 
that is isomorphic with IV/ V\ moreover the latter has no non-trivial finite subnormal 
subgroups. Hence I/J D E is a T-group and (ii) is proved. 

To establish (i) let I\ — C/(E) and note that I/I\ is finite. Denote by pd the highest 
power of p dividing the order of E, and let P[pd] — {x G P \ yP = 1}. Next put 
h = Qi (P\pd]) a nd observe that I/h is finite. Hence it is sufficient to show that h < W. 

Let y G h, let e be a/?-element of E, and let a G P. Then ay = aa where a is ap-adic 
integer which satisfies a = 1 (mod pd). Hence {aef — ayey = aye — aaea since e £ E 
and y G h. Thus y induces a power automorphism in V = PE since it centralizes the 
//-elements of E. 

Finally, let H be a finite subnormal subgroup of G. Then H < F, so that FP — H. 
Therefore h < W. 

An immediate consequence of Theorems 2 and 6 is 
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COROLLARY 5. Let G be a group in which S(G) = V(G). Then IW(G)/W(G) is 
finite. 

In particular, if G is a radical group, IW(G)/ W{G) will be finite. However, as our 
examples show, the presence of insoluble subnormal subgroups can greatly affect the 
structure of IW(G)/W(G). 

For residually finite groups we have the following consequence of Corollary 3. 

THEOREM 7. If G is an infinite residually finite group, then IW{G) — W(G). 

PROOF. Let / = IW(G) and suppose that / 7̂  W{G). Then 5(G) is finite and there are 
only finitely many subnormal subgroups not normalized by /; let J be the join of these 
subgroups. Then J is finite, so there is a normal subgroup N of finite index in G such that 
NHJ — 1. If// is a subnormal subgroup not normalized by /, then H1 < HNHJ = H 
since HN is infinite and H <J. The result follows at once. 

Finally in this section, we obtain the analogue of Proposition 3(c) of Heineken's paper 
[6], and we extend Theorem 4 in the case when S(G) is infinite. It is convenient to split 
off the following general lemma from the main argument. In what follows Z* is the 
multiplicative group ofp-adic integers and Paut(G) is the group of power automorphisms 
of a group G. 

LEMMA 4. Let A be an abelian p-group with divisible part D of type p°° and suppose 
A = FxD for some finite group F. Let X denote the group of automorphisms of A inducing 
power automorphisms on A/D. Then the following hold, 

(i) X is a metabelian residually finite {p,p — \}-group. 
(ii) X = (Paut(/4)) Y and [Pauu/4), Y] = 1 where Y is the subgroup of all elements of 

Xacting trivially on A/D. 
(Hi) Ifp > 2 or F has exponent at least 4, then T(X) = r(Paut(^)) x T(Y). 
(iv) Ifp — 2 and F is elementary abelian, then X — Y. 

PROOF. Since D is a characteristic subgroup of A, it follows that 

X^ 

Paut(^) ^ 

a V 
0 (3 

a 0 
0 $ 

a e Paut(F),0 e Hom(F9D)9p G Z* 

(5 (mod expF) 

#GHom(F,Z)),/3eZ 

ae Paut(F),/? G Z*,a and 

where expF is the exponent of F. It is easily seen that X = (Paut(^))F and that 
[Paut(/0, Y] = 1. Furthermore Y = Hom(F,D) X Z*, with the natural action of Z*, and 
henceX is a metabelian residually finite {p,p~ 1 }-group. Since F is finite, the torsion sub­

group T(X) is isomorphic with the set of matrices of the form , where j3 has finite 

order in Z*. Thus ifp is odd or ifp = 2 and exp F > 4, then T(X) = r(Paut(/ï)) x T(Y), 
by a result of Baer (see [11, Lemma 3.28]). If F has exponent 2, then clearly X—Y. 

We proceed now to the generalization of Heineken's result. 
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THEOREM 8. Let G be a group such that S(G) is a finite extension of a p°°-subgroup 
P. Write I = IW(G) and W = W(G). Then the following hold, 

(i) 11W is a metabelian residually finite {p,p— I }-group. 
(ii) 11W is abelian if either I/Cj(P) is infinite orp — 2. 

(Hi) Ifp > 2, then 1/W is a semidirect product of an abelian group by a cyclic group 
of power automorphisms of order dividing p — 1. 

PROOF. Let H be a finite subnormal subgroup of G. Then [//, P] = 1 and (HP)1 = 
HP. Hence (H')1 < (HP)' = //'. Consider the abelian factor 

HPjH\HnP) = H/H'(HC\P) x H'P/ H\HnP). 

The second direct factor here, which we denote by P, is isomorphic to P, and / acts on it 
by conjugation. Furthermore, the //-component oîHP/H^HDP) is characteristic, so it 
is /-invariant. Hence 

(1) NI(H) = NI((H/H'{HnF))p). 

Now consider the abelian p-factor (HP / H'(H C[ P)) , which we denote by FH. Then 

FH = (H/H/(HnP)) xP. 

Each element of /normalizes every subgroup of/7// containing P9 and hence//C/(F//) is 
isomorphic with a subgroup of the group Jeofail automorphisms of F H that induce power 
automorphisms in FH/P. Since [//, P] — 1, we have P < Q(FH). Hence /// = //C/(F//) 
is a 7-group. Since /// is isomorphic to a subgroup of X, the preceding lemma implies 
that /// is a metabelian residually finite T-group. If Jul CJ(FH) = /// PI Paut(F//), then 
I/JH is a finite {p,p — l}-group. Now W induces power automorphisms in the abelian 
group F//, so W < JH. Moreover JH normalizes (///'H'(HnP)\ and hence 

JH < Nj(H). 

Therefore / / W is a metabelian residually finite {p,p — 1 }-group, and (i) follows. 
If I/C/(P) is infinite, then /// contains an element of infinite order. Since /// is residu­

ally finite, it cannot be a soluble T-group of type 2; also the elements of finite order in /// 
form a subgroup by Lemma 4 and hence /// is not a T-group of type 1 (for these facts see 
[10]). It follows that /// is abelian and (1) implies that / ' < 7V/(//). Hence / / W is abelian 
in this case. 

If, on the other hand, I/Cj(P) is finite, then /// is finite, so /// < T(X), and 
JH/Q(FH) = /// H r(Paut(F//)). Let F be the sub group of elements of X acting trivially 
on FH/P. Ifp = 2 and exp(Fn/P) > 4, then Lemma 4(iii) shows that IjJu is isomor­
phic to a subgroup of T(Y). Since I/JH is a T-group, it is Dedekind. However T(Y) has 
no subgroups isomorphic to the quaternion group Q$, so I/JH is abelian. If FH/P has 
exponent 2, then again I/JH is abelian. Since this holds for all H and [\HJH — W, we 
conclude that / / W is abelian. 

https://doi.org/10.4153/CJM-1995-012-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1995-012-7


256 J. C. BEIDLEMAN, M. R. DIXON AND D. J. S. ROBINSON 

Observe that / / W is an extension of an abelian residually finite /?-group by an abelian 
group with exponent dividing/? — 1. If/? > 2, such a group cannot have a subgroup 
isomorphic to Q% and hence the Fitting subgroup F j W of IjW is abelian. It is easy to 
see that Fj W is residually finite-/?. Then / / W induces a torsion group of power auto­
morphisms in F j W, so 11F is a cyclic group of order m dividing p — 1. Suppose that 
11W — (xW, F / W) with xm G F. If xm ^ W, then xW induces a power automorphism of 
order relatively prime to/? in the residually finite/?-group F/ W, and it fixes a non-trivial 
element. Such an automorphism must act trivially on the whole of F j W, contradicting 
the fact that F/Wis the Fitting subgroup of// W. Hence xW has order m and (iii) follows. 

We know of no example of a group G where lW(G)j W(G) is an infinite non-abelian 
group. If such an example were to exist, then IW(G)/W(G) would be either a soluble 
/-group of type 1 or an infinite non-abelian soluble torsion /-group, /-groups of type 2 
are ruled out since these are never residually finite. 

4. Soluble groups in which IW{G) ^ W(G). In Theorem 2 we saw that the subsol-
uble radical of a group G with IW(G) ^ W(G) is soluble. This, together with the results 
of de Giovanni and Franciosi [5], suggests that in the presence of solubility our results 
can be strengthened further. 

First we obtain a result concerning nilpotent groups. 

THEOREM 9. Let G be an infinite nilpotent group. Then IW(G) ^ W{G) if and only 
if (i) G = P x Q where P is a Prufer-by-finite p-group and Q is a finite p'-group, and 
(ii) ifR is the Prufer subgroup ofG, then W(PjK) ^ Z(P)/R. 

PROOF. Assume that IW(G) ^ W(G). By Theorem 1 the group G is Prufer-by-finite. 
Thus G = PxQ where P is an infinite Priifer-by-finite/?-group and Q is a finite/?7-group. 
Let R be the Prufer subgroup of G. If// is an infinite subgroup of G, then R < H, so that 

IW(G)/R = W(G/R) = W(P/R) x W(Q)R/R. 

Also W{G) = W(P) x W(Q). We claim that W(P) = Z(P). Indeed let g G W(P) and 
i G P , and choosey G R of the same order as x. Then g induces a power automorphism 
in the abelian group (x,y) which is of the form u t—> uk with k an integer. Now/>* = y 
and so yk — y, whence xk — x since \x\ = \y\. Thus xg = x and g G Z(P). It follows that 

IW(G)/R = W(P/R) x W(Q)R/R ^ W(G)/R 

and W(G)/R = Z(P)/R x W(Q)R/R. Therefore W(P/R) ^ Z(P)/R. 

Conversely, if G has the given structure, it is immediate that IW(G) ^ W{G). 

We mention here that Theorem 1.4 of [5] is a consequence of Theorem 9. Next we 
aim to characterize the soluble groups G such that IW(G) ^ W(G). 
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THEOREM 10. Let G be an infinite soluble group. Then IW(G) ^ W(G) if and only if 
G has a normal Prùfer subgroup P such that CG(P)/P is finite and W(G/P) 7̂  W(G)/P. 

PROOF. Assume that IW{G) ^ W(G) and let B be the Baer radical of G. By The­
orems 1 and 2 the subgroup B is a finite extension of a Prufer group P with P o G and 
CG{P)/P is finite. Also note that W(G)/P < IW(G)/P < W(G/P). 

Conversely, assume that G has a normal Prufer subgroup P with the properties stated. 
Observe that the set of elements of finite order forms a subgroup 7, and T/P is finite. 
Suppose that Y is an infinite subnormal subgroup of G. If Y is torsion, then YP/P is 
finite, so that P < Y. Now let x G Y be of infinite order. Then x fi CG(P) and thus 
[P,x] = P. Thus again P < Y. Let aP G W(G/P) \ (W(G)/P). Then Ya = Y9 whence 
a G IW(G) \ W(G) and the result follows. 

As a consequence we obtain rather large classes of infinite soluble groups in which 
the generalized Wielandt subgroup and the Wielandt subgroup coincide. 

COROLLARY 6. Let G be a finitely generated infinite soluble group. Then IW{G) — 
W{G). 

PROOF. Assume that IW{G) ^ W{G). By Theorem 10 the group G has a normal 
Prufer subgroup P such that G/P is finite-by-abelian and hence finitely presented. This 
implies that P is the normal closure of a finite subset, which is of course impossible. 

COROLLARY 1. Let G be an infinite soluble group without Prùfer subgroups. Then 
IW(G) = W(G). 

This follows immediately from Theorem 10. 
We know of no example of a locally nilpotent group G with IW(G) ^ W(G) which 

is not soluble. If such a group were to exist, there would have to be a locally finite p-
group with this property for some prime/?. Also we know of no finitely generated infinite 
groups G such that IW(G) ^ W(G). 

The following result summarizes what can be said concerning the structure of a sol­
uble group G with IW{G) ^ W(G). 

PROPOSITION 1. Let G be an infinite soluble group such that I ^ W(G) where 
I = IW{G). Let P be the normal Prùfer subgroup of G in Theorem 2. Then the following 
hold. 

(i) G" is finite. 
(ii) GI W(G) has finite exponent. 

(Hi) If I' is infinite, then P <I and either P — I' or I is a torsion group. 
(iv) If I' is finite, then I is torsion and I/P is finite. 
(v) If G is not torsion, then I/ W is abelian. 

PROOF. By Theorem 10 the factor CG(P)/P is finite. Put C = CG{P) and note that 
G' < C. Let E be a finite normal subgroup of C such that C = PE. Then G" < C' = E', 
which is finite. Thus (i) follows. 
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Next G/P is finite-by-abelian, and so it is centre-by-finite exponent. Also all infinite 
subnormal subgroups of G contain P\ therefore IW(G)JP — W(GjP) > Z(G/P\ and 
(ii) follows from Corollary 5. 

Now assume that I1 is infinite. As noted above, I'P/P < C/P is finite, so that P < I'. 
Because of Theorem 4.3.1 and Corollary 2, (p. 26) of [10], I/P is abelian or torsion. 
Therefore either / is torsion or I' = P9 which gives (iii). 

Suppose that I' is finite. Then I/Z(I) is torsion, whence so is I/ C/(P). Part (iv) now 
follows by Theorems 10 and 2. 

Finally, assume that G is not torsion. By part (ii), G/I has finite exponent, so / is not 
torsion. By (iii) and (iv) /' = P, and thus / / W(G) is abelian because P < W(G). 

The example in 1.8 of [5] shows that IW(G) / W{G) can be non-abelian in the case 
where G is soluble. For the convenience of the reader we give brief details here. Let 
A = (a) x P where a has order/?, P = Cpoo and/? is an odd prime. Define automorphisms 

s, t of A by s = n and / = where l G Z* has order p — 1. Then 

rlst — sl. Put X = (s,t) and let G = A x Xbe the natural semidirect product. Note 
that infinite subnormal subgroups contain P and that G/P is a /"-group; thus IW{G) = G. 
Also W{G) = P, so lW{G)j W(G) ^ G/P, which is not abelian. 

Theorems 1.10 and 1.11 of [5] are consequences of Theorem 2, Corollary 5 and Propo­
sition 1. The derived length of an infinite soluble 7T-group is at most 3 by Theorem 1.6 
of [5]. However, the derived length of G is not bounded when G is a soluble group with 
IW(G) ^ W(G). For example, let P be a/?°°-group with a an element of order/? in P\ 
also let Q — (x) be a group of order/?, and let a be the automorphism of F — P x Q 
defined by xa = xa and ca = c for all c e P. Put H = (a) ix F and note that W(H) = P 
and IW(H) = H. Finally, let G = H x L where L is a finite soluble/?7-group of arbitrary 
derived length. Then IW{G) = H x W(L\ but W{G) = W(H) x W{L\ Notice that the 
derived subgroup of G is finite. 

5. Examples. Our first group is a variation of Example 1 of Heineken [6]. Here 
G is an /r-group, so G = IW(G); also S(G) = Z(G) is a Priifer group and G/W{G) 
is an abelian group with elements of infinite order. Furthermore G is not T-by-finite or 
finite-by-T. 

EXAMPLE 1. Let/? and q be distinct primes. For/ = 1,2,... letX/, Y/ be finite groups 
which satisfy the following requirements: 

(a) Z(Xi) <% = %', Z(Y() < Y\ = 17; 
(b) Z(X[) = (ui) andZ(7/) = (v/) are cyclic of order pl\ 
(c) X,

i/Z{Xi) and Y'i/Z{Yi) are non-abelian simple groups; 
(d) (Xi)ab = (xzX;) and (Yi)ab = (y^) are cyclic of order/?2'; 
(e) Cx^/ZiXi)) =Z(Xi) and CYi(Y

,
i/Z(Yi))=Z(Yi). 

For example, we can take Xt — YL to be a suitable factor of GL(/?2/, gm') where qm< = 1 
(mod /?2/). 
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Next define 

wt = (Si,ti | sf = f = U[si9ti] e z{Wi% 

so that di — [si, tt] has orderp11, and form the group A/ x Y[ x Wt. Now put 

Di = (X,
hY

,
hxlsl,yfa)/(ulv;\uid/), 

and observe that Dz contains [x/S/,j////] — dt (with some notational abuse here). Clearly 
ZiPt) = (di). 

Next define 

H = D{xD2x • - • / (di]dP\d2]d(,... ,d^]df+v...) 

Conjugation by x(yfa leaves D/ invariant. Let a be the automorphism of//which acts via 
conjugation by x(yfa on Dt. Then a fixes y fa and (x/S/)a = XiStdi. Clearly a has infinite 
order. Finally put G = (a) x H. We shall establish the following facts about the group 
G: 

(i) ( a ) f W ( G ) = l ; 
(ii) Z(H) = P is a Priifer/?-group and G/P is a P-group; 

(iii) every infinite subnormal subgroup of G contains P, so that IW(G) = G; 
(iv) ^(G) = (Xf

l, 7 ; , ( x ^ z r ' , ( M / | / > 1) and G/fT(C?) ~ D r , ^ , . . . ^ x Cpl) x Z; 
(v) S(G) = P and V(G) = //; 

(vi) G is neither P-by-finite nor finite-by-P. 

PROOF, (i) Let /// = (Xf
i,xisi)i qua subgroup of//. Then /// <3 (A^x/s,-, rfj, d2,...) < 

/ / < G, so //z is subnormal in G. Suppose that 1 ^ am G W(G), m > 0. Then, since 
(x/ls

,/)a'w = XiSid™, we have jc/S/t/J" G ///, say XiS id? = (x/S/)r • x7 where x7 G Aj. Thus 
r = 1 (mod/?2/) and hence d™ G Xf

i. But (<//) HX7 = (cf.), so that/?' | m for all z, a 
contradiction. 

(ii) Clearly P := Z(H) — (d\,d2,...) is a Prufer/?-group. Put Q = G/P; this is an 
extension of a completely reducible group R by an abelian group. Let L be a subnormal 
subgroup of Q. Then L DP is a direct factor of P by 3.3.12 of [8]. From the structure of 
Q we see thatLPiR is normal in g. Working modulo L HR, we can assumeLP\R = 1. 
But then L is the soluble radical of LP and LR <d 0; hence L < £> and <g is a P-group. 

(iii) Let L be an infinite subnormal subgroup of G. If P ^ P, then P Pi L is finite and 
LP IP is infinite. Assume that L ^ H. Then there is a positive integer m and an element 
g G G such that amg G L. Thus there is positive integer k such that L contains [X1^ k<xmg] 
for all i. Note that [X'i,kcxmg\ = [A^x™] andx™ ^ Z(JÇ) for large enough /. Also, since 
Xf

i/Z(Xl) is simple and Xi = Af, we have [A x̂™] = A?. Thus Z(A;-) < A? < L for all 
large /. Therefore P = Z(//) < P, a contradiction. 

We have shown that L < //. For each / either A^P/P < LP/P or P centralizes Xf
lP/P. 

If the latter happens for almost all /, then L is contained in the subgroup generated by 
P and a finite number of the Xt

i, which is impossible. Therefore X{P < LP for infinitely 
many /. Then Aj = X/ < P, so Z(X[) < L for infinitely many /, that is, P < L. By (ii) G 
is an /P-group and IW(G) = G. 
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(iv) Let M be a finite subnormal subgroup of G. Then either X\ < MorX- centralizes 
M. It follows that 

W{G) = {X'iXMsif,<yitif\i>l) 

and 
G/W(G)^Dvl=lx.XCpixCpl)xZ 

is an abelian group with elements of infinite order. 
(v) That S(G) — P and V(G) = H follows easily from the construction of G. 
(vi) Suppose that B is a normal 7-subgroup of G with finite index. Then there is an 

integer m > 0 such that Df < B for all i. However Df is not a T-group if / is large. 
Finally, suppose that A is a finite normal subgroup of G. Then there is an integer n such 
that DnAjA is not a T-group, and therefore G/A is not a T-group. 

Our next example shows that IW(G)/W(G) can be non-abelian even when S(G) is 
finite. 

EXAMPLE 2. There is an infinite group G such that S(G) is finite and lW(G)j W(G) 
is non-abelian. 

Let/7 > 2 be prime. Let̂ Y, be a finite perfect group such thatXx-jZiX^ is a non-abelian 
simple group and Z(Xi) — (w;) has order/? for / = 1,2, Let (a, b) be an elementary 
abelian group of order/?2 and define automorphisms s and t of (a, b) by as — a1 — a and 
bs = ab, bl — b~l. Thus (s, t) is a dihedral group of order 2p. Let S = (s, /) tx (a, è) be 
the semidirect product. Then S has order 2p3 and Z(/S) = (a). Now define G to be the 
central product 

(Sx _Dr Xi)/(uJ-]uuu^a\ / = 2,3,. . .) . 

Then S(G) = S and Z(G) = (a). An infinite subnormal subgroup must contain a and 
G/Z(G) is a T-group; hence G is an TT-group. The non-normal subnormal subgroups are 
all contained in S and W(G) = (X\ ,X2, •..), so G/ W{G) is non-abelian. 

The details of the remaining examples are left to the reader. In the third example 
V{G) — S(G) is finite and W(G) is a perfect T-group of index 4 in the 7T-group G. 

EXAMPLE 3. Let G be the central product of the dihedral group of order 8 with 
SL(2,F) where F is an infinite field of characteristic not 2. Then IW(G) = G, W(G) = 
SL(2, F), V(G) = S(G) is of order 8 and G/ W(G) is of order 4. 

The next example shows that every finite group occurs as the quotient lW(G)j W(G). 

EXAMPLE 4. Let H be an arbitrary finite group and put G = A5 wr/Z, the stan­
dard wreath product. Then IW(G) = G, and W(G) = B, the base group of G, so that 
lW(G)j W(G) - H. 

Our final example is of a group G such that W(G) ^ IW(G) ^ G and IW(G) is a 
T-group. 

EXAMPLE 5. Let^ = (x,y \ x8 = \,y2 = x4,xy — x~x) be a generalized quaternion 
group of order 16, and let P be a 2°°-group. Here A is to act on P with x centralizing P 
and y acting by inversion. Then G = /* tx P has /fT(G) = (P,x2) and ^(G) = (P,x4). 
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In conclusion we remark that most of our results are still true under the weaker hy­
pothesis that the group possesses an automorphism which fixes all infinite subnormal 
subgroups but not all finite ones. 
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