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Abstract

We prove that, given a positive integer m, there is a sequence {ni}
k
i=1 of positive integers such that

m =
1
n1

+
1
n2

+ · · · +
1
nk

with the property that partial sums of the series {1/ni}
k
i=1 do not represent other integers.
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1. Introduction

Let a + nZ denote the arithmetic progression {x ∈ Z : x ≡ a (mod n)}. For a finite
systemA = {ai + niZ}

k
i=1, we define the covering function wA over Z by

wA(x) := |{1 ≤ i ≤ k : x ∈ ai + niZ}|.

The systemA is called an m-cover of Z if wA(x) ≥ m for all x ∈ Z and an exact m-cover
if wA(x) = m for all x ∈ Z.

The concept of covering in Z was first mentioned by Erdős [3] and has been
investigated in many papers (see, for example, [1, 2, 4–6, 11]). In [7], Porubský first
studied exact m-covers and showed that

k∑
i=1

1
ni

= m

is a necessary condition for a set of integers {ni}
k
i=1 to be the set of moduli of an exact m-

cover. Clearly, for any m-cover,
∑k

i=1 1/ni ≥ m. In [12], Zhang discovered a connection
between covering systems and Egyptian fractions. He showed that ifA is a 1-cover of
Z, then ∑

s∈I

1
ns
∈ Z+
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for some I ⊂ {1, . . . , k}. Sun [8–11] investigated connections between sums of
reciprocals of the residue class moduli with covering systems. For example, Sun [8]
showed that for each n = 1, . . . ,m, there exist (at least)

(
k
2

)
subsets I of {1, . . . , k} with∑

s∈I

1
ni

= n.

Suppose that A1,A2 are an m1-cover and an m2-cover over Z, respectively.
Obviously, A = A1 ∪ A2 constitutes an (m1 + m2)-cover. Conversely, Porubský [7]
asked whether for each m ≥ 2 there exists an exact m-cover of Z which cannot be split
into an exact n-cover and an exact (m − n)-cover with 1 ≤ n < m. Later, Zhang [13]
answered Porubský’s question affirmatively.

Motivated by these results, we consider whether for each m ≥ 1 there exists a series
{ni}

k
i=1 such that m =

∑k
i=1 1/ni is an integer, but no partial sum of

∑k
i=1 1/ni belongs

to Z.

Theorem 1.1. For every given positive integer m, there exists a sequence {ni}
k
i=1 of

positive integers such that

m =
1
n1

+
1
n2

+ · · · +
1
nk

and
∑

i∈I 1/ni < Z, where I is any nonempty proper subset of {1, 2, . . . , k}.

Let
Ω{n1, n2, . . . , nk} =

{∑
i∈I

1
ni

: I ⊂ {1, 2, . . . , k}
}
∩ Z.

As usual, the sum over the empty set is taken to be zero. In fact, we can prove the
following stronger result.

Theorem 1.2. Let m be a given positive integer. For any partition

m = m1 + m2 + · · · + me, 1 ≤ m1 ≤ m2 ≤ · · · ≤ me ≤ m,

there exists a sequence {ni}
k
i=1 of positive integers such that

m =
1
n1

+
1
n2

+ · · · +
1
nk

and
Ω{n1, n2, . . . , nk} =

{∑
c∈C

mc : C ⊂ {1, . . . , e}
}
.

One can also require that∣∣∣∣∣{I : I ⊂ {1, 2, . . . , k},
∑
i∈I

1
ni
∈ Z

}∣∣∣∣∣ = 2e.

Let us give a simple explanation about why Theorem 1.2 implies Theorem 1.1. We
choose e = 1 and exclude the case that the subset I of {1, . . . , k} is empty. Then we
obtain the desired result.
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Corollary 1.3. For every given positive integer m, there exists a sequence {ni}
k
i=1 of

positive integers such that

m =
1
n1

+
1
n2

+ · · · +
1
nk

and only two integers n and m − n can be written in the form
∑

i∈I 1/ni, where 1 ≤ n < m
and I is a nonempty proper subset of {1, 2, . . . , k}.

Remark 1.4. This corollary is immediate from Theorem 1.2 with e = 2. This result
seems to be related to Zhang’s result [13] mentioned above about splitting an exact
m-cover of Z into an exact n-cover and an exact (m − n)-cover with 1 ≤ n < m.

2. Proof of Theorem 1.2

We use p j to denote the jth prime. Since the sum of the reciprocals of the primes
diverges, there exist e + 1 integers l1 < l2 < · · · < le < le+1 with l1 = 0 such that

lc+1∑
j=lc+1

1
p j
< mc <

lc+1+1∑
j=lc+1

1
p j

for c = 1, 2, . . . , e. For 1 ≤ c ≤ e, write

mc =

lc+1∑
j=lc+1

1
p j

+
gc∏lc+1

j=lc+1 p j
.

Since gc <
∏lc+1

j=lc+1 p j and (gc,
∏lc+1

j=lc+1 p j) = 1, we can choose sc, tc ∈ Z+ such that

gcsc − tc
lc+1∏

j=lc+1

p j = 1.

This equation remains true when we replace sc and tc by s̃c = sc + a
∏lc+1

j=lc+1 p j

and t̃c = tc + agc for any a ∈ Z+. By Dirichlet’s theorem on primes in arithmetic
progressions, we can choose s̃c to be e different primes with ple+1 < s̃1 < · · · < s̃e. From
the construction, t̃c < s̃c and

mc =

lc+1∑
j=lc+1

1
p j

+
t̃c
s̃c

+
1

s̃c
∏lc+1

j=lc+1 p j
.

Since m = m1 + · · · + me, we can write

m =

e∑
c=1

{ lc+1∑
j=lc+1

1
p j

+
t̃c
s̃c

+
1

s̃c
∏lc+1

j=lc+1 p j

}
:=

k∑
i=1

1
ni
. (2.1)

It remains to show that

Ω{n1, n2, . . . , nk} =

{∑
c∈C

mc : C ⊂ {1, . . . , e}
}
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and ∣∣∣∣∣{I : I ⊂ {1, 2, . . . , k},
∑
i∈I

1
ni
∈ Z

}∣∣∣∣∣ = 2e.

By the construction of m,{∑
c∈C

mc : C ⊂ {1, . . . , e}
}
⊂ Ω{n1, n2, . . . , nk}

and ∣∣∣∣∣{C : C ⊂ {1, . . . , e}
}∣∣∣∣∣ = 2e.

Consequently, we only need to show that∣∣∣∣∣{I : I ⊂ {1, 2, . . . , k},
∑
i∈I

1
ni
∈ Z

}∣∣∣∣∣ = 2e.

We shall do this by induction on e. We first consider the case e = 1 and write

m =

l2∑
j=1

1
p j

+
t̃1
s̃1

+
1

s̃1
∏l2

j=1 p j

corresponding with the form of (2.1). In this case, Theorem 1.2 is equivalent to
showing that ∑

j∈J

1
p j

+
q
s̃1
< Z (2.2)

for any J ⊂ {1, 2, . . . , l2}, where q is an integer no more than t̃1. The case J = ∅ is
trivial. Provided that J , ∅, since (s̃1,

∏
j∈J p j)=1, we can easily obtain (2.2) because

s̃1

(∑
j∈J

1
p j

+
q
s̃1

)
= s̃1

(∑
j∈J

1
p j

)
+ q . 0 (mod s̃1).

Suppose that Theorem 1.2 holds for e = 1, . . . ,b − 1, where b is an integer and b ≥ 2,
and consider the case e = b. According to (2.1),

m =

b∑
c=1

{ lc+1∑
j=lc+1

1
p j

+
t̃c
s̃c

+
1

s̃c
∏lc+1

j=lc+1 p j

}
.

Choose some partial sums of the form

b∑
c=1

{ lc+1∑
j=lc+1

δc, j

p j
+

q̃c

s̃c
+

δc

s̃c
∏lc+1

j=lc+1 p j

}
which lie in Z, where the δc, j and δc are 0 or 1 and q̃c ≤ t̃c for 1 ≤ c ≤ b. Let

A =

b−1∑
c=1

{ lc+1∑
j=lc+1

δc, j

p j
+

q̃c

s̃c
+

δc

s̃c
∏lc+1

j=lc+1 p j

}
, B =

lb+1∑
j=lb+1

δb, j

p j
+

q̃b

s̃b
+

δb

s̃b
∏lb+1

j=lb+1 p j
,
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so that A + B ∈ Z. Since both (
∏b−1

c=1 s̃c
∏lc+1

j=lc+1 p j) · A and (
∏b−1

c=1 s̃c
∏lc+1

j=lc+1 p j) · (A + B)

lie in Z, so does (
∏b−1

c=1 s̃c
∏lc+1

j=lc+1 p j) · B. But all denominators of B are relatively prime

to
∏b−1

c=1 s̃c
∏lc+1

j=lc+1 p j, so B must be an integer. Since A + B is an integer, so is A.
By the inductive assumption, there are 2b−1 choices to construct an integer from

partial sums of A and two independent choices to construct an integer from partial
sums of B. Hence, for any m ∈ Z+, we conclude that∣∣∣∣∣{I : I ⊂ {1, 2, . . . , k},

∑
i∈I

1
ni
∈ Z

}∣∣∣∣∣ = 2b.
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