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NONLINEAR HEMIVARIATIONAL INEQUALITIES AT RESONANCE

LESZEK GASINSKI AND NIKOLAOS S. PAPAGEORGIOU

In this paper we consider nonlinear hemivariational inequalities involving the p-
Laplacian at resonance. We prove the existence of a nontrivial solution. Our approach
is variational based on the critical point theory for nonsmooth, locally Lipschitz func-
tionals due to Chang.

1. INTRODUCTION

Let Z c RN be a bounded domain with a (^-boundary F. In this paper we study
the following nonlinear hemivariational inequality at resonance:

-div(\\vx(z)f2Vx(z))-X1\x(z)\P~2x(z) € dj(z,x{z))
(HV I) ^ almost everywhere on Z

z | r = 0 ,

where 2 ^ p < +oo. Here X\ is the first eigenvalue of the p-Laplacian — Apx =
— div(||Vz||p~2 V i ) with Dirichlet boundary condition (that is, of the operator
(-Ap, WO

1>P(Z))), j : Z x K i—> R is a functional measurable in z € Z which is lo-
cally Lipschitz i n ( 6 R and dj(z,Q denotes the subdifferential of j(z, •) in the sense
of Clarke [7] (generalised subdifferential). Our starting point is the recent paper by
Goeleven-Motreanu-Panagiotopoulos [9], where the authors considered eigenvalue prob-
lems for semilinear hemivariational inequalities. In that paper the authors proved the
existence of multiple solutions for the eigenvalue problems they examined, and also men-
tioned as an open problem for future research the resonant case. Our work here can also be
viewed as the continuation of the recent work by the authors (see Gasinski-Papageorgiou
[8]) where the work of Goeleven-Motreanu-Panagiotopoulos [9] was extended to eigen-
value problems for nonlinear hemivariational inequalities involving the p-Laplacian. In
this paper we assume that the generalised subdifferential of j(z, Q has nonzero limits
as £ -> ±°o- Assuming that j(-,0) € L°°(Z), by the Lebourg mean value theorem (see
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354 L. Gasiriski and N.S. Papageorgiou [2]

Clarke [7, Theorem 2.3.7, p.41]) we infer that j(z,Q (the generalised potential) goes to
infinity as £ —> ±oo. This is the case studied by Ahmad-Lazer-Paul [1] and Rabinowitz
[14], where p = 2 (semilinear case) and j(z,-) € C1. The case of finite limits for j{z,Q
as C, —> ±oo was examined by Landesman-Lazer [10] (the pioneering work in this area),
Thews [17], Ward [18] and Benci-Bartolo-Fortunato [3], where p = 2 and j(z, •) € C1. We
should mention that Benci-Bartolo-Fortunato called their problem "strongly resonant".

Hemivariational inequalities arise in physical problems when we deal with noncon-
vex nonsmooth energy functionals. Such functions appear quite often in mechanics and
engineering if one wants to consider more realistic mechanical laws of a nonmonotone,
multivalued nature. For concrete applications of hemivariational inequalities to problems
in mechanics we refer to the book of Panagiotopoulos [13], Naniewicz-Panagiotopoulos
[12] and references therein.

Our approach is variational based on the critical point theory for nonsmooth Lips-
chitz functionals as this was developed by Chang [6]. For the convenience of the reader
in the next section we recall the basic notions and facts from that theory, which we shall
need in the sequel.

2. PRELIMINARIES

Let X be a Banach space and X* its topological dual. A function / : X i—> R is
said to be locally Lipschitz, if for every x G X there exists a neighbourhood U of x and
a constant k > 0 depending on U such that / (z) - f{y)\ ^ k \\z — y\\ for all z,y € U.
It is well known from convex analysis that a proper, convex and lower semicontinuous
function g : X i—> E = R U {+00} is locally Lipschitz in the interior of its domain
dom5 = ix € X : g(x) < +00J. In analogy with the directional derivative of a convex
function, we define the generalised directional derivative of a locally Lipschitz function /
at x e X in the direction h G X, by

f (x; h) = lim sup ;

1' -> 0
A \ , 0

It is easy to check that X 3 h 1—> f°(x\ h) 6 R is sublinear and continuous and
/°(x;/i) ^ k\\h\\. So by the Hahn-Banach theorem /°(a;;-) is the support function

of the nonempty, convex and iu*-compact set

df(x) - {x* 6 X' : (z't h) ̂  f°(x, h) for all h

known as the "generalised subdifferential" of / at a;. Note that for every x* € df(x) we
have ||o;*|| ^ k. Also if / , g : X 1—> R are locally Lipschitz functions, then d(f + g) C
df(x) + dg(x) and d(Xf){x) = A9/(x) for all A e R. Moreover, if / : X >—> R is
convex then it is well-known that / is locally Lipschitz and the subdifferential of / in the
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sense of convex analysis coincides with the generalised subdifferential introduced above.
Moreover, if / is strictly differentiate at x (in particular if / is continuously Gateaux
differentiable at x), then df(x) - {/ ' (z)}.

Let / : X i—> R be a locally Lipschitz function on a Banach space X. A point
x e X is said to be a "critical point" of / , if 0 € df{x). It is easy to see that, if
x s X is a local minimum of / , then a; is a critical point. We say that / satisfies the
"Palais-Smale condition" ((P5)-condition) if any sequence {xn}n^i Q X along which
{f(xn)( ^ is bounded and m(xn) — min{||a;*|| : x* € df(xn)\ —> 0 as n —> +00, has

a strongly convergent subsequence. If / G Cl(X), then since df(xn) — lf'(xn)\, we see
that the above definition of the Palais-Smale condition coincides with the classical one
(see Rabinowitz [15]).

The first theorem is due to Chang [6] and extends to a nonsmooth setting the well
known "mountain pass theorem" due to Ambrosetti-Rabinowitz [2].

THEOREM 1 . If X is a reflexive Banach space, R : X 1—• R is locally Lipschitz
functional which satisfies the (PS)-condition and for some p > 0 and y e X with \\y\\ > p
we have

then R has a nontrivial critical point x € X such that the critical value c = R(x) is
characterised by the following minimax principle

c = inf max \R\MT)) \,

where T = {7 € C([0,1], X) : 7(0) = 0, 7(1) = y).

In (HVI) appears the first eigenvalue Ai of (—Ap, WQ'P(Z)J. This is the least real
number A for which the problem

, . n , I — divf Vi (z ) \7x(z)) = A\x(z)\ x(z) almost everywhere on Z
(Hir) \ Ml II / I I

has a nontrivial solution. This first eigenvalue Ai is positive, isolated and simple (that is,
the associated eigenfunctions are constant multiples of each other). Futhermore we have
a variational characterisation of Ai via the Rayleigh quotient, that is,

= min •

This minimum is realised at the normalised eigenfunction ui. Note that if ux minimises
the Rayleigh quotient, then so does |ui| and so we infer that the first eigenfunction u\
does not change sign on Z. In fact we can show that ui(z) •£ 0 almost everywhere on
Z and so we can assume that U\ > 0 almost everywhere on Z. For details we refer to
Lindqvist [11].
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3. E X I S T E N C E OF SOLUTIONS

We start by introducing our hypotheses on the function j{z,O-

H{j) j '• Z xR i—» E is a functional such that:

(i) for all C G R : Z 3 z •—>• j(z, C) G R is measurable;

(ii) for almost all z G Z : R 3 C '—> j{z, <) G R is locally Lipschitz;

(iii) for almost all z G Z, all £ G R and all i; 6 dj(z,(,) we have |u| ^ 0(2) with

some a G L°°(Z);

(iv) j (- ,0) G L°°(Z) and / j (z ,0) dz > 0;

(v) for almost all z G Z and all u(z,£) G dj(z,£): w( ->0 is measurable, we have

v(z,C) —> v-iz) as C -* —00 and u(z,£) —^ u+(z) as C, —> +00, where w_

and w+ are measurable and V-(z) ^ 0 ^ «+(z) almost everywhere on Z with

strict inequalities on a set of positive Lebesgue measurable;

(vi) there exists [i > Ai such that

ICP

uniformly for almost all z 6 Z .

We introduce two functionals K : Wo'"(Z) 1—> R+ and L : WQ'P(Z) >—•> R defined

by

Clearly X G C1(w0
1'p(Z)) and is convex (thus K is locally Lipschitz). Using [7, Theorem

2.7.5, p.83], we see that L is locally Lipschitz too. Set R - K-L. Then R : WQIP(Z) <—>

R is locally Lipschitz.

LEMMA 2 . If hypotheses H(j) hold, then R satisfies t ie (PS)-condition.

P R O O F : Let {xn}n^i C WQ'P(Z) be a sequence such that {R{xn)}n-^i is bounded
and m(xn) —> 0 as n —> +00. Then there exists Mi > 0 such that for all n > 1 we have

Afx, so

(1) - M ^ \ \\Vxn\\p
p - ^ \\xn\\p

p - I' j(z,xn(z)) dz ^ M,.
p p JZ

Suppose that the sequence {in}n^i C Wo
l|P(Z) was unbounded. Then by passing to a

subsequence if necessary, we may assume that ||a;n|| —> +00 as n —> +00. Set yn =
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[5] Nonlinear HVI at Resonance 357

(xn/ ||xn||j for n ^ 1. By passing to a further subsequence, if necessary, we may assume
that

and n(z)\

yn —> y weakly in

yn —> y in L"{Z),

yn{z) —> y(z) almost everywhere on Z as n -4 +00,

z) almost everywhere on Z with A; € LP(Z) (see [4, Theorem IV.9, p.58]).

Dividing (1) by ||xn||p, we obtain

Let us establish the asymptotic behaviour of the integral / (j(z,xn(z)\l ||xn||p) dz. By
the Lebourg mean value theorem (see Clarke [7, Theorem 2.3.7, p.47], for almost all
z e Z, all C, e K and for some t; e 9j(z,C), C = aC> 0 < a < 1, we have, using hypothesis
H(j)(hi), that

and using if (j)(iv) we obtain

for some ai, 02 > 0. So we can write that

j(z,xn(zj)
dz

/ .

j(z,xn{z))\

I. a2 dz

_ O 3 _ a4
^ II I I D ' 0 - 1 .

with a3 = ai\Z\ and 0.4=0,2 \k(z)\ dz. So

r j(z,xn(zj)

•^ ll^nll
0 as n —> +00.

Thus if we pass to the limit a s n - > +00 in (2), we obtain

1 \i

p n-»+oo " P p P

But since Vyn —>• Vy weakly in LP(Z, RN) a s m +00 (recall that yn —> y weakly

in WQ'P(Z)), from the weak lower semicontinuity of the norm functional, we have that
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and so
l

On the other hand from the variational characterisation of Ai (Rayleigh quotient, see

section 2), we have

So finally we deduce tha t

Also, by passing to the limit in (2), we obtain

limsupi HVft.li; < £ \\y% = \ ||V»I5 <

so
IIV yn\\p —> IIVy||p as n -» +oo.

Since Vy n —> Vy weakly in IP[Z, RNJ as n —> +oo and IP(z,RN) is uniformly convex,
we infer that Vyn —> Vy in IP{Z, RN) as n -> +oo. Hence yn —>• y in Wo

llP(Z) as
n —> +oo. But ||2/n|| = 1 for n ^ 1, so ||y|| = 1, thus y ^ 0. Therefore from the equality
IIVvllj; = A! ||y||J, it follows that y = ± U l .

Without loss of generality we may assume that y = +ui (the analysis is similar if
y = —Ui). So from section 2 we know that y(z) = u\(z) > 0 almost everywhere on Z.
Now let x^ € dR(xn) for n ^ 1, be such that m{xn) = \\x*n\\. The existence of such
an element follows from the fact that dR{xn) is a nonempty weakly compact subset of
W~1'q(Z) — WQ'V(Z)* (see section 2) and the weak lower semicontinuity of the norm
functional. Consider the operator A : WQ'P(Z) I—> W~l'q{Z) defined by

(Ax,u) = Jz\\vx(z)f-2(vx(z),Vu(z))Rn dz Vx,u € W^'(Z).

Here by (•, •) we denote the duality brackets for the pair (WQ'P(Z), W ~ U ( Z ) ) . It is easy
to check that A is monotone, hemicontinuous, hence maximal monotone. So it is also
generalised pseudomonotone (see Browder-Hess [5]). Then we have

x*n = Axn - Xi | |xn | | p~2xn - vn,

where vn S dip(xn), n ^ 1, with ip : WQ'P(Z) —> R being defined by tp(x) =

/ j(z,x(z)j dz. We know that, if v € dip(x), then v(z) € dj(z,x(z)j almost ev-

erywhere on Z (see Clarke [7]). Note that ip — $\wi.P(Z) where •$ : LP(Z) —> H

is defined by ip(x) = / j{z,x(z)\ dz. So invoking [6, Theorem 2.2], we have thet

dip{x) C d${x) C Lq(Z). Hence vn € Lq(Z) for all n ^ 1.
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[7] Nonlinear HVI at Resonance 359

From the choice of the sequence {xn}n^i we have that |/?(a;n)| ^ Mi and

(3) | « , U ) | O n N I Vu€WJ*(Z) w i t he n \ 0 .

From (1), we have

(4) -pM1 < ||Va;n||J - Ax \\xn\\
p

p-pjzj(z,zn(z)) dz < pMlt

and taking u = xn in (3), we have

(5) - en | | iB| | < -(Axn,xn) + Ai \\xn\\
p
p + j vn(z)xn(z) dz < en \\xn\\.j

We add (4) and (5). Because (Axn,xn) — | |V£n||p, we have

- en \\xn z (yn(z)xn(z) - pj(z, xn(z))) dz ^ pMl + en \\xn\\.

Dividing by ||a;n|| we obtain

vn{z)yn{z) \—n—'- dz < ^—- + en.

We know that yn{z) —> u\(z) > 0 almost everywhere on Z as n —$• +oo and so
zn(z) —> +oo almost everywhere on Z as n —̂  +oo. Then because of hypothesis H(j)(v)
and since vn(z) € 3j(2,in(z)J almost everywhere on Z, we have that vn(z) —> v+(z)
almost everywhere on Z as n —$• +oo. Hence by the Lebesgue dominated convergence
theorem, we have that / vn(z)yn(z) dz —> / v+(z)ui(z) dz as n —> +oo. Next let

J Z J Z

N C Z be the Lebesgue-null set outside of which we have xn(z) —> +oo a s n - > +oo
and hypothesis H(j)(v) holds. Fix z £ Z\N. For a given 0 < e < 1, from the Lebourg
mean value theorem, we have

j(z,zn(z)) = j(z,ea:n(z)) +u>n(.z)(l -e)zn(z) ,

with iun(z) e dj(z,un{z)}, where un(z) = (1 - an)xn{z) + anexn(z), with 0 < an < 1,
for n ^ 1. Hence un(z) = xn(z) - an(l - e)xn(z) ^ a;n(z) - (1 — e)xn(z) = exn(z). Since
xn(z) —> +cx3 as n -4 +oo and e > 0, we have that un(z) —• +00 as n -> -I-CXD and
so u>n(z) —> v+(z) as n -¥ +00 (see hypothesis H(j)(v)). Now let n0 = no(e, z) ^ 1 be
such that for all n ^ n0 we have xn(z) > 0 and wn(z) — v+(z)\ ^ e. We have, for n ^ 1,
that

( ) pj(z,gln(z)) pu;n(z)(l-£)xn(z)
xn(z) xn(z)
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Recall that b'fz,exn(2;)) < ai + a2e xn(z) , while —e + v+(z) ^ wn(z) ^ e + v+(z). So
for n ^ n0 we can write that

- p a i - pa2exn{z) p(-e

in(z) in(z)

pj(z,in(z)) pai + pa2£xn{z) p{e + v+(z))(l - e)xn(z)

xn(z) ^ in(2) in(z)

Since e > 0 was arbitrary, from the above inequalities which are valid for n Jj no, we
infer that

pj(z,xn(z))
—-———

Therefore it follows that

> pv+{z) as n -» +00.
xn(z)

r Pj{z,xn(z)) j _ r pj[z,xn{z)) Xn(z) j

Jz \\xn\\ Jz xn(z) \\xn\\

r pj(z,Xn(z)j r
= / —^———-yn(z) dz —> p / v+(z)ui(z) dz as n -> +00.

JZ XfiyZJ JZ

So if we pass to the limit a sn -> +00 in (6), we obtain

(1-p) f t>+
Jz

so
/ v+(z)ui(z) dz = 0.
Jz

But recall that u\(z) > 0 almost everywhere on Z and v+(z) ^ 0 almost everywhere on
Z with strict inequality on a set of positive Lebesgue measure (see hypothesis H(j)(v)).

Thus / v+(z)ui(z) dz > 0, a contradiction. This implies that {xn}n^i C WQ'P(Z) is
J z

bounded. So by passing to a subsequence if necessary we may assume that xn —> x

weakly in WQ'P(Z), xn —> x in If(Z), xn(z) —> x(z) almost everywhere on Z and

in(2) ^ ki(z) almost everywhere on Z with kx £ IP[Z).

Putting u = xn - x in (3) we obtain

-£„ \\xn - x\\ ^ (Axn, xn-x)-\x J |zn(z)|P in(z)(a;n - x){z) dz

(7) - / vn(z){xn - x)(z) dz < en \\xn - x\\.
J Z

Note that

M I \xn{z)\P xn(z)(xn - x){z) dz—^0 as n -¥ +00, and
Jz' '

/ vn(z)(xn — x)(z) dz —> 0 asn-> +00.
Jz
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[9] Nonlinear HVI at Resonance 361

So from (7), we have
lim sup (Axn, %n — x) ^ 0 .
n—f-f oo

But we already know that A is generalised pseudomonotone. So we have

(Axn, xn) —• {Ax, x) as n -¥ +oo,

so

IIV xn\\p
IIV xn\\

p
p —> ||Vx\\l a s n - 4 +oo.

Also Vxn —>• V i weakly in LP(Z,RN) a s n - 4 -foo. Since Lf(z,RN\ is uniformly

convex, we conclude that Vxn —> V i in LP(Z, R N ) a s n - > +oo and so xn —>• i in

Wo'"(Z) a s n - > +oo. Thus R satisfies the (PS)-condition. D

LEMMA 3 . If hypotheses H(j) hold, then there exist /?i,/?2 > 0 such that for all
x € Wl'v{Z), we iave

R(x)^(31\\x\\"-P2\\xf

with p < d ^ p* = Np/(N - p).

P R O O F : Let e > 0 be such that Ai 4- e < \i. From hypothesis H(j)(vi) we can find
6 > 0 such that for almost all z € Z and all £ such that |£| ^ 8 we have

On the other hand from the proof of Lemma 2 we know that for almost all z £ Z and all
C, such that \(,\ > 8 we have

with some ai, a2 > 0. Thus for almost all z € Z and all ^ € K we have

with 7 = (a! + a28)8 d + (fi - e)8p"6/p and p < fl ^ p* = Np/(N - p). Using this we
obtain that

i \ . /• -

dz

From the choice of e, we have - ( l /p) (Ai — [i + e) \\x\\p
p > 0, so

R(x)>l-\\Vx\\p
p-'y\\x\\l
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Because # < p* = Np/(N — p), from the Sobolev embedding theorem we have that

WQ'P(Z) is embedded continuously in L*(Z). So using the Poincare inequality, it follows

that

li(i)>AMIP-ftlMI*,
for some 0U(32 > 0 and all x € W^(Z). D

Using Lemmas 2 and 3 we have the following existence theorem for problem (HVI).

THEOREM 4 . If hypothesis H(j) hold, then the problem {HVI) has a nontrivial

solution.

P R O O F : From Lemma 3 we know that there exist ft,@2 > 0 such that for all x €
WQ'P(Z) we have

Since p < fi, we can find p > 0 small enough such that

inf {R{x)\ > 0.

Because / j(z,0) dz ^ 0, we have that i?(0) ^ 0. Also for all £ > 0, we have
Jz

r>tp- \ ^__ I | Y 7 IIP ^ ' I S II l i p / ;(y r» ( \ \ J I 'I C { \ I A

p p p Jz ' Jz

since || V uy\\v = Ai ||ui||p (Rayleigh quotient). From the proof of Lemma 2 we know that

almost everywhere on Z, as f —» +00.

So, recalling that ui(z) > 0 almost everywhere on Z, we have

j(z,£ui(z)) —> +00 almost everywhere on Z, as ^ -> +00.

So for £ > 0 large enough we shall have that R[£ui) ^ 0. This permits the use of
Theorem 1 which gives u s i g W^V(Z) such that R(x) > 0 ^ R{0) (hence x =£ 0) and
0 e dR(x). From this last inclusion we obtain

0 = A E - A I I I I " - 2 - * ; ,

with v € a^(x) C Lq(Z). Hence

and

(Ax,tp) = *i{\x\p-*x,<P)fq+{w)P
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[11] Nonlinear HVI at Resonance 363

Here by (•, )pq we denote the duality brackets for the pair (Lv(Z),Lq(Z)). So, for all
tp € C~(Z), we have

Jz\\vx(z)\r2(vx(z),Vf(z))RN dz = Jz(Xl\x(z)\P~2x(z)+v(z))<p(z) dz.

From the definition of the distributional derivative we have

( - divfl Vi(z) Vx(z)j = \ix(z)\p~2x(z) + v(z) almost everywhere on Z

x\r = 0,

so

i -div( Vi(z) Vx(z)J — Xix(z)\p~2x(z) e dj(z,x(z)\ almost everywhere on Z

(recall that v 6 dip(x) implies v(z) € dj(z, x(z)j almost everywhere on Z). Therefore

x € Wo'"(Z) is a nontrivial solution of (HVI). D

REMARK 5. In a companion paper we shall deal with the existence of multiple solutions
for semilinear (that is, p = 2) hemivariational inequalities at resonance. Our formulation

here incorporates problems with discontinuities. In this case j{z,C,) = I h(z,r) dr with
Jo

h : Z x R i—> R a Borel measurable function. In this case we know (see Chang [6]) that

dj(z,C) C [ M z , C ) , M * , 0 ] wi thMz.C) =liminf/»(z,c) and h2{z,C.) = l imsup/i(2 ,c) .

Such problems were considered by Chang [6] for semilinear equations (p = 2).
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