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Abstract
In this paper, we study the estimation of a scale parameter from a sample of lifetimes of coherent systems
with a fixed structure. We assume that the components are independent and identically distributed having a
common distribution which belongs to a scale parameter family. Some results are obtained as well for dependent
(exchangeable) components. To this end, we will use the representations for the distribution function of a coherent
system based on signatures. We prove that the efficiency of the estimators depends on the structure of the system
and on the scale parameter family. In the dependence case, it also depends on the baseline copula function.

1. Introduction

In several practical situations, when one studies (non-repairable) coherent systems, the information
about the component lifetimes is not available. In these cases, one just has information about the system
lifetimes. If we assume that the component lifetimes are independent and identically distributed (i.i.d.)
with a common distribution in a scale parameter family with an unknown parameter 𝜃, the purpose is to
estimate this parameter from the system sample.

Of course, to this end, we have to take into account the system structure. Thus, the procedure is not the
same if we have information about series systems (i.e. the first component failures in groups of size ℎ) or
lifetimes from any other system structures. Several results for this kind of data have been obtained in the
literature under different assumptions/models. For example, in [8], a parametric proportional reversed
hazard rate model is assumed for the common distribution of the components while a proportional hazard
rate model is assumed in [16]. A load-sharing model with active redundancy is analyzed in [10]. The
best linear unbiased estimator (BLUE) is obtained in [4] under a scale parameter model. A numerical
method is used in [20] to get the maximum likelihood estimator (MLE) in a general parametric model
with i.i.d. components. A nonparametric approach was developed in [3].

In this paper, we consider method-of-moments estimators of 𝜃 and we study the rate of convergence
to 𝜃 by referring to (the square of) the coefficient of variation in (3.3) which can be seen as a suitable
asymptotic variance. In our analysis, we will use the representations based on signatures for coherent
systems. The concept of signature was introduced in 1985 by F.J. Samaniego (see [18] or Section 2). It
can be used to represent the system distribution function as a mixture of the distribution functions of the
𝑘-out-of-ℎ systems (or the order statistics). In the i.i.d. case, the signature only depends on the system
structure and will allow us to get the estimators for 𝜃. In other cases, it is better to use the concept of
minimal signature (see [14] or Section 2) which can be used to get a similar representation based on
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series systems. Sometimes, this representation is more convenient since it simplifies the calculations
(see the illustrative examples presented in Section 4).

Both representations can be extended to the case of exchangeable (i.e. permutation symmetric)
components. So we can also obtain similar results for this case. The dependence structure between the
components in the same system is represented by a given copula function with a dependence parameter.

We will prove that the rate of convergence of the estimator will depend on the system structure
(signature) and on the scale parameter family. In the illustrative examples, we analyze all the system
structures with four or less components, and the exponential and Pareto scale parameter families. In
the final Examples 4.3 and 4.4, we consider cases in which the dependence structure of the component
lifetimes is modeled with a Farlie-Gumbel-Morgenstern (FGM for short) copula or a Clayton copula.

We shall see that the performance of the estimators can be related with the Lorenz order. This
stochastic order is based on the very well-known Lorenz curve that is used to measure inequality in
several economic scenarios, see, e.g., [1]. The main properties of the Lorenz order can be seen in e.g.
[1,5]. In our context, this order can be used to measure the dispersion of the data obtained from the
different system structures and to determine which cases provide better results (i.e. which cases allow
to consider estimators with a faster convergence).

The rest of the paper is scheduled as follows. The notation, basic definitions and some preliminary
results are placed in Section 2. In Section 3, we present the estimation problem (based on a method-of-
moments estimator) and the results about the efficiency of such estimators. Some illustrative examples
are shown in Section 4. The conclusions and pending tasks for future research are placed in Section 5.

Throughout the paper, the terms increasing and decreasing are used to represent nondecreasing and
nonincreasing, respectively. Whenever we use an expectation we are tacitly assuming that it exists.

2. Preliminaries

In this section, we recall some preliminaries on coherent systems and signatures. A (binary) system with
ℎ components is a Boolean function

𝜑 : {0, 1}ℎ → {0, 1}

where 𝜑(𝑥1, . . . , 𝑥ℎ) = 1 (resp. 0) indicates that the system works (fails) when the components have
fixed states represented by 𝑥1, . . . , 𝑥𝑛 ∈ {0, 1} (𝑥𝑖 = 1 means that the 𝑖th component works). A system 𝜑
is semi-coherent if it is increasing and satisfies 𝜑(0, . . . , 0) = 0 and 𝜑(1, . . . , 1) = 1. A semi-coherent
system might contain irrelevant components that do not affect the system performance. If this is not
the case, it is called coherent. This property is equivalent to assume that 𝜑 is strictly increasing in each
variable in at least one point (for each variable).

The lifetime of the coherent system will be represented by 𝑇 . It depends on the system structure 𝜑
and on the component lifetimes 𝑋1, . . . , 𝑋ℎ. In this paper, we assume that they are exchangeable (EXC
for short), that is, that the random vector (𝑋1, . . . , 𝑋ℎ) is permutation invariant in distribution. Thus, for
any permutation 𝜎 of {1, . . . , ℎ}, the random vector (𝑋𝜎 (1) , . . . , 𝑋𝜎 (ℎ) ) is distributed as (𝑋1, . . . , 𝑋ℎ).
Then the random variables 𝑋1, . . . , 𝑋ℎ are identically distributed (i.d.) and, of course, a particular case
in which the EXC condition holds is when 𝑋1, . . . , 𝑋ℎ are independent and identically distributed (i.i.d.)
random variables.

The first signature representation was obtained in Samaniego [18]. In that reference, it is proved that
if the components are i.i.d. with a common continuous distribution function, then the system reliability
function �̄�𝑇 (𝑡) = 𝑃(𝑇 > 𝑡) can be written as

�̄�𝑇 (𝑡) =
ℎ∑
𝑖=1

𝑠𝑖 �̄�𝑖:ℎ (𝑡) (for all 𝑡 > 0), (2.1)
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where �̄�1:ℎ , . . . , �̄�ℎ:ℎ are the reliability functions of the ordered component lifetimes (order statistics)
𝑋1:ℎ , . . . , 𝑋ℎ:ℎ which in this context represent the lifetimes of 𝑖-out-of-ℎ systems (i.e. systems that work
when at least ℎ − 𝑖 + 1 of their ℎ components work). In particular, 𝑋1:ℎ and 𝑋ℎ:ℎ represent the lifetimes
of series and parallel systems with ℎ components, respectively.

The vector 𝑠 = (𝑠1, . . . , 𝑠ℎ) with the coefficients in that representation is known as the (Samaniego)
signature of the system. These coefficients are nonnegative values that only depend on the system
structure 𝜑. They can be computed from

𝑠𝑖 =
1( ℎ
𝑖−1

) ∑
𝑥1+···+𝑥ℎ=ℎ−𝑖+1

𝜑(𝑥1, . . . , 𝑥ℎ) − 1(ℎ
𝑖

) ∑
𝑥1+···+𝑥ℎ=ℎ−𝑖

𝜑(𝑥1, . . . , 𝑥ℎ). (2.2)

Samaniego’s representation (2.1) can be extended to the case of EXC components whenever we use this
formula to compute the signature (see, e.g., [12]). For some properties and applications of signatures,
see [9,12,17,18,21] and the references therein.

An alternative representation under the EXC condition was introduced in [14] showing that the
system reliability function can also be written as

�̄�𝑇 (𝑡) =
ℎ∑
𝑖=1

𝑎𝑖 �̄�1:𝑖 (𝑡) (for all 𝑡 ≥ 0),

where �̄�1:𝑖 (𝑡) = 𝑃(𝑋1:𝑖 > 𝑡) is the reliability function of the series system with 𝑖 components for
𝑖 = 1, . . . , ℎ and 𝑎 = (𝑎1, . . . , 𝑎ℎ) is the minimal signature of the system. The coefficients in 𝑎 are
integer numbers that only depend on the system structure. Note that some of them can be negative.
Unfortunately, we do not have an explicit expression similar to (2.2) to compute 𝑎 from 𝜑. However, 𝑎
can be computed from 𝑠 and vice versa (see Remark 2.2 in [12], p. 45]). For some explicit computations
of 𝑠 and 𝑎, see [12,13,19].

Note that if we consider coherent systems with 𝑘 EXC components labeled from 1 to 𝑘 for some
𝑘 > ℎ, then this representation can be extended as

�̄�𝑇 (𝑡) =
𝑘∑
𝑖=1

𝑎𝑖 �̄�1:𝑖 (𝑡) (for all 𝑡 ≥ 0),

where 𝑎𝑖 = 0 for 𝑖 = ℎ + 1, . . . , 𝑘 . Then we can write the minimal signatures of all these systems as
numerical vectors 𝑎 = (𝑎1, . . . , 𝑎𝑘 ) of dimension 𝑘 > ℎ.

The reliability functions �̄�1:1, . . . , �̄�1:𝑘 can be computed from the survival copula representation for
the joint reliability function of (𝑋1, . . . , 𝑋𝑘 ) (see, e.g., [15])

𝑃(𝑋1 > 𝑥1, . . . , 𝑋ℎ > 𝑥𝑘 ) = 𝐶 (�̄� (𝑥1), . . . , �̄� (𝑥𝑘 ))

as
�̄�1:𝑖 (𝑡) = 𝑃(𝑋1 > 𝑡, . . . , 𝑋𝑖 > 𝑡) = 𝐶 (�̄� (𝑡), . . . , �̄� (𝑡)︸�������������︷︷�������������︸

𝑖 times

, 1, . . . , 1)

for 𝑖 = 1, . . . , 𝑘 , where �̄� = 1 − 𝐺 is the common reliability function of the components and 𝐶 is
the survival copula of (𝑋1, . . . , 𝑋𝑘 ). In particular, if the components are i.i.d., then �̄�1:𝑖 (𝑡) = �̄�𝑖 (𝑡) for
𝑖 = 1, . . . , 𝑘 .

By using this representation, the expected lifetime of the system 𝑇 can be computed as

E[𝑇] =
𝑘∑
𝑖=1

𝑎𝑖E[𝑋1:𝑖] .
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Analogously, the variance of 𝑇 can be computed as Var[𝑇] = E[𝑇2] − E2 [𝑇], where

E[𝑇2] =
𝑘∑
𝑖=1

𝑎𝑖E[𝑋2
1:𝑖] .

As we will see later (see in particular some examples in Section 4), this representation in terms of the
minimal signature is more convenient for the computation of the mean and the variance of 𝑇 because
the moments of 𝑋1:𝑖 are (usually) easier to compute than the moments of 𝑋𝑖:𝑘 .

3. The method-of-moments estimator and results

In this section, we present the estimation problem based on a method-of-moments estimator, together
with some properties of this estimator. We also discuss some connections with the theory of large
deviations. Finally, we prove a result related with the Lorenz order and we obtain confidence intervals
based on an asymptotic normality result.

3.1. The method-of-moments estimator

Let 𝑇1, . . . , 𝑇𝑛 be 𝑛 i.i.d. replications of the lifetime 𝑇 of a coherent system with ℎ EXC components.
In this paper, we assume that, given a continuous distribution function with support on (0,∞) (thus
𝐺 (0) = 0), the common distribution function 𝐺 𝜃 of the component lifetimes 𝑋1, . . . , 𝑋ℎ can be written
as

𝐺 𝜃 (𝑥) := 𝐺
( 𝑥
𝜃

)
,

where 𝜃 > 0 is an unknown scale parameter and 𝐺 is a known baseline distribution function. Thus, we
assume that the i.d. component lifetimes belong to a (unidimensional) scale parameter family.

Several items depend on 𝜃 (probabilities 𝑃𝜃 (·), expected values E𝜃 [·], etc.), and some formulas can
be expressed in terms of the case 𝜃 = 1; indeed, for all 𝜃 > 0, we have

𝑃𝜃 (𝑋 ∈ 𝐴) = 𝑃1(𝜃𝑋 ∈ 𝐴) for all measurable sets 𝐴.

Then, we recall the following formulas in terms of the signature 𝑠 = (𝑠1, . . . , 𝑠ℎ). Similar expressions
can be obtained for the minimal signature. Thus, we get

�̄�𝑇 ;𝜃 (𝑡) := 𝑃𝜃 (𝑇 > 𝑡) =
ℎ∑
𝑖=1

𝑠𝑖𝑃𝜃 (𝑋𝑖:ℎ > 𝑡) =
ℎ∑
𝑖=1

𝑠𝑖𝑃1 (𝜃𝑋𝑖:ℎ > 𝑡) for all 𝑡 > 0

and

E𝜃 [𝑒𝛾𝑇 ] =
ℎ∑
𝑖=1

𝑠𝑖E𝜃 [𝑒𝛾𝑋𝑖:ℎ ] =
ℎ∑
𝑖=1

𝑠𝑖E1 [𝑒𝛾𝜃𝑋𝑖:ℎ ] (3.1)

for all 𝛾 ∈ R such that these expectations exist. Moreover, if we consider the notation

𝜇1(𝑠, 𝐺) := E1 [𝑇] =
ℎ∑
𝑖=1

𝑠𝑖E1 [𝑋𝑖:ℎ]

and

𝜎2
1 (𝑠, 𝐺) := Var1 [𝑇] = E1 [𝑇2] − E2

1 [𝑇] =
ℎ∑
𝑖=1

𝑠𝑖E1 [𝑋2
𝑖:ℎ] − 𝜇2

1 (𝑠, 𝐺),
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we have

E𝜃 [𝑇] =
ℎ∑
𝑖=1

𝑠𝑖E𝜃 [𝑋𝑖:ℎ] = 𝜃𝜇1(𝑠, 𝐺)

and

Var𝜃 [𝑇] = E𝜃 [𝑇2] − E2
𝜃 [𝑇] =

ℎ∑
𝑖=1

𝑠𝑖E𝜃 [𝑋2
𝑖:ℎ] − (𝜃𝜇1 (𝑠, 𝐺))2 = 𝜃2𝜎2

1 (𝑠, 𝐺).

Now, we recall the method-of-moments estimator of 𝜃. We have to consider the solution of the
equation

E𝜃 [𝑇] = 𝑇1 + · · · + 𝑇𝑛
𝑛

with unknown quantity 𝜃. By taking into account the equality E𝜃 [𝑇] = 𝜃𝜇1 (𝑠, 𝐺) shown above, this
equation can be immediately solved; indeed the solution, which is a random variable Θ̂𝑛 depending on
the sample mean (𝑇1 + · · · + 𝑇𝑛)/𝑛, is given by

Θ̂𝑛 =
𝑇1 + · · · + 𝑇𝑛
𝑛𝜇1 (𝑠, 𝐺) . (3.2)

In view of what follows we also introduce the notation 𝜎2
• (𝑠, 𝐺) for the square of the coefficient of

variation under 𝑃1 of 𝑇 , that is,

𝜎2
• (𝑠, 𝐺) :=

𝜎2
1 (𝑠, 𝐺)

𝜇2
1 (𝑠, 𝐺) . (3.3)

Then, for every fixed 𝜃 > 0, we can immediately check that

E𝜃 [Θ̂𝑛] = 𝜃

(i.e. Θ̂𝑛 is an unbiased estimator of 𝜃) and

Var𝜃 [Θ̂𝑛] = 𝜃2

𝑛
𝜎2
• (𝑠, 𝐺). (3.4)

Moreover, as an immediate consequence of the law of the large numbers, Θ̂𝑛 → 𝜃 almost surely under
𝑃𝜃 (i.e. Θ̂𝑛 is a consistent estimator of 𝜃).

We can also say that the smaller is the coefficient of variation of 𝑇 (under 𝑃1), the faster is the
convergence of Θ̂𝑛 to 𝜃. So we would like to find conditions on the distribution of the random variable 𝑇
in order to find inequalities between the corresponding values of 𝜎2

• (𝑠, 𝐺). This will be done in Section
3.3 (see Proposition 3.1) by referring to a condition in terms of the Lorenz order recalled in the next
definition (see, e.g., [1,5]).

Definition 3.1. Let 𝑍 be a nonnegative random variable with mean E[𝑍] > 0 and distribution function
𝐹𝑍 . Then, the Lorenz curve of 𝑍 is defined by

𝐿𝑍 (𝑢) :=
1
E[𝑍]

∫ 𝐹−1
𝑍 (𝑢)

0
𝑧𝐹𝑍 (𝑑𝑧) for 𝑢 ∈ (0, 1),

where 𝐹−1
𝑍 is the quantile function of 𝑍 . Then we say that 𝑍1 is smaller than 𝑍2 in the Lorenz order (and

we write 𝑍1 ≤𝐿 𝑍2 for short) if 𝐿𝑍1 (𝑢) ≤ 𝐿𝑍2 (𝑢) for every 𝑢 ∈ (0, 1).

Finally, in view of the confidence intervals presented in Section 3.3 (see Eq. (3.8) and Remark 3.4),
we obtain an asymptotic normality result for Θ̂𝑛.
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Lemma 3.1. Under 𝑃𝜃 ,
√
𝑛(Θ̂𝑛 − 𝜃)/(𝜃𝜎•(𝑠, 𝐺)) converges weakly to the standard Normal distribu-

tion or, equivalently,
√
𝑛(Θ̂𝑛 − 𝜃) converges weakly to a centered Normal distribution with variance

𝜃2𝜎2
• (𝑠, 𝐺).

Proof. We remark that
√
𝑛

𝜃𝜎1(𝑠, 𝐺)

(
𝑇1 + · · · + 𝑇𝑛

𝑛
− 𝜃𝜇1 (𝑠, 𝐺)

)
=

√
𝑛

𝜃𝜎•(𝑠, 𝐺) (Θ̂𝑛 − 𝜃);

so the asymptotic normality result in the statement is an immediate consequence of the Central Limit
Theorem (together with the definition of 𝜎•(𝑠, 𝐺) in Eq. (3.3)). � �

3.2. Some connections with the theory of large deviations

Here, we assume that the moment generating function of𝑇 , given in Eq. (3.1), is finite in a neighborhood
of the origin 𝛾 = 0. In view of what follows we consider the function 𝜅𝑇 ;𝜃 defined by

𝜅𝑇 ;𝜃 (𝛾) := logE𝜃 [𝑒𝛾𝑇 ],

and its Legendre transform 𝜅∗𝑇 ;𝜃 defined by

𝜅∗𝑇 ;𝜃 (𝑡) := sup
𝛾∈R

{𝑡𝛾 − 𝜅𝑇 ;𝜃 (𝛾)}.

Actually, we can refer to the case 𝜃 = 1; indeed, we can easily check that

𝜅𝑇 ;𝜃 (𝛾) = 𝜅𝑇 ;1(𝜃𝛾) and 𝜅∗𝑇 ;𝜃 (𝑡) = 𝜅∗𝑇 ;1

( 𝑡
𝜃

)
.

The functions 𝜅𝑇 ;𝜃 and 𝜅∗𝑇 ;𝜃 have some well-known properties. Here, we recall some of them
for 𝜃 = 1: 𝜅∗𝑇 ;1 is a nonnegative convex function (regular in the interior of the set in which it is
finite), 𝜅∗𝑇 ;1(𝑡) = ∞ if 𝑡 ≤ 0, 𝜅∗𝑇 ;1(𝑡) = 0 if and only if 𝑡 = 𝜇1 (𝑠, 𝐺), (𝜅∗𝑇 ;1)′(𝜇1(𝑠, 𝐺)) = 0 and
(𝜅∗𝑇 ;1)′′(𝜇1 (𝑠, 𝐺)) = 1/𝜎2

1 (𝑠, 𝐺).
Then, as a consequence of the Cramér theorem on R (see, e.g., Theorem 2.2.3 in [7]), we can say

that the sequence {Θ̂𝑛 : 𝑛 ≥ 1} defined by (3.2) satisfies the large deviation principle with a good rate
function 𝐼Θ̂, 𝜃 defined by

𝐼Θ̂, 𝜃 (𝜃) := sup
𝛾∈R

{𝛾𝜃𝜇1(𝑠, 𝐺) − 𝜅𝑇 ;𝜃 (𝛾)},

and we easily get

𝐼Θ̂, 𝜃 (𝜃) = sup
𝛾∈R

{𝛾𝜃𝜇1(𝑠, 𝐺) − 𝜅𝑇 ;1(𝜃𝛾)} = 𝜅∗𝑇 ;1

(
𝜃

𝜃
𝜇1(𝑠, 𝐺)

)
.

This means that we have

lim sup
𝑛→∞

1
𝑛

log 𝑃𝜃 (Θ̂𝑛 ∈ 𝐶) ≤ − inf
𝜃 ∈𝐶

𝐼Θ̂, 𝜃 (𝜃) for all closed sets 𝐶

and

lim inf
𝑛→∞

1
𝑛

log 𝑃𝜃 (Θ̂𝑛 ∈ 𝑂) ≥ − inf
𝜃 ∈𝑂

𝐼Θ̂, 𝜃 (𝜃) for all open sets 𝑂.

Some properties of the rate function 𝐼Θ̂, 𝜃 can be obtained as consequences of the properties of the
function 𝜅∗𝑇 ;1 cited above. In particular we have 𝐼Θ̂, 𝜃 (𝜃) = 0 if and only if 𝜃 = 𝜃 (this is not surprising
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because, as we said above, Θ̂𝑛 is a consistent estimator of 𝜃). Moreover, with some easy computations,
one can check that

𝐼 ′′
Θ̂, 𝜃

(𝜃) = 𝜇2
1 (𝑠, 𝐺)
𝜃2 (𝜅∗𝑇 ;1)′′(𝜇1(𝑠, 𝐺)) = 1

𝜃2𝜎2• (𝑠, 𝐺) (3.5)

because (𝜅∗𝑇 ;1)′′(𝜇1(𝑠, 𝐺)) = 1/𝜎2
1 (𝑠, 𝐺) as we said above, and by taking into account (3.3).

In particular, if we take 𝐵𝜀 (𝜃) = (𝜃 − 𝜀, 𝜃 + 𝜀) with 𝜀 > 0 small enough, we have

lim
𝑛→∞

1
𝑛

log 𝑃𝜃 (|Θ̂𝑛 − 𝜃 | ≥ 𝜀) = −𝐼Θ̂, 𝜃 (𝐵𝑐
𝜀 (𝜃)),

where 𝐼Θ̂, 𝜃 (𝐵𝑐
𝜀 (𝜃)) := inf 𝜃 ∈𝐵𝑐

𝜀 (𝜃) 𝐼Θ̂, 𝜃 (𝜃) > 0. Thus, roughly speaking, 𝑃𝜃 (|Θ̂𝑛 − 𝜃 | ≥ 𝜀) tends to 0 as
exp(−𝑛𝐼Θ̂, 𝜃 (𝐵𝑐

𝜀 (𝜃))) when 𝑛 → ∞. So we can say that the larger is 𝐼Θ̂, 𝜃 (𝜃) around 𝜃 = 𝜃, the faster
is the convergence of Θ̂𝑛 to 𝜃. Moreover, this fact agrees with what we said above, i.e., Θ̂𝑛 converges
faster to 𝜃 when we have a smaller 𝜎2

• (𝑠, 𝐺) because, for 𝜃 near to 𝜃, 𝐼Θ̂, 𝜃 (𝜃) behaves like the parabola
𝜃 ↦→ (𝜃 − 𝜃)2/(2𝜃2𝜎2

• (𝑠, 𝐺)).
Finally, we can also provide the asymptotic decay of probabilities of other rare events. For instance,

for 𝛼 > 1, we have

inf
𝜃≥𝛼𝜃

𝐼Θ̂, 𝜃 (𝜃) = 𝜅∗𝑇 ;1(𝛼𝜇1(𝑠, 𝐺))

and

lim
𝑛→∞

1
𝑛

log 𝑃𝜃 (Θ̂𝑛 ≥ 𝛼𝜃) = −𝜅∗𝑇 ;1 (𝛼𝜇1(𝑠, 𝐺));

thus, roughly speaking, 𝑃𝜃 (Θ̂𝑛 ≥ 𝛼𝜃) tends to 0 as exp(−𝑛𝜅∗𝑇 ;1(𝛼𝜇1(𝑠, 𝐺))) when 𝑛 → ∞. However,
we must note that it is not easy to compare 𝜅∗𝑇 ;1(𝛼𝜇1(𝑠, 𝐺)) and 𝜅∗𝑇 ;1 (𝛼𝜇1(𝑠�, 𝐺�)) (for two signatures
𝑠 and 𝑠� and for two distribution functions 𝐺 and 𝐺�) because we do not have an explicit expression of
the rate function 𝜅∗𝑇 ;1.

3.3. A result on Lorenz order and confidence intervals

We start showing that, if the lifetimes of two coherent systems are ordered with respect to the Lorenz
ordering ≤𝐿 , we have the same inequality for the respective coefficients of variation. The result was
given in [11], p. 69], and can also be proved from Theorem 2.7.16 in [5]. It can be stated as follows.

Proposition 3.1. Let 𝑇 (𝑠, 𝐺) and 𝑇 (𝑠�, 𝐺�) be the lifetimes of coherent systems associated with (𝑠, 𝐺)
and (𝑠�, 𝐺�), respectively. Then, 𝑇 (𝑠, 𝐺) ≤𝐿 𝑇 (𝑠�, 𝐺�) yields 𝜎2

• (𝑠, 𝐺) ≤ 𝜎2
• (𝑠�, 𝐺�).

Remark 3.1. The inequality 𝜎2
• (𝑠, 𝐺) ≤ 𝜎2

• (𝑠�, 𝐺�) is equivalent to∑ℎ
𝑖=1 𝑠𝑖E1 [𝑋2

𝑖:ℎ] − 𝜇2
1 (𝑠, 𝐺)

𝜇2
1 (𝑠, 𝐺) ≤

∑ℎ
𝑖=1 𝑠

�
𝑖 E

�
1 [𝑋2

𝑖:ℎ] − 𝜇2
1 (𝑠�, 𝐺�)

𝜇2
1 (𝑠�, 𝐺�) ,

and therefore, it is also equivalent to∑ℎ
𝑖=1 𝑠𝑖E1 [𝑋2

𝑖:ℎ]
(∑ℎ

𝑖=1 𝑠𝑖E1 [𝑋𝑖:ℎ])2
≤

∑ℎ
𝑖=1 𝑠

�
𝑖 E

�
1 [𝑋2

𝑖:ℎ]
(∑ℎ

𝑖=1 𝑠
�
𝑖 E

�
1 [𝑋𝑖:ℎ])2

, (3.6)

where E�1 refers to expectations for the baseline distribution function 𝐺�.
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Thus, Proposition 3.1 shows that the Lorenz ordering between the lifetimes of coherent systems
is enough to determine which estimators converge faster. The Lorenz comparisons of order statistics
𝑋1:ℎ , . . . , 𝑋ℎ:ℎ were studied in [2,6]. In that references, it is shown that it is not easy to get this ordering
for order statistics. Actually, this ordering depends on the baseline distribution 𝐺 (this is not the case
for other stochastic orders). Of course, it is also not easy to determine the Lorenz ordering between
general coherent systems with i.d. components by using signatures since the signature representation is
a mixture of the distribution functions of order statistics.

Remark 3.2. Note that the order statistics also represent the ordered data in a sample from the compo-
nents. Hence, the results in this paper can also be used to determine which ordered data provide better
(faster) estimators for 𝜃. For example, if ℎ = 3, we can compare the estimators obtained from 𝑋1:3 (the
first data in the sample), 𝑋2:3 (the median) or 𝑋3:3 (the maximum value). As shown in [2], the answers to
these questions depend on𝐺. Also, note that in practice the minimum value 𝑋1:3 is available early and so,
in a finite time sampling procedure, we will have more (uncensored) data from it than from 𝑋2:3 or 𝑋3:3.

Remark 3.3. By taking into account what we said in Section 2 on minimal signatures, we can say that
(3.6) is equivalent to ∑𝑘

𝑖=1 𝑎𝑖E1 [𝑋2
1:𝑖]

(∑𝑘
𝑖=1 𝑎𝑖E1 [𝑋1:𝑖])2

≤
∑𝑘

𝑖=1 𝑎
�
𝑖 E1 [𝑋2

1:𝑖]
(∑𝑘

𝑖=1 𝑎
�
𝑖 E1 [𝑋1:𝑖])2

(3.7)

for two systems with common EXC (or i.i.d.) components and minimal signatures 𝑎 and 𝑎�. Note that,
in particular, in these cases, we assume 𝐺 = 𝐺�.

We conclude with the construction of some confidence intervals that can be derived from Lemma
3.1. Let ℓ ∈ (0, 1) be an arbitrarily fixed confidence level, let Φ be the standard Normal distribution
function, and therefore, let Φ−1((1 + ℓ)/2) be the quantile of order (1 + ℓ)/2. Then,

lim
𝑛→∞

𝑃𝜃

( √
𝑛

𝜃𝜎•(𝑠, 𝐺) |Θ̂𝑛 − 𝜃 | ≤ Φ−1
(
1 + ℓ

2

))
= ℓ.

Moreover, since{ √
𝑛

𝜃𝜎•(𝑠, 𝐺) |Θ̂𝑛 − 𝜃 | ≤ Φ−1
(
1 + ℓ

2

)}
=

{���� Θ̂𝑛

𝜃
− 1

���� ≤ 𝜎•(𝑠, 𝐺)√
𝑛

Φ−1
(
1 + ℓ

2

)}
and Θ̂𝑛 is 𝑃𝜃 almost surely positive, we can easily obtain the following approximate confidence interval
for 1/𝜃 at the level ℓ ∈ (0, 1):(

1
Θ̂𝑛

(
1 − 𝜎•(𝑠, 𝐺)√

𝑛
Φ−1

(
1 + ℓ

2

))
,

1
Θ̂𝑛

(
1 + 𝜎•(𝑠, 𝐺)√

𝑛
Φ−1

(
1 + ℓ

2

)))
. (3.8)

Remark 3.4. Note that the length of the interval tends to zero as 𝑛 → ∞. Moreover, as 𝜃 > 0, if the left-
end point of the interval is negative, it can be replaced with zero. In this way, we can obtain a confidence
interval for 𝜃, where the right-end point could be infinite. Note that if 𝐺 is known (e.g. exponential),
then we can compute the boundary points of the interval for each system structure. Again, we note that
in many models, it is better to use the minimal signature 𝑎 than the signature 𝑠 to compute the mean and
the variance that we need to get the coefficient of variation 𝜎•(𝑠, 𝐺) and the confidence interval in (3.8).

4. Examples

In this section, we analyze several baseline distribution functions 𝐺, and we find the best systems (we
also use the terms best samples and faster samples) for the estimation of 𝜃, that is, the cases with a smaller
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𝜎2
• (𝑠, 𝐺). We analyze i.i.d. cases in Examples 4.1, 4.2, and 4.5, and two EXC cases with dependence in

Examples 4.3 and 4.4 (in these cases, 𝜎2
• (𝑠, 𝐺) also depends on the copula 𝐶).

In Example 4.1, we consider the main distribution in this field: the exponential model. The scale
parameter family associated with this distribution has been widely studied in the literature. By taking
into account (3.6) in Remark 3.1 (and also (3.7) in Remark 3.3), we introduce the notation

𝜙(𝑠) :=
∑ℎ

𝑖=1 𝑠𝑖E1 [𝑋2
𝑖:ℎ]

(∑ℎ
𝑖=1 𝑠𝑖E1 [𝑋𝑖:ℎ])2

. (4.1)

We will use the same notation for the expression based on the minimal signature

𝜙(𝑎) :=
∑ℎ

𝑖=1 𝑎𝑖E1 [𝑋2
1:𝑖]

(∑ℎ
𝑖=1 𝑎𝑖E1 [𝑋1:𝑖])2

(4.2)

(but note that the functions for 𝑠 and 𝑎 are different). Moreover, if ℎ = 2 (as happens at the beginning
of Example 4.1), in (4.1), we have 𝜙(𝑠1, 𝑠2) = 𝜙(𝑠1, 1 − 𝑠1), and so we simply write 𝜙(𝑠1). It is easy to
check that

𝜎2
• (𝑠, 𝐺) = 𝜙(𝑠) − 1

and, by taking into account (3.5), we consider the function

𝜓(𝑠) :=
1

𝜎2• (𝑠, 𝐺) =
1

𝜙(𝑠) − 1
. (4.3)

A similar notation is used for the minimal signature.

Example 4.1. Let us consider 𝐺 (𝑡) = 1 − exp(−𝑡) for 𝑡 ≥ 0, and i.i.d. component lifetimes. If
ℎ = 2, a straightforward calculation shows that E1 [𝑋1:2] = 1/2, E1 [𝑋2:2] = 3/2, E1 [𝑋2

1:2] = 1/2, and
E1 [𝑋2

2:2] = 7/2. Hence,

𝜙(𝑠1) =
𝑠1E1 [𝑋2

1:2] + 𝑠2E1 [𝑋2
2:2]

(𝑠1E1 [𝑋1:2] + 𝑠2E1 [𝑋2:2])2 = 2
𝑠1 + 7𝑠2

(𝑠1 + 3𝑠2)2 = 2
7 − 6𝑠1

(3 − 2𝑠1)2 .

By plotting this function (see Figure 1), we see that the minimum value is attained at 𝑠1 = 0 (and
𝑠2 = 1) getting 𝜙(0) = 2(7/9) = 1.555556, that is, the best samples to estimate 𝜃 are those from 𝑋2:2
(parallel systems). This result can also be obtained from the results for the Lorenz order given in [2]
since 𝑋2:2 ≤𝐿 𝑋1:2.

Note that the samples from 𝑋2:2 (maximum values) are also better than the samples from the
components (𝑋1 or 𝑋2) which are represented by the mixed system with signature 𝑠1 = 𝑠2 = 1/2 (see,
e.g., [12], p. 50]) which leads to the value 𝜙(1/2) = 2. This value coincides with the value obtained
for the samples from the series system 𝑋1:2 with 𝜙(1) = 2. This is an expected property since both 𝑋1
and 𝑋1:2 have exponential distributions. However, we must note that if we are working with lifetimes,
in practice, at a given time of our time-dependent experiment, we always have more data from the
series system 𝑋1:2 than from 𝑋1 or 𝑋2:2 (since the series systems fail first). Actually, 𝑋1:2 can be seen
as an accelerated life test for 𝑋1 (with double hazard rate) and with the same rate of convergence in the
respective estimators. However, if we consider all the mixed systems with ℎ = 2, that is, 𝑠1 ∈ [0, 1],
then the worst value is obtained with 𝑠1 = 0.833333 getting 𝜙(0.833333) = 2.25 (see Figure 1).

From now on we consider the minimal signature 𝑎 in place of 𝑠. In order to study the cases ℎ = 1, 2, 3, 4
in coherent systems with i.i.d. components, we note that

E1 [𝑋1:𝑖] =
∫ ∞

0
�̄�𝑖 (𝑡) 𝑑𝑡 = 1

𝑖
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Figure 1. Function 𝜙(𝑠1) in Example 4.1.

and

E1 [𝑋2
1:𝑖] =

∫ ∞

0
2𝑡�̄�𝑖 (𝑡) 𝑑𝑡 = 2

𝑖2
.

So the method-of-moments estimator of 𝜃 is

Θ̂𝑛 :=
𝑇𝑛

𝜇1(𝑎, 𝐺) =
(𝑇1 + · · · + 𝑇𝑛)/𝑛

𝑎1 + (1/2)𝑎2 + (1/3)𝑎3 + (1/4)𝑎4
.

Hence, from (3.7), to determine the faster estimator we look for the minimum of the function

𝜙(𝑎1, 𝑎2, 𝑎3, 𝑎4) =
∑ℎ

𝑖=1 𝑎𝑖E1 [𝑋2
1:𝑖]

(∑ℎ
𝑖=1 𝑎𝑖E1 [𝑋1:𝑖])2

=
2𝑎1 + (1/2)𝑎2 + (2/9)𝑎3 + (1/8)𝑎4

(𝑎1 + (1/2)𝑎2 + (1/3)𝑎3 + (1/4)𝑎4)2 .

Now we use the minimal signatures given Table 2.2 of [12], p. 43], obtaining the results for 𝜙 given
in Table 1. There we also provide the value of 𝜓(𝑎) (see (4.3)) which, in some sense, measures the rate
of convergence of the estimator Θ̂𝑛 for 𝜃 (see (3.5)). The system structures that provide the best (faster)
estimators for ℎ = 2, 3, 4 are highlighted in bold case.

Again we see that the best samples are those from the parallel systems 𝑋2:2, 𝑋3:3, and 𝑋4:4 (lines 3, 8,
and 28, respectively). The samples from 𝑋3:4 (line 23) are also good. In [2], it is noted that 𝑋3:4 and 𝑋4:4
are not ordered in the Lorenz order for the exponential distribution. So we cannot use Proposition 3.1
here to compare the samples from these systems. Note that all the series systems have the same behavior
(since all of them have exponential distributions) that is actually the worst result in all the coherent
systems with four components or less (in this case, we use the term 1–4 components). This is also the
result for the usual samples (i.e. the samples from the components). Therefore, in this case (exponential
distribution and i.i.d. samples), any coherent system with ℎ ≤ 𝑘 = 4 provides better (faster) estimators.
We believe that this is a general property for this case and for any order 𝑘 . The next example shows that
this property is not true for other distributions 𝐺.
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Table 1. Minimal signatures 𝑎 and values of the system expected lifetime 𝜇1(𝑎, 𝐺) = E1 [𝑇𝑖] and the functions 𝜙(𝑎) and𝜓(𝑎) for the exponential distribution
𝐺 and for all the coherent systems with 1–4 i.i.d. components.

𝑖 𝑇𝑖 𝑎 𝜇1(𝑎, 𝐺) 𝜙(𝑎) 𝜓(𝑎)
1 𝑋1:1 = 𝑋1 (1, 0, 0, 0) 1 2 1
2 𝑋1:2 = min(𝑋1, 𝑋2) (2-series) (0, 1, 0, 0) 0.5 2 1
3 𝑋2:2 = max(𝑋1, 𝑋2) (2-parallel) (2,−1, 0, 0) 1.5 1.555556 1.8
4 𝑋1:3 = min(𝑋1, 𝑋2, 𝑋3) (3-series) (0, 0, 1, 0) 0.333333 2 1
5 min(𝑋1,max(𝑋2, 𝑋3)) (0, 2,−1, 0) 0.666667 1.75 1.333333
6 𝑋2:3 (2-out-of-3) (0, 3,−2, 0) 0.833333 1.52 1.923077
7 max(𝑋1,min(𝑋2, 𝑋3)) (1, 1,−1, 0) 1.166667 1.673469 1.484848
8 𝑋3:3 = max(𝑋1, 𝑋2, 𝑋3) (3-parallel) (3,−3, 1, 0) 1.833333 1.404959 2.469388
9 𝑋1:4 = min(𝑋1, 𝑋2, 𝑋3, 𝑋4) (series) (0, 0, 0, 1) 0.25 2 1
10 max(min(𝑋1, 𝑋2, 𝑋3),min(𝑋2, 𝑋3, 𝑋4)) (0, 0, 2,−1) 0.416667 1.84 1.190476
11 min(𝑋2:3, 𝑋4) (0, 0, 3,−2) 0.5 1.666667 1.5
12 min(𝑋1,max(𝑋2, 𝑋3),max(𝑋3, 𝑋4)) (0, 1, 1,−1) 0.583333 1.755102 1.324324
13 min(𝑋1,max(𝑋2, 𝑋3, 𝑋4)) (0, 3,−3, 1) 0.75 1.703704 1.421053
14 𝑋2:4 (3-out-of-4) (0, 0, 4,−3) 0.583333 1.510204 1.96
15 max(min(𝑋1, 𝑋2),min(𝑋1, 𝑋3, 𝑋4), min(𝑋2, 𝑋3, 𝑋4)) (0, 1, 2,−2) 0.666667 1.5625 1.777778
16 max(min(𝑋1, 𝑋2),min(𝑋3, 𝑋4)) (0, 2, 0,−1) 0.75 1.555556 1.8
17 max(min(𝑋1, 𝑋2),min(𝑋1, 𝑋3), min(𝑋2, 𝑋3, 𝑋4)) (0, 2, 0,−1) 0.75 1.555556 1.8
18 max(min(𝑋1, 𝑋2),min(𝑋2, 𝑋3), min(𝑋3, 𝑋4)) (0, 3,−2, 0) 0.833333 1.52 1.923077
19 max(min(𝑋1,max(𝑋2, 𝑋3, 𝑋4)), min(𝑋2, 𝑋3, 𝑋4)) (0, 3,−2, 0) 0.833333 1.52 1.923077
20 min(max(𝑋1, 𝑋2),max(𝑋1, 𝑋3), max(𝑋2, 𝑋3, 𝑋4)) (0, 4,−4, 1) 0.916667 1.471074 2.122807
21 min(max(𝑋1, 𝑋2),max(𝑋3, 𝑋4)) (0, 4,−4, 1) 0.916667 1.471074 2.122807
22 min(max(𝑋1, 𝑋2),max(𝑋1, 𝑋3, 𝑋4), max(𝑋2, 𝑋3, 𝑋4)) (0, 5,−6, 2) 1 1.416667 2.4
23 𝑋3:4 (2-out-of-4) (0, 6,−8, 3) 1.083333 1.360947 2.770492
24 max(𝑋1,min(𝑋2, 𝑋3, 𝑋4)) (1, 0, 1,−1) 1.083333 1.786982 1.270677
25 max(𝑋1,min(𝑋2, 𝑋3),min(𝑋3, 𝑋4)) (1, 2,−3, 1) 1.25 1.573333 1.744186
26 max(𝑋2:3, 𝑋4) (1, 3,−5, 2) 1.333333 1.484375 2.064516
27 min(max(𝑋1, 𝑋2, 𝑋3),max(𝑋2, 𝑋3, 𝑋4)) (2, 0,−2, 1) 1.583333 1.468144 2.136095
28 𝑋4:4 = max(𝑋1, 𝑋2, 𝑋3, 𝑋4) (4-parallel) (4,−6, 4,−1) 2.083333 1.328 3.04878
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Example 4.2. Let us consider �̄� (𝑡) = (1+ 𝑡)−𝛼 for 𝑡 ≥ 0 and 𝛼 > 2, that is, a Pareto type II distribution.
Moreover, we still assume i.i.d. component lifetimes as in Example 4.1. Here, we use the symbol 𝜙𝛼 for
the function 𝜙 in (4.2). To study the cases ℎ = 1, 2, 3, 4 in coherent systems, we note that

E1 [𝑋1:𝑖] =
∫ ∞

0
�̄�𝑖 (𝑡) 𝑑𝑡 = 1

𝑖𝛼 − 1

and

E1 [𝑋2
1:𝑖] =

∫ ∞

0
2𝑡�̄�𝑖 (𝑡) 𝑑𝑡 = 2

(𝑖𝛼 − 1)(𝑖𝛼 − 2)
for 𝑖 = 1, 2, . . . and 𝛼 > 2. Hence, by taking into account (3.7), we look for the minimum of the function

𝜙𝛼 (𝑎1, 𝑎2, 𝑎3, 𝑎4) =
2

(𝛼−1) (𝛼−2) 𝑎1 + 1
(2𝛼−1) (𝛼−1) 𝑎2 + 2

(3𝛼−1) (3𝛼−2) 𝑎3 + 1
(4𝛼−1) (2𝛼−1) 𝑎4( 1

𝛼−1𝑎1 + 1
2𝛼−1𝑎2 + 1

3𝛼−1𝑎3 + 1
4𝛼−1𝑎4

)2

for a fixed 𝛼 > 2. The results for 𝛼 = 3, 4, 5 can be seen in Table 2. Note that for 𝛼 = 3, the samples from
𝑋1:2 (line 2) are two times faster than the samples from the components 𝑋𝑖 (line 1). Moreover, in lifetime
tests, the data from 𝑋1:2 are available early on time. The samples from 𝑋2:2 (line 3) are also faster than the
samples from the components 𝑋𝑖 (line 1). However, for ℎ ≤ 3, the best samples are those from 𝑋2:3 (line
6) and for ℎ ≤ 4, the ones from 𝑋3:4 (line 23). The best systems for 𝛼 = 4, 5 can be seen in Table 2 where
they are highlighted in bold case. The only change is that for ℎ = 2, the best samples are those from 𝑋2:2
(line 3). In all the cases, we can see that the worst samples are those from the components (line 1).

Now, we see some examples with EXC-dependent components by assuming that the survival copula
is completely known. In practice, the copula (dependence structure) should be checked with the data
and, if it contains a dependence parameter, it should be estimated as well (e.g. by using the Kendall’s
tau coefficient, see [15]). We start with a weak dependence case (Example 4.3), and later, we present a
case with a strong positive dependence (Example 4.4).

Example 4.3. Let us consider the inference problem described in Section 3.1, with 𝐺 (𝑡) = 1− exp(−𝑡)
for 𝑡 ≥ 0. Moreover, we assume that the component lifetimes have the following FGM survival copula

𝐶 (𝑢1, 𝑢2, 𝑢3, 𝑢4) = 𝑢1𝑢2𝑢3𝑢4 + 𝛼𝑢1𝑢2𝑢3𝑢4(1 − 𝑢1)(1 − 𝑢2)(1 − 𝑢3)(1 − 𝑢4),

where 𝛼 ∈ [−1, 1] is a dependence parameter (see, e.g., [15], p. 77]). Here, we use the symbol 𝜙𝛼 for
the function 𝜙 in (4.2). Note that we recover the i.i.d. case (studied in Example 4.1) for 𝛼 = 0.

A straightforward calculation shows that E1 [𝑋1:𝑖] = 1/𝑖 for 𝑖 = 1, 2, 3 and

E1 [𝑋1:4] = 1
4
+ 𝛼

(
1
4
− 4

5
+ 1 − 4

7
+ 1

8

)
= 0.25 + 0.003571429𝛼.

Analogously, we get E1 [𝑋2
1:𝑖] = 1/𝑖2 for 𝑖 = 1, 2, 3 and

E1 [𝑋2
1:4] = 0.125 + 0.006318027𝛼.

These moments are used as in the preceding examples to compute 𝜙𝛼 (𝑎). The values obtained for
𝛼 = −1,−0.5, 0, 0.5, 1 are given in Table 3. The results of the faster estimators for ℎ = 2, 3, 4 are in
bold case. Note that the changes due to the dependence parameter 𝛼 are small. Even more, for some
systems (those with 𝑎4 = 0, lines 1–8), 𝜙𝛼 (𝑎) does not depend on 𝛼. In particular, we obtain exponential
distributions in 𝑋1:𝑖 for 𝑖 = 1, 2, 3. However, now 𝑋1:4 (line 9) does not have an exponential distribution
and 𝜙𝛼 (𝑎) changes with 𝛼. In this system, the best results (i.e. the faster estimators) are obtained with
𝛼 = −1 (negative correlation), but this is not the case for other systems. In all the cases, the best samples
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Table 2. Functions 𝜙𝛼 (𝑎) and 𝜓𝛼 (𝑎) for the Pareto distribution in Example 4.2 with 𝛼 = 3, 4, 5 and
for all the coherent systems with 1-4 i.i.d. components given Table 1.

𝑖 𝜙3(𝑎) 𝜓3(𝑎) 𝜙4(𝑎) 𝜓4(𝑎) 𝜙5(𝑎) 𝜓5(𝑎)
1 4 0.333333 3 0.5 2.66667 0.6
2 2.5 0.666667 2.333333 0.75 2.25 0.8
3 2.96875 0.507936 2.256198 0.796053 2.020408 0.98
4 2.285714 0.777778 2.2 0.833333 2.153846 0.866667
5 2.172373 0.852971 2.030519 0.970385 1.95994 1.041731
6 1.865889 1.154882 1.749030 1.335059 1.691106 1.446957
7 3.219012 0.450651 2.443858 0.692589 2.18618 0.843042
8 2.603892 0.623483 1.995309 1.004713 1.795085 1.257727
9 2.2 0.833333 2.142857 0.875 2.111111 0.9
10 2.10379 0.905969 2.024139 0.976430 1.981422 1.01893
11 1.896589 1.115338 1.826897 1.20934 1.789607 1.266452
12 2.14481 0.873508 2.015490 0.984746 1.950617 1.051948
13 2.114649 0.897143 1.976033 1.024556 1.907265 1.102213
14 1.709714 1.409018 1.649030 1.540761 1.616627 1.621727
15 1.87795 1.139017 1.773612 1.292637 1.721139 1.386696
16–17 1.903114 1.10728 1.786389 1.271635 1.728300 1.373061
18–19 1.865889 1.154882 1.749030 1.335059 1.691106 1.446957
20–21 1.801746 1.247278 1.689588 1.450141 1.634136 1.57695
22 1.727266 1.375014 1.621538 1.608911 1.569385 1.756282
23 1.650465 1.537362 1.551553 1.813062 1.502873 1.988574
24 3.567122 0.389541 2.674724 0.597113 2.377902 0.7257412
25 2.928843 0.518446 2.24879 0.800775 2.022789 0.9777186
26 2.683739 0.593916 2.081916 0.924286 1.881923 1.133886
27 2.753042 0.570437 2.103524 0.906187 1.889069 1.124772
28 2.411022 0.708706 1.858257 1.165152 1.677252 1.476554

are those obtained from parallel systems (as in the i.i.d. case). The best result is obtained for 𝑋4:4 and
𝛼 = −1 (line 28, column 2) with 𝜙−1(𝑎) = 1.324909 and 𝜓−1(𝑎) = 3.077783.

Now, we present an example with a strong positive dependence and, in particular, we study how this
dependence affects the rate of convergence of the method-of-moments estimator.

Example 4.4. Let us consider two components with lifetimes (𝑋1, 𝑋2) having a common exponential
distribution with scale parameter 𝜃 and the following Clayton survival copula (see, e.g., [15], p. 116])

𝐶 (𝑢, 𝑣) = (𝑢−𝛼 + 𝑣−𝛼 − 1)−1/𝛼

for 𝑢, 𝑣 ∈ [0, 1] and 𝛼 > 0 (positive dependence). The case of independent component is obtained when
𝛼 → 0 and the case of comonotonic components (maximum positive dependence) when 𝛼 → ∞. There
are just two coherent systems with two components, the series system 𝑋1:2 and the parallel system 𝑋2:2.
Let us compare the performance of the method-of-moments estimator from samples of these systems
with the method-of-moments estimator obtained from the exponential components by assuming that 𝛼
is known (in practice, we would need a training sample from (𝑋1, 𝑋2) to estimate 𝛼 and confirm the
copula). To get the method-of-moments estimators from (3.2), we need to compute E1 [𝑋1:𝑖] for 𝑖 = 1, 2.
The first expectation is immediate since E1 [𝑋1:1] = E1 [𝑋1] = 1. To get the second, we note that the
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Table 3. Function 𝜙𝛼 (𝑎) for all the coherent systems with 1-4 i.d. components given Table 1 with
a baseline exponential distribution function and the FGM survival copula in Example 4.3 with 𝛼 =
−1,−0.5, 0, 0.5, 1.

𝑖 𝜙−1(𝑎) 𝜙−0.5(𝑎) 𝜙0(𝑎) 𝜙0.5(𝑎) 𝜙1(𝑎)
1 2 2 2 2 2
2 2 2 2 2 2
3 1.555556 1.555556 1.555556 1.555556 1.555556
4 2 2 2 2 2
5 1.75 1.75 1.75 1.75 1.75
6 1.52 1.52 1.52 1.52 1.52
7 1.673469 1.673469 1.673469 1.673469 1.673469
8 1.404959 1.404959 1.404959 1.404959 1.404959
9 1.954351 1.977606 2 2.021562 2.04232
10 1.844634 1.84237 1.84 1.837521 1.834929
11 1.669179 1.668025 1.666667 1.665097 1.663306
12 1.752149 1.753633 1.755102 1.756556 1.757995
13 1.708706 1.706203 1.703704 1.701209 1.698719
14 1.50993 1.510189 1.510204 1.50996 1.509442
15 1.55738 1.559957 1.5625 1.565007 1.567478
16–17 1.551972 1.553764 1.555556 1.557347 1.559137
18–19 1.52 1.52 1.52 1.52 1.52
20–21 1.475027 1.473048 1.471074 1.469105 1.467139
22 1.424305 1.420477 1.416667 1.412875 1.409101
23 1.371797 1.366352 1.360947 1.355582 1.350257
24 1.780606 1.783788 1.786982 1.790187 1.793404
25 1.578296 1.575811 1.573333 1.570864 1.568402
26 1.493223 1.488786 1.484375 1.47999 1.47563
27 1.472258 1.470198 1.468144 1.466095 1.464052
28 1.324909 1.326453 1.328 1.32955 1.331104

reliability function of 𝑋1:2 under 𝜃 = 1 is

�̄�1:2 (𝑡) = (2(�̄� (𝑡))−𝛼 − 1)−1/𝛼 = (2𝑒𝛼𝑡 − 1)−1/𝛼,

where �̄� (𝑡) = exp(−𝑡) for 𝑡 ≥ 0. Hence,

E1 [𝑋1:2] =
∫ ∞

0
(2𝑒𝛼𝑡 − 1)−1/𝛼 𝑑𝑡 =

1
𝛼

∫ ∞

1

𝑢−1/𝛼

1 + 𝑢
𝑑𝑢.

The values for 𝛼 = 0, 0.25, 0.5, 0.75, 1, 2, 3, 4, 5, 10, 50 can be seen in Table 4. Clearly, E1 [𝑋1:2] goes
to 1 when 𝛼 → ∞ (comonotonic case). Analogously, as the minimal signature of the second system is
(2,−1), its mean can be obtained as

E1 [𝑋2:2] = 2E1 [𝑋1:1] − E1 [𝑋1:2] = 2 − E1 [𝑋1:2] .

Some values can be seen in Table 4. Here, we also have E1 [𝑋2:2] → 1 when 𝛼 → ∞. So the three
estimators coincide in the comonotonic case (as expected).
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Table 4. Expectations and function 𝜙𝛼 (𝑎) for the systems in Example 4.4.

𝛼 E1 [𝑋1:2] E1 [𝑋2:2] 𝜙𝛼 (1, 0) 𝜙𝛼 (0, 1) 𝜙𝛼 (2,−1)
0 0.5 1.5 2 2 1.555556
0.25 0.5607446 1.439255 2 2.224961 1.593273
0.5 0.6137056 1.386294 2 2.355740 1.619694
0.75 0.6574046 1.342595 2 2.410031 1.641236
1 0.6931472 1.306853 2 2.423715 1.660272
2 0.7853982 1.214602 2 2.367450 1.721488
3 0.8356488 1.164351 2 2.300127 1.765712
4 0.8669730 1.133027 2 2.250017 1.798475
5 0.8883136 1.111686 2 2.213238 1.823472
10 0.9380941 1.061906 2 2.121435 1.891637
50 0.9864589 1.013541 2 2.026981 1.973727
100 0.9922853 1.007715 2 2.003578 1.996297

To determine the faster estimator, from (4.2), we look for the minimum of the function

𝜙𝛼 (𝑎1, 𝑎2) =
𝑎1E1 [𝑋2

1:1] + 𝑎2E1 [𝑋2
1:2]

(𝑎1E1 [𝑋1:1] + 𝑎2E1 [𝑋1:2])2 ,

where E1 [𝑋1:1] = 1, E1 [𝑋2
1:1] = 2 and

E1 [𝑋2
1:2] =

∫ ∞

0
2𝑡�̄�1:2 (𝑡) 𝑑𝑡 =

∫ ∞

0
2𝑡 (2𝑒𝛼𝑡 − 1)−1/𝛼 𝑑𝑡.

The values of 𝜙𝛼 for the three systems can be seen in Table 4. Note that their respective minimal
signatures are (1, 0) (𝑋1), (0, 1) (𝑋1:2), and (2,−1) (𝑋2:2). In the table values, we observe that 𝜙𝛼 (0, 1)
is decreasing for 𝛼 > 1 and 𝜙𝛼 (2,−1) is increasing for 𝛼 > 0 and that both go to 2 when 𝛼 → ∞. The
best estimator for the values in the table is the one from the parallel system with 𝛼 → 0 (i.i.d. case) with
𝜙1(2,−1) = 1.555556 (obtained also in Table 1, line 3). However, the worst case for the series system is
that with 𝛼 = 1 since 𝜙𝛼 (0, 1) is increasing in 𝛼 in the interval (0, 1) getting 𝜙0(1, 0) = 2 when 𝛼 → 0.
In the independent case, 𝑋1:2 has an exponential distribution and so the estimator is equivalent to the
one obtained from the components (which also have exponential distributions).

In general, it is not easy to compare the method-of-moments estimator with others (in terms of
rates of convergence). However, this could be easily done in the next Example 4.5, and we discuss the
comparison with the MLE.

Example 4.5. Let us consider the inference problem described in Section 3.1, with a series system
and i.i.d. random variables 𝑋1, . . . , 𝑋ℎ such that, for some 𝛼 > 0, 𝐺 (𝑡) = 1 − exp(−𝑡𝛼) for 𝑡 ≥ 0. So
𝑋1, . . . , 𝑋ℎ are Weibull 𝑊 (𝛼, 𝜃) distributed. Moreover, since we consider a series system, we have

�̄�𝑇 ;𝜃 (𝑡) = 𝑃𝜃 (𝑇 > 𝑡) = (1 − 𝐺 (𝑡/𝜃))ℎ = exp(−ℎ(𝑡/𝜃)𝛼) = exp(−(𝑡/(𝜃/ℎ1/𝛼))𝛼) for all 𝑡 > 0

and therefore, the random variable 𝑇 is Weibull 𝑊 (𝛼, 𝜃/ℎ1/𝛼) distributed. It is easy to check with some
standard computations (we omit the details) that the MLE for 𝜃 is

Θ̂(MLE)
𝑛 :=

(
ℎ

𝑛

𝑛∑
𝑖=1

𝑇 𝛼
𝑖

)1/𝛼

;
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Figure 2. Difference 𝐷 (𝛼) between the asymptotic variances of the method-of-moments estimator and
the MLE in Example 4.5.

then we have to compare it with the method-of-moments estimator in Eq. (3.2)

Θ̂𝑛 =
ℎ1/𝛼

Γ(1 + 1/𝛼)
𝑇1 + · · · + 𝑇𝑛

𝑛

(here, we take into account some well-known formulas for Weibull distribution). We remark that Θ̂𝑛

is unbiased, while Θ̂(MLE)
𝑛 is unbiased only if 𝛼 = 1. Moreover, if 𝛼 = 1, the estimators Θ̂𝑛 and

Θ̂(MLE)
𝑛 coincide. We know that Var𝜃 [Θ̂𝑛] = (𝜃2/𝑛)𝜎2

• (𝑠, 𝐺) (see Eq. (3.4)), but we cannot compute
Var𝜃 [Θ̂(MLE)

𝑛 ]. However, one can easily check that ℎ𝑇 𝛼 is exponentially distributed with mean 𝜃𝛼 and,
by some standard arguments in large deviations, one can say that {Θ̂(MLE)

𝑛 : 𝑛 ≥ 1} satisfies the large
deviation principle with good rate function 𝐼Θ̂(MLE) , 𝜃 defined by

𝐼Θ̂(MLE) , 𝜃 (�̂�) :=
�̂�𝛼

𝜃𝛼
− 1 − log

�̂�𝛼

𝜃𝛼
(for �̂� > 0)

(note that this rate function uniquely vanishes at �̂� = 𝜃, because the estimator Θ̂(MLE)
𝑛 is consistent). So, if

we consider some arguments in Section 3.2 and in particular the equality in Eq. (3.5), we can check that

(𝐼 ′′
Θ̂(MLE) , 𝜃

(�̂�) | 𝜃=𝜃 )−1 =
𝜃2

𝛼2 .

In conclusion, we have to compare the asymptotic variance of the MLE 1/𝛼2 (that is the coefficient of
𝜃2 in the last equality), and the asymptotic variance of the method-of-moments estimator

𝜎2
• (𝑠, 𝐺) = Γ(1 + 2/𝛼)

Γ2(1 + 1/𝛼) − 1

(here, again, we take into account some well-known formulas for Weibull distribution). Note that the
two variances coincide for 𝛼 = 1 (as expected) and, otherwise (for 𝛼 ≠ 1), we have

1
𝛼2 <

Γ(1 + 2/𝛼)
Γ2(1 + 1/𝛼) − 1.

So the MLE is better than the method-of-moments estimator. The maximum of the difference
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𝐷 (𝛼) = Γ(1 + 2/𝛼)
Γ2(1 + 1/𝛼) − 1 − 1

𝛼2

for 𝛼 > 1 is attained at 𝛼 � 2.2059...; on the contrary, for 𝛼 ∈ (0, 1), the difference increases as 𝛼
decreases to zero and it goes to zero as 𝛼 → ∞ (see Figure 2). Note that the variances are very similar
for 𝛼 > 1. Recall also that the method-of-moments estimator is unbiased but that the MLE is biased for 𝜃
when 𝛼 ≠ 1. Moreover, note that for other systems (not series systems), it is not so easy to get an explicit
expression for the MLE and we have to use numerical procedures to compute it (see, e.g., [16,20]).

5. Conclusions

We have provided a method-of-moments estimator to estimate the scale parameter in the common
distribution of the component lifetimes of a coherent system. We show that the performance of this
estimator depends on the scale model baseline distribution 𝐺, the structure of the system (its signature
vectors) and the dependence structure (the copula𝐶). We compare this performance with that of method-
of-moments estimator from the components. The main advantage of the method-of-moments estimator
with respect to other estimators in the literature (MLE, BLUE, etc.) is that we have the explicit expression
in Eq. (3.2); moreover, this explicit expression only depends on the signature vector 𝑠 (or the minimal
signature vector 𝑎) and the means of the order statistics (series systems) from 𝐺 and 𝐶.

There are several tasks for future works. Many of them can be obtained by changing or relaxing
some of the assumptions made in the paper. For example, we could consider other parametric models
different from the scale parameter model considered here as the proportional hazard rate or reversed
hazard rates considered in other papers. We might also consider that the components have different
distributions which include a common scale parameter. If we are not able to fix a parametric model for
the component distribution, we might try to get semiparametric or nonparametric procedures different
from that considered in [3]. The estimation of the dependence parameters included in the copula 𝐶 is
also a problem of interest in practice.

Acknowledgments. We would like to thank the anonymous reviewers for several helpful suggestions that have served to improve
the earlier version of this paper.

Funding statement. C.M. thanks the partial support of MIUR Excellence Department Project awarded to the Department
of Mathematics, University of Rome Tor Vergata (CUP E83C18000100006), by the University of Rome Tor Vergata (project
“Asymptotic Methods in Probability” (CUP E89C20000680005) and project “Asymptotic Properties in Probability” (CUP
E83C22001780005)) and by Indam-GNAMPA. J.N. thanks the partial support of Ministerio de Ciencia e Innovación of Spain
under grant PID2019-103971GB-I00/AEI/10.13039/501100011033.

Competing interests. The authors declare no conflict of interest.

References
[1] Arnold, B.C. & Sarabia, J.M. (2018). Majorization and the Lorenz order with applications in applied mathematics and

economics. Cham, Switzerland: Springer.
[2] Arnold, B.C. & Villaseñor, J.A. (1991). Lorenz ordering of order statistics. In Stochastic orders and decision under risk.

Lecture Notes-Monograph Series Vol. 19. Institute of Mathematical Statistics, pp. 38–47.
[3] Balakrishnan, N., Ng, H.K.T., & Navarro, J. (2011). Exact nonparametric inference for component lifetime distribution

based on lifetime data from systems with known signatures. Journal of Nonparametric Statistics 23: 741–752.
[4] Balakrishnan, N., Ng, H.K.T., & Navarro, J. (2011). Linear inference for type-II censored lifetime data of reliability systems

with known signatures. IEEE Transactions on Reliability 60: 426–440.
[5] Belzunce, F., Martínez-Riquelme, C., & Mulero, J. (2016). An introduction to stochastic orders. London: Elsevier.
[6] Da, G., Xu, M., & Balakrishnan, N. (2014). On the Lorenz ordering of order statistics from exponential populations and

some applications. Journal of Multivariate Analysis 127: 88–97.
[7] Dembo, A. & Zeitouni, O. (1998). Large deviations techniques and applications, 2nd ed. New York: Springer.
[8] Fallah, A., Asgharzadeh, A., & Ng, H.K.T. (2021). Statistical inference for component lifetime distribution from coherent

system lifetimes under a proportional reversed hazard model. Communications in Statistics Theory and Methods 50(16):
3809–3833.

166 C. Macci and J. Navarro

https://doi.org/10.1017/S0269964823000037 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964823000037


[9] Izadkhah, S., Amini-Seresht, E., & Balakrishnan, N. (2022). Preservation properties of some reliability classes by lifetimes
of coherent, mixed systems and their signatures. Probability in the Engineering and Informational Sciences, to appear.
Published online first 23 September 2022. doi:10.1017/S0269964822000316

[10] Ling, M.H., Ng, H.K.T., Chan, P.S., & Balakrishnan, N. (2016). Autopsy data analysis for a series system with active
redundancy under a load-sharing model. IEEE Transactions on Reliability 65(2): 957–968.

[11] Marshall, A.W. & Olkin, I. (2007). Life distributions. New York: Springer.
[12] Navarro, J. (2022). Introduction to system reliability theory. Cham, Switzerland: Springer.
[13] Navarro, J. & Rubio, R. (2010). Computations of signatures of coherent systems with five components. Communications in

Statistics Simulation and Computation 39: 68–84.
[14] Navarro, J., Ruiz, J.M., & Sandoval, C.J. (2007). Properties of coherent systems with dependent components.

Communications in Statistics Theory and Methods 36: 175–191.
[15] Nelsen, R.B. (2006). An introduction to copulas. New York: Springer.
[16] Ng, H.K.T., Navarro, J., & Balakrishnan, N. (2012). Parametric inference from system lifetime data under a proportional

hazard rate model. Metrika 75: 367–388.
[17] Ross, S.M., Shahshahani, M., & Weiss, G. (1980). On the number of component failures in systems whose component lives

are exchangeable. Mathematics of Operations Research 5: 358–365.
[18] Samaniego, F.J. (1985). On closure of the IFR class under formation of coherent systems. IEEE Transactions on Reliability

R-34: 69–72.
[19] Shaked, M. & Suárez-Llorens, A. (2003). On the comparison of reliability experiments based on the convolution order.

Journal of the American Statistical Association 98: 693–702.
[20] Yang, Y., Ng, H.K.T., & Balakrishnan, N. (2016). A stochastic expectation-maximization algorithm for the analysis of

system lifetime data with known signature. Computational Statistics 31: 609–641.
[21] Yi, H., Balakrishnan, N., & Li, X. (2022). Ordered multi-state system signature, its dynamic version in evaluating used

multi-state systems. Probability in the Engineering and Informational Sciences, to appear. Published online first July 2022.
doi:10.1017/S0269964822000237

Cite this article: Macci C and Navarro J (2024). Method-of-moments estimators of a scale parameter based on samples from a coherent system.
Probability in the Engineering and Informational Sciences https://doi.org/10.1017/S026996482300003738, 150–167.

167Probability in the Engineering and Informational Sciences

https://doi.org/10.1017/S0269964823000037 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964823000037
https://doi.org/10.1017/S0269964823000037

	1 Introduction
	2 Preliminaries
	3 The method-of-moments estimator and results
	3.1 The method-of-moments estimator
	3.2 Some connections with the theory of large deviations
	3.3 A result on Lorenz order and confidence intervals

	4 Examples
	5 Conclusions



