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Abstract

The importance of automating pavement maintenance tasks for highway systems has garnered interest from both
industry and academia. Despite significant research efforts and promising demonstrations being devoted to reaching a
level of semi-automation featuring digital sensing and inspection, site maintenance work still requires manual
processes using special vehicles and equipment, reflecting a clear gap to transition to fully autonomous maintenance.
This paper reviews the current progress in pavement maintenance automation in terms of inspection and repair
operations, followed by a discussion of three key technical challenges related to robotic sensing, control, and
actuation. To address these challenges, we propose a conceptual solution we term Autonomous Maintenance Plant
(AMP), mainly consisting of five modules for sensing, actuation, control, power supply, and mobility. This AMP
concept is part of the “Digital Roads” project’s cyber-physical platform where a road digital twin (DT) is created based
on its physical counterpart to enable real-time condition monitoring, sensory data processing, maintenance decision
making, and repair operation execution. In this platform, the AMP conducts high-resolution survey and autonomous
repair operations enabled (instructed) by the road DT. This process is unmanned and completely autonomous with an
expectation to create a fully robotized highway pavement maintenance system.

Impact Statement

The effective development of society relies on road infrastructure for transporting people, goods, and services.
Maintaining a healthy road pavement in an efficient, economic, and sustainable manner has been a challenge for
public authorities. With the advancement of digital and robotic technologies, we envisage a robotics-enabled
transformation of road pavement maintenance to tackle this challenge. In this context, we propose a road digital
twin-enabled autonomous robotic maintenance system that fully exploits digitalization for effective maintenance
task planning and execution.

1. Introduction

The importance of maintaining highway conditions that are suitable for daily road users has been widely
acknowledged as it directly impacts the local economy (Peter et al., 2015; Zhu et al., 2022). Maintenance
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of damaged pavements normally includes inspection and repair. Traditionally, many countries and regions
have relied on highway operation authorities to routinely inspect and repair pavements using a site crew.
This manual maintenance process is time-consuming and lacks an accurate prediction capability and
sufficient control over material usage and repair time, in addition to often putting human workers into
potentially risky circumstances (Highways England, 2017). In contrast, practices in the manufacturing
sector have demonstrated the benefits of automation and robotics in the context of productivity, quality
(accuracy), robustness (consistency), and human safety (Karwowski et al., 1988; Pedersen et al., 2016).

In this particular context, the intention of automating pavement maintenance using robotics appeared
in the 1990s (Skibniewski and Hendrickson, 1990). A variety of research efforts have been made up to
now, leading to partly automated pavement maintenance in some developed regions, which, to a large
extent, refers to automatic pavement geometry inspection leveraging the development of digital sensing
technologies (e.g., laser scanning, photogrammetry, ultrasonic, electromagnetics) (Yu and Salari, 2011;
Vittorio et al., 2014; Jo and Ryu, 2015; Behera et al., 2021; Rasol et al., 2022) and artificial intelligence
(AI) (Yan and Zhang, 2021; Fan et al., 2022; Li et al., 2022a, 2022b; Sirhan et al., 2024). However, site
workers are still required to manipulate special vehicles and equipment to implement the physical repair
operations. Although there are some demonstrations of automated maintenance machines (Liu et al.,
2022), these fall short of full autonomy.

This paper aims to disclose a roadmap toward autonomous pavement maintenance through the following
steps: (1) conducting a state-of-the-art review covering the development of robotic pavement inspection and
repair processes over time to give a picture of the current state, and derive insights to inform directions of
effort; (2) based on the literature review insights, systematically summarizing the key technical challenges in
the three main technical domains of robotic systems: sensing, control and actuation, to establish the desired
autonomy of robotic maintenance; and (3) introducing a conceptual robotic solution entitled Autonomous
Maintenance Plant (AMP) that takes into account the literature review insights and addresses the synthesized
key challenges, with its functional system composition and digital workflow.

The AMP is a vehicle-based robotic system and forms part of a cyber-physical platform proposed for
the UK’s Strategic Road Network (SRN), through the five-year industry-led “Digital Roads Prosperity
Partnership (DR)” project (drf.eng.cam.ac.uk), funded by the Engineering and Physical Sciences
Research Council (EPSRC). The platform is a digital twin (DT)-based, smart material and automation/
robotics-enabled intelligent highway pavement system which regularly senses its own health condition,
makes maintenance decisions with sensory data, and takes necessary repair measures through the AMP.
With the designed capabilities, the authors believe that the AMP will ultimately achieve full autonomy
over highway pavement maintenance operations.

2. The state-of-the-art in robotic highway pavement maintenance
2.1. Robotic pavement inspection systems

Inspection of pavement conditions has been receiving considerable interest for automation, marking the first
stage of maintenance before the deployment of follow-up repair operations. Automated inspection deals
with the flow of pavement condition data, from acquisition (perception), processing to decision-making.
The majority of pavement condition data refers to surface geometric and dimensional data captured by
vision-based (e.g., cameras) or optics-based (e.g., laser scanners) measuring tools (Yu and Salari, 2011;
Vittorio et al., 2014; Jo and Ryu, 2015). The material and structure health condition data is usually collected
by electromagnetic and ultrasonic devices (Behera et al., 2021; Rasol et al., 2022) and weather sensors also
contribute to the data acquisition. Automated processing of the captured data is typically powered by data
science or Al algorithms, including traditional algorithms (Yan and Zhang, 2021) and more recently smart
neural networks such as CNNs (Fan et al., 2022; Li et al., 2022a, 2022b; Sirhan et al., 2024) and object
detection algorithms such as YOLOvS, YOLOv7, and YOLOv8 (Sholevar et al., 2022). Detecting and
classifying the damage types and assessing their condition facilitates decisions around repair measures.
To embed automated data acquisition and processing capabilities into a robotic hardware system,
special robotic pavement inspectors have been developed, examples of which are presented in Figure 1 in
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Figure 1. Examples of developed pavement inspection robots over time in the literature.

chronological order. These robots mainly appear to be able to inspect cracks and potholes. The captured
geometric and dimensional data includes images (or multispectral images), videos and point cloud data,
and material health condition data (e.g., concrete rebar and concrete corrosion), and also includes ground-
penetrating radar (GPR) data and/or electrical resistivity data. Classical data processing algorithms
include pattern recognition, random sampling and vote, and histogram analysis and local adaptive
thresholding, while neural network-based inspection starts to appear in these robots from around 2018.

In terms of the stated inspection performance in Figure 1, different assessment metrics have been
applied for different purposes. For assessing the detection (classification) accuracy of individual surface
defects such as cracks or potholes, a percentage statistically showing the rate of successful detection is
usually provided: In the early work of Koch and Brilakis (2011), the defect recognition rate is 75%, while
in later works after 2017 this value climbs up to over 97% (Phung et al., 2017; Pan et al., 2018; Sheta and
Mokhtar, 2022) due to the implementation of machine learning (e.g., neural networks). For assessing the
inspection of surface unevenness, minimum detectable surface deviation values are used to show the
inspection system’s capability (Yamada et al., 2013). For benchmarking, managing, and comparing the
pavement condition in a systematic way, traditional synthetic indicators from field tests (pavement
condition index, etc.) can be mapped with the damage index given by pavement surface image processing
to reflect the inspection accuracy (Mei et al., 2022).

Most robot inspectors in Figure | have been developed in ground (wheel)-based platforms while aerial
(drone)-based robot inspectors can still play an important role in accessing remote locations. These robot
prototypes have been initially validated for their inspection capabilities in the field. However, their
deployment in real-life settings can be constrained by certain issues. The ground-based robots or so-called
unmanned ground vehicles (UGVs) normally require road closures and large amounts of time for surface
inspection through exhaustive exploration of the pavement. The drones or so-called unmanned aerial
vehicles (UAVs) need to get permission from authorities before flying over sites. In addition, the battery
endurance of these stand-alone machines is another concern.

https://doi.org/10.1017/dce.2024.34 Published online by Cambridge University Press


https://doi.org/10.1017/dce.2024.34

e24-4 Jie Xu et al.

2.2. Robotic pavement repair systems

Once the pavement distresses are detected and classified, repair plans need to be established and executed.
Over the past decades, since the 1990s (Skibniewski and Hendrickson, 1990), robotic pavement repair has
gone through a development course where three ascending levels of automation have been or are being
realized: low level—material handling, medium level—distress understanding and toolpath planning,
and high level—autonomous navigation. Figure 2 shows some typical examples for these three levels,
respectively.

Material handling marks the first level of automation as it characterizes the nature of a pavement repair
task which is originally labor-intensive. Four common material handling tasks in the repair process have
been explored for automation, including material application (extrusion/spray), material removing
(milling/cutting), lane markings painting, and object (e.g., slabs, cones) pick-and-place. Among these,
sealant extrusion for crack or pothole repair purposes has been the main focus. Liu et al. (2022) provide a
detailed overview of the automated crack sealing platforms since the 1990s where gantries (x/y/z frames)
and robotic arms usually mounted on a moving vehicle are the two major manipulators for placing the
sealant. Due to the stable structure and the ease of design and control, gantry-based platforms have been
most widely used until now; however, the robotic arm-based platforms, emerging slightly later, can have
wider working area, flexibility, and ease of folding.

As shown in Figure 2, the early development stage of automated sealant application features an
extrusion process where the flowable sealant is generally pumped from a storage tank to the extrusion
head held by the gantry or robotic arm. However, drivers need to manually drive the extrusion nozzle to
follow cracks (e.g., input the crack locations through a user interface). University of California, Davis has
developed a series of Longitudinal Crack Sealing Machines (Hargadon et al., 2006). All these crack-
sealing vehicles in the early stage apply the conventional overband sealing method utilizing a fixed-width
seal to enclose a crack while following its shape, which gives sufficient tolerance to the machine
positioning error. For example, for the Operator Controlled Crack Sealing Machine (OCCSM) system,
the overall offset error reaches within about 25 mm measured in the field (road surface) while applying an
overband seal of 100 mm (Bennett et al., 2003). Through years of development, the latest automated
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Figure 2. Examples of different levels of automation in pavement repair robot.
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material application capability carried by the commercialized Archway Roadmaster asphalt patching
robot applies a material spray process for quick pothole repair (archwayroadmaster.co.uk); however, it
still requires a qualified human worker to instruct the material placement operations.

Recent developments in large-scale extrusion-based three-dimensional (3D) printing technologies
have accelerated the uptake of robotic sealant application (Jackson et al., 2018; Gong et al., 2023).
Although filling cracks or potholes does not technically refer to a 3D printing (form creation) process, it
follows the same extrusion principle to place the sealant material into the designated cracks or potholes
along a preset path (Schaefer et al., 2024). Some developed extrusion head prototypes for cementitious or
bitumen sealants can be found in Awuah and Garcia-Hernandez (2022) and Cao et al. (2022). The machine
positioning accuracy (Brousek et al., 2022) and the flow rate control are both important to achieve a
quality seal. Equipping the robotic arm with a track-based crawler extends its mobility for on-site sealing
work (Gong et al., 2023).

The second level of automation requires robotic pavement distress understanding and repair toolpath
planning where robots start to show some extent of autonomy through on-board computation and
processing. Despite being technically similar to the robotic inspection capability described above, distress
understanding can happen after damages have been found (from pavement inspection) or as an integrated
function for first-time pavement inspection. The purpose of distress understanding is to accurately
calculate the detailed spatial, geometric, and dimensional information of a target defect (e.g., crack or
pothole) using computer vision or other perception techniques (Tsai et al., 2013). Based on the calculated
geometry of the damage, robotic repair toolpaths can be automatically planned using optimization or
prediction-based algorithms to achieve both rapidity and correctness of repair subject to the working life
of repair materials (Guo et al., 2017; Hunte, 2023).

Efforts in developing automated distress understanding using machine vision actually started early
through automating the material handling process in the 1990s. An example is the University of
California, Davis’ Automated Crack Sealing Machine with a crack recognition accuracy of 70%
(Velinsky, 1993b), although the University of Texas at Austin’s Automated Road Maintenance Machine
implements a man—machine interaction strategy where a human operator routinely identifies cracks using
captured pavement images (Haas et al., 1997). Improvement in automated distress understanding can be
seen later in the crack sealer from the Georgia Institute of Technology which uses LED light projection to
aid the detection of cracks, resulting in an 83% accuracy (Holmes, 2010). The Automated Crack Sealer
with Telescopic Manipulator marks the effective use of artificial neural networks in distress understanding
with a detection precision 0£99.425% (Yoo and Kim, 2016). Some smaller robots are developed afterward
to improve the process autonomy, for instance, the ground robot from Rutgers University (Guo et al.,
2017) which utilizes a graph-based crack coverage (GCC) algorithm for automatic robot motion planning
(with a mean squared error of the nozzle trajectory of around 19.8 mm), and the drone repairer from
University of Leeds (Eskandari Torbaghan et al., 2019) which automatically generates toolpaths from
images as stated. The Robotic Crack Sealer from Robotic Maintenance Vehicles (RMV) marks the first/
latest commercialized robotic system for automated distress understanding and repair toolpath planning,
but it is still manually driven (rmv.1lc).

The vision for robotic pavement repair is to establish an autonomous navigation capability leveraging
simultaneous localization and mapping (SLAM) (Mur-Artal etal., 2015; Mur-Artal and Tardoés, 2017) and
path planning technologies (Li et al., 2022a, 2022b). This allows the robotic system to travel to designated
sites on its own and conduct repair activities. Multimodal sensory fusion and embodied Al are needed for
such autonomy. The ongoing EU-funded robotic HERON system (Katsamenis et al., 2022) and the
ARRES robot from Robotiz3d (a spin-out company of the University of Liverpool) (University of
Liverpool, 2020) under development appear to be examples for this level of automation.

2.3. The use of robotics in the maintenance of other road-related infrastructure assets

Apart from roads, robotics has also been applied to the maintenance of other related infrastructure assets,
such as tunnels (Menendez et al., 2018; Terato et al., 2019) and bridges (La et al., 2013; Le et al., 2017).
However, these applications are essentially for inspection purposes rather than physical repair processes.
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Figure 3. Mobile manipulator-based non-destructive rehabilitation system for bridge deck repair
(Gucunski et al., 2015).

Montero et al. (2015) perform a comprehensive review on robotic tunnel inspection which summarizes
eight robotic inspection methods including vision, mechanical impact, laser, drilling, cleaning, GPR,
small robotics, and embedded sensors. The inspection target is the tunnel structure—walls rather than the
pavement. The authors also introduce the partially autonomous robotic inspection system TunConstruct
(Gonzalez et al., 2009) and an outlook into the fully automated inspection system ROBINSPECT (Loupos
et al., 2014), both based on a wheeled moving vehicle.

Other than tunnel inspections, robotic systems for bridge inspection mainly target the bridge deck, that
is, the pavement structure of the bridge road area. Similar ground-based mobile inspection robots with
vision, GPR or electrical resistivity-based sensing capabilities have been developed to conduct inspection
tasks (e.g., cracks) (Laetal., 2013; Le etal., 2017) with specific mapping and path planning methods (Lim
et al., 2014). Other bridge elements under robotic inspection can include undersides, sides, piles (Sutter
etal., 2018), and suspension cables (Xuetal., 202 1). In terms of physical treatment, Gucunski etal. (2015)
have developed a mobile non-destructive rehabilitation robot for repairing the delamination inside the
deck using drilling and grouting processes (Figure 3).

3. Key technical challenges

Despite long-term developments in pavement maintenance automation, there are still some technical
challenges ahead for the ultimate implementation of fully autonomous pavement maintenance, addressing
the three basic aspects of robotic systems: sensing, control, and actuation.

3.1. Sensing: real-time awareness of the pavement condition

As pavement distresses occur more rapidly worldwide, frequent inspection for new damage plays a
significant role in preventing them from developing into potential hazards. Sending robotic inspectors to
damaged sites under approval from authorities can increase the inspection efficiency compared to human
inspection, but this generally requires awareness of damage locations beforehand, so that robots can be
deployed to correct locations and they know where exactly to inspect. Relying on human road users to
report damage as conventionally practiced, or even simply relying on the robotic inspectors in a limited
number to exhaustively explore and spot damage before conducting precise inspection (measurement),
are both inefficient and unrealistic, for example, due to battery life issues and likely requiring costly road
closures.

A useful solution is to dramatically increase the inspection frequency by either bolting on low-cost and
low-resolution vision-based inspection sensors onto older consumer vehicles (that do not have vision-
based sensors) of road users (Anvo et al., 2023), or directly utilizing existing vision sensors (e.g., cameras)
on modern consumer vehicles. This transforms the conventionally isolated ordinary consumer vehicles
into connected autonomous vehicles (CAVs). The objective of such CAVs will be to collectively and
instantly identify pavement distresses (or potential distresses) by numerous low-resolution sensing
(imaging) attempts at every moment instead of carrying out precise and high-resolution inspection,
and perform an initial triage (i.e., filtering out fake damage data) to allow effective data to be sent to a
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cloud-based road DT for further decision-making of repair actions, which can potentially create real-time
awareness of pavement conditions.

Although the above method is promising, it is still a passive sensing pattern where apparent damage
must have occurred to be able to be inspected. What is more preferred is a pro-active sensing pattern where
a pavement condition is monitored through embedded sensors or even self-sensing materials (Hasni et al.,
2017; Guptaetal.,2021a,2021b) to predict the condition’s evolution and potential risk so that preventive
measures can be taken in advance.

3.2. Control: machine autonomy

As reviewed in the previous section, state-of-the-art maintenance robots have been developed to achieve
automated material handling and a certain extent of autonomy, such as on-board or human-guided distress
understanding and toolpath planning using computer vision for low-level simple repair tasks. For more
complex repair tasks, the data processing procedures are normally completed outside of the robot
hardware system—a remote cloud-based centralized control hub, that is, a road DT. Such a configuration
is capable of general processing of sensory data and decision-making as long as the Al model has been
trained using a sufficient amount of data (e.g., from web images). It can have the potential problem of
robustness where the maintenance robot will not be able to execute operations if the remote control hub is
unexpectedly down. It may also require a certain amount of time for remote data processing and possibly
be impacted by distance. A higher computational capability of the remote hub and better wireless remote
communication (e.g., 5G for tele-operations; Moniruzzaman et al., 2022) are required to achieve the
desired robotic execution efficiency.

Going forward, higher autonomy in robotic control can be expected based on an on-board control
mechanism. This is when the maintenance robot can process and interpret sensory data from the pavement
and the surrounding environment, and plan and execute the repair toolpaths and robot motions to conduct
unmanned repair treatments. This self-control capability can be established through SLAM, edge
computing (Mao et al., 2017), or embodied Al (Gupta et al., 2021a, 2021b) which has received much
attention in robotics recently with the development of multimodal neural networks such as large language
models (Chen et al., 2021). With embodied Al, a robot can learn and understand the complex dynamic
environment through iterations of interactions with the environment without prior training and make
corresponding behaviors on its own. Such a self-organized, decentralized control pattern without the need
for a central control unit can provide a cheaper and more robust solution for the management and
coordination of a large number of maintenance robots in dynamic road network.

3.3. Actuation: accurate and rapid repair implementation

Once maintenance robots are sent over to the sites, the target road areas are most likely temporarily closed
for the repair process. On the one hand, the damaged surface needs to be repaired accurately to create a
neat and smooth surface for efficient and safe transportation; on the other hand, it is also important to
finish the repair task as soon as possible not only to reduce the impact of road closure on road users, but
also to satisfy the setting times of the repair materials for fixing the defects.

The repair accuracy (quality) is firstly dependent on the material application manner (resolution).
Taking crack sealing as an example, the conventional treatment applies an overband or inlaid (Standards
for Highways, 2020) method which places a wide sealant band (low extrusion resolution) onto the crack,
but this can ruin the pavement appearance and cause an increase in the surface slipperiness and thus the
risk of accidents for road users (especially for motorists) (Murphy, 2016). Only injecting the required
correct volume of sealant into the crack (high extrusion resolution) to leave no surface areas of exposed
materials after the sealing appears to be a preferred solution (Schaefer et al., 2024). Fast simulations of
material application such as through position-based fluids (Macklin and Miiller, 2013) can help to verify
the repair quality and inform robot actions. Other factors related to the accuracy of injection sealing can
derive from several aspects including the sensing algorithms (computer vision, GPR, ultrasound, etc.) for
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correct perception and calculation of the defect geometries, the planned toolpath accuracy of the robot
end-effector (relative to the defect geometries) and the mechanical positioning accuracy (e.g., joint
accuracy) of the robot end-effector. Efforts need to be put into these aspects to establish the desired
accuracy.

As for process efficiency, current practice indicates that suitable repair materials (regarding wet
properties) and their application processes need to be selected for corresponding distress categories.
For instance, for patching potholes or large-area shallows, a material spray process can be selected with
viscous repair materials; yet for crack sealing, a material injection process with less viscous (more fluid)
repair materials can be expected. When deploying robots for better process efficiency, the injection and/or
spray head trajectory, robot trajectory, and the process parameters (e.g., travel speed, flow rate) need to be
optimized for a single defect as well as for multiple defects on aroad section using learning-based methods
(Bayesian optimization, reinforcement learning, etc.) or evolutionary algorithms. Overall, the optimiza-
tion of process efficiency needs to be considered together with repair accuracy to yield the best
performance.

4. The outlook: AMP

Facing the above challenges, it has become more pressing to develop interdisciplinary solutions for the
future road industry. In this context, the authors have proposed a cyber-physical platform (see Figure Al
in the Appendix) for the digitalization of road systems. This cyber-physical platform includes three basic
elements: (1) the road DT, that is, a true digital representation of the physical road assets, dynamically
taking in sensory data, updating itself, and making maintenance decisions, powered by data science;
(2) the CAV that applies low-resolution sensing to enable real-time awareness of the pavement condition;
and (3) the AMP—an autonomous robotic maintenance vehicle enabled by the DT to conduct high-
resolution pavement sensing and repair. These three elements which act as an organic whole to boost
maintenance efficiency and effectiveness mark the main feature for autonomous pavement maintenance
in this context. The conceptual design of the AMP system composition and functionalities, and its digital
workflow are presented in the following sections.

4.1. System composition and functionalities

To conduct maintenance operations autonomously, the AMP system is expected to have five modules (one
for sensing, actuation, control, power supply, and mobility) following a similar architecture to those found
in robotic mobile manipulator systems, presented in Table 1. A sketch of the AMP system is depicted in
Figure 4.

The sensing module contains various high-resolution sensors (LiDAR, stereo camera, panoramic
camera, GPR, UPV sensor, ER sensor, IR sensor, weather station, etc.) to collect comprehensive
pavement condition data. The actuation module deals with the execution of repair treatments through a
gantry, a material application kit (extruder, pump, storage tank, and air compressor), a mill head, a robotic
arm, and a lane marking painter. The control module is responsible for planning and simulating extruder
toolpath trajectories and vehicle trajectories and controlling robotic motions as well as conducting
communications with the DT. The power supply module and the mobility module respectively provide
the energy and structure supports to the maintenance activities.

4.2. Digital workflow

The way the AMP takes maintenance actions is based on comprehensive communications with the road
DT using an established communication channel. Figure 5 shows the general digital workflow steps of the
AMP with the ascending numbers signifying the sequence of activities taking place in an entire pavement
maintenance cycle of the cyber-physical platform. An overview of all the sequential activities can be
found in Figure A1 in the Appendix: Only the activities related to the AMP are explained in details below
(linking to Figure 5), while others are related to the other two elements of the cyber-physical platform, that
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Table 1. Conceptual AMP system modules and functions

Module Component Function
Sensing LiDAR Capture high-density point clouds and image data for
module mapping, modeling, and localization
Stereo cameras (side-facing,  Capture high-resolution RGB images for localization,
down-facing, vertical, etc.) mapping tool, and vehicle path planning, or capture
videos of repair operations (e.g., material extrusion) for
monitoring
Panoramic camera Capture 360° panoramic RGB images
GPR Identify pavement health condition, underlying features,
or buried services
Ultrasonic pulse velocity Capture the density and elastic properties of the pavement
(UPV) sensor material
Electrical resistivity (ER) Identify pavement health condition, underlying features,
sensor or buried services
IR temperature sensor Monitor the temperature before and after material
deposition
Weather station Collect atmospheric data (e.g., air quality, wind speed)
Actuation  Gantry Cartesian robot as a material manipulator
module  Extruder array Cartesian robot end effector for material extrusion
Transfer pump Generate high pressure for repair material pumping and
application; also for flushing unused material out after
use
Air compressor For extruder array cleaning after use and also for blowing
the debris away to prepare a clean pavement surface for
repair
Storage tank For repair material storage
Mill head For cutting/trimming the damaged area to prepare for
material replacement
Robotic arm For cone placement and litter picking
Lane marking painter For painting faded lane markings
Control On-board computer For planning/simulating extruder toolpath trajectories and
module vehicle trajectories and controlling robotic motions
Data exchange hub For communication with the DT: sending inspection data
and receiving treatment instruction information
Power Solar panel Onboard power generation for the equipment
supply  Electrical battery Onboard power generation for the equipment
module
Mobility Wheel-based platform Provide the mobile chassis to integrate all the components
module

is, low-resolution sensing activities (No. 1-3) in the CAV and data processing/decision-making activities
(No. 4,8,9,14) in the road DT.

1) No. 5—Deploy AMP to collect “high-res” data: Once the road DT processes the “low-res”
pavement distress data uploaded by the CAVs and confirm the action of collecting “high-res”
data, it will send the instructions with preliminary repair information (defect location, expected
repair time, expected repair material type, etc.) to the AMP. The data exchange hub at the AMP
passes the DT’s instructions to the on-board computer which will interpret these instructions and
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Figure 4. A sketch of the conceptual AMP system.

check the current system status (in terms of power, repair materials, and actuation machinery, etc.)
through interfacing with all the component status monitoring sensors. If the system is ready, the
AMP’s data exchange hub will send a confirmation tag back to the DT and the robotic vehicle will
travel to the designated site either on its own through self-navigation and autonomous driving, or
driven by a human operator. If the system is not ready, the AMP will also notify the DT while
preparing its system (e.g., charging or loading materials) before it can set off.

2) No. 6—AMP carries out “high-res” data collection: When reaching the site, the AMP will stop at a
near distance from the target defect, initiate all the relevant “high-res” sensors listed in Table 1 and
check and confirm their status to get ready for the survey. Then the AMP activates these sensors at
the same time for the purpose of data fusion while roaming across the defect using a slower travel
speed to conduct the high-resolution survey. This systematic survey collects various types of data
including RGB images, point clouds, videos, sensor spatial data (GPS location, latitude, longitude,
ellipsoidal altitude, projected coordinates), and timestamp, GPR/UPV/ER signals, temperature,
and atmospheric data. The collected data is stored at the temporary memory in the data exchange
hub of the AMP.

3) No. 7—AMP sends relevant “high-res” data to DT: The captured “high-res” data is organized into
multiple “packages” with each data package containing sensory data captured during the same
period of time; the data exchange hub will then send the data packages successively to the DT. The
size of the data package is dependent on the real-time data transmission speed and data processing
capability of the DT to allow maximal efficiency. The data packaging and transmission can happen
while the AMP is conducting the survey to save time. The uploaded data includes the pavement
geometric data as well as the GPS location and timestamp for the DT to detect exact damage
information (geometries, dimensions, etc.). The AMP can also report its current status information
(on-board materials, machinery condition, power storage, etc.) to the DT for decision-making.
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Figure 5. Schematic of the digital workflow of the AMP.

4) No. 10—Instructions for repair or return sent back to AMP: Depending on the high-resolution data
processing results in the DT, generally two types of decisions will be made by the DT:

a) AMP repair decision—if the damage is verified and assessed/approved to be treated by the AMP
right away, a high-level treatment (process) plan will be generated and translated into operation-
level instructions and sent to the AMP; and

b) AMP return decision—if the damage is a false positive, or if it needs substantial repair or
resurface that is out of the capability of the AMP and requires human intervention with more
resources, a return instruction will be sent to the AMP from the DT.
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5) No. 11—AMP carries out treatment: Based on the operation-level instructions from the DT, the
on-board controller of the AMP generates motion-level programs (including gantry tool paths and
vehicle paths) for conducting the repair actions. Fast simulations of these actions in the virtual
world are likely to be conducted in either the on-board controller or the DT to verify the robotic
programs (Schaefer et al., 2024). The repair actions can include (but not limited to) cone placement,
brushing/air blowing the pavement surface, material injection and/or spray, drilling and milling,
litter picking, and lane marking painting. The AMP will firstly place the cones around the pavement
defect to separate it from running traffic and then take repair actions as planned.

6) No. 12—AMP carries out post-treatment “high-res” data collection: Once the repair treatment is
undertaken, the AMP will wait for a certain amount of time for the material to settle and then
re-conduct the high-resolution survey on the areas of change (i.e., where treatment has been
applied) using the same method as described in the No. 6 action.

7) No. I13—AMP sends post-treatment high-res data to DT: The re-captured “high-res” data
(geometric changes during the treatment, and their GPS locations and timestamps, also including
the information on which defects were repaired and which were only marked) is again packaged
and sent to the DT as per the method stated in the No. 7 action.

The above AMP system needs to act within the whole cyber-physical platform framework where the
road DT instructs the functioning of the AMP. This DT-enabled autonomous maintenance scheme
distinguishes itself from the other ongoing standalone autonomous maintenance robot solutions such
as the HERON robot (heron-h2020.eu) and the ARRES robot (robotiz3d.com) through the cyber-physical
interactions for higher efficiency and effectiveness. It should be noted that such AMP design only
provides a basic concept which possesses essential components for undertaking autonomous maintenance
operations. The sensor configuration and material application processes can vary with different road
environments as well as the wheel-based platform and power strategy. Optimizations and iterations of
designs of the AMP can be expected in the future to enable the practical integration of various units and
reflect the actual development work. The ultimate autonomy will eventually be pursued through not only
centralized control but also decentralized control.

5. Conclusions

As traffic continues to grow on our road networks with climate change adding the additional risk of
deterioration of pavement materials, pavement defects are set to rapidly increase in the future. Preventa-
tive and timely maintenance is key to eliminating and mitigating substantive harm from these defects to
road users as well as providing an economic solution to avoid major repair and pavement resurface
actions. This needs both the automation of the maintenance process and the digitalization of infrastructure
to provide agility, autonomy, and robustness.

This paper focuses on the topic of autonomous pavement maintenance and provides an in-depth
perspective on future robotic maintenance systems. A state-of-the-art review of robotic pavement
inspection and repair systems is firstly performed, summarizing the current defect inspection systems
and three levels of automation in repair processes. Based on this, three key technical challenges for robotic
maintenance are respectively discussed, referring to sensing (real-time awareness of the pavement
conditions), control (machine autonomy), and actuation (accurate and rapid maintenance implementa-
tion). Following this analysis, an AMP concept (including the system composition and workflow), which
forms part of a highway maintenance cyber-physical platform, has been proposed, aiming to digitalize
road systems through robotic maintenance processes.

The modularised AMP system features high-resolution sensing and multifunctional tooling and
conducts preventative pavement repair treatments under guidance from the road DT which is dynamically
informed by road surface data from CAVs. It is concluded that only by such live interactions between the
virtual and physical twins of the road system can the key technical challenges of robotic maintenance be
properly addressed. This autonomous maintenance solution leveraging the coupling between DT, CAV,
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and AMP is expected to achieve high efficiency and effectiveness, surpassing current methods, including
standalone maintenance robots.

With the conceptual design of the AMP, the next step is to physically develop and/or integrate all the
components to form a robotic vehicle prototype and test the viability of the system. However, it is also
expected that other robotic platforms such as drones will be likely able to work alongside the AMP as a
complement for specific tasks. The authors believe that the road industry will eventually support such
routinely and autonomously performed robotic maintenance operations based on the digitalization of road
assets, and that this proposal is an important step in this direction.
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Figure Al. The proposed cyber-physical platform of the highway pavement maintenance system.

Cite this article: Xu J, Anvo NR, Taha-Abdalgadir H, d’Avigneau AM, Palin D, Wei R, Hadjidemetriou G, Schaefer S, de Silva L,
Al-Tabbaa A, lida F and Brilakis I (2024). Highway digital twin-enabled Autonomous Maintenance Plant: a perspective. Data-
Centric Engineering, 5, €24. doi:10.1017/dce.2024.34

https://doi.org/10.1017/dce.2024.34 Published online by Cambridge University Press


https://doi.org/10.1017/dce.2024.34
https://doi.org/10.1017/dce.2024.34

	Highway digital twin-enabled Autonomous Maintenance Plant: a perspective
	Impact Statement
	Introduction
	The state-of-the-art in robotic highway pavement maintenance
	Robotic pavement inspection systems
	Robotic pavement repair systems
	The use of robotics in the maintenance of other road-related infrastructure assets

	Key technical challenges
	Sensing: real-time awareness of the pavement condition
	Control: machine autonomy
	Actuation: accurate and rapid repair implementation

	The outlook: AMP
	System composition and functionalities
	Digital workflow

	Conclusions
	Data availability statement
	Author contributions
	Funding statement
	Competing interest
	References
	Appendix


