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THE ZERO DISTRIBUTION OF ORTHOGONAL
RATIONAL FUNCTIONS ON THE UNIT CIRCLE

K. PAN

ABSTRACT.  Rational functions orthogonal on the unit circle with prescribed poles
lying outside the unit circle are studied. We use the potential theory to discussthe zeros
distribution for the orthogonal rational functions.

1. Introduction. Letdu beafinite positive Borel measurewith an infinite set asits
support on [0, 27). We define Lgu to be the space of al functions f(z) on the unit circle
satisfying /g |f(€”)[?du(f) < oo. Then L3, isaHilbert spacewith inner product.

(,9)i= o [ 1(@)5E) du(0).

We define T := {z € C : |z < 1} and define Py, to be all polynomials with degree
at most n. For any polynomial r,, with degree n, we definer;(z) = Z'rn(1/2). Consider a
sequence X = {z,} withn € Nand|z,| < 1, and let

22 [2]
1-zz2 2z,

where for z, = O we put |z,|/z, = —1. Next we define finite Blaschke products recur-
sively as

bn(2) := n=1,...,

Bo@d=1 and By(@ =B i(@b(d, k=1,...

The fundamental polynomialsw(2) are given by
k
Wo(2) '=landwi(2) = [[(1—22, k=1,...,
i=1

and

n Z n
m=—1]—=, w@=][[@z—2), n=1,...
i=1 7] =1
The space of rational functions with poles among the prescribed points {1/z}] of
our interest is defined as
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R,:= [VS:(ZZ) : pePn}, n=0,1,...

It is easy to verify that {By}p_, forms a basis of Ry, i.e, Ry = span{By(2), k =
0,...,n} Foranyr € R, \ Rn1, we definer*(2) := Bn(2)r(1/2). Thenit is easy to see
that |r*(2)| = |r(2)]| for |zl = 1and r*(2) € R,. For each n, we now define the rational
version of Szeg6 polynomials {¢n}>, by orthonormalizing the basis By, By, ..., with
respect to the inner (-, -), and assume ¢;,(0) > 0.

The orthogonal rational functions play a very important role in Hankel and
Toeplitz operators, continued fractions, moment problem, Carthéodory-Fejer interpola-
tion, Schur’s algorithm and function algebras, and solving electrical engineering prob-
lems. Both analytic and algebraic theory for orthogonal rational functions have been
established by Bultheel, Djrbashian, Gonzalez-Vera, Hendriksen, Li, Njastad, and Pan
and some others (cf. [DD, DG, Djl-4, BGHN1-7, LP, and Pan1-4]). The behavior of the
zeros in the complex plane C of sequencesof polynomialsisa classical subject that has
been studied by many authors. In this paper, we use potential theoretic methodsto study
the zero distribution of ¢n(2).

In Section 2, we state our main theorems and the proofs of all the new theorems are
givenin Section 3.

2. Main Results. In order to state our main theorems, we need to introduce some
theorems in weighted potential theory [MS2]. In the investigations of weighted polyno-
mial approximation one was led to introduce analogues of the notions of capacity and
Chebyshev constant modified with an appropriate weight function so that these quanti-
ties can be defined even for unbounded subsets. Among the more significant applications
isin the proof of the “Freud conjecture” concerning orthogonal polynomialson R. For
the weighted potential theory, one can also find important applications in the theory of
orthogonal polynomials, best rational approximation and Padé approximation.

The weight function will be assumed to be admissible in the sense of the following
definition.

DEFINITION. LetE C C beaclosed set of positive logarithmic capacity and w: E —
[0, 00). We say that w is admissible if each of the following conditions holds:
(i) wisupper semi-continuous,
(i) Eo:= {z € E:w(2 > 0} has positive (inner logarithmic) capacity, and
(iii) if Eisunbounded, then |zZlw(z) — Oas|z] — oo, z€ E.
Let M (E) denote the class of all positive unit Borel measures whose support is con-
tained in E. If o € M (E), the weighted logarithmic energy of ¢ is defined by

lw(o) := / / log{| z— t | W@w(t)} * do(2) do(t).

We let V(w, E) denote the minimum value of this energy, i.e.,

V(w,E) := 6i |\r)|f(E) lw(o).
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The w-modified capacity of E isthen defined by
cap(w, E) := exp(—V(w, E))

For an admissible weight w on a closed set E, it is known that there exists a unique
= pu(w, E) € M (E) satisfying

lw(p) = V(W, E).

The measure 1(w, E) is called the extremal measure associated with w. Moreover, S =
Sw, E) := supp(r) iscompact, S C {z € E : w(z2) > 0}, and 1 hasfinite logarithmic
energy. We define

F = F(w,E) := V(W,E) — /Qdu,

where
Q@) := —logw(2).

Closely related to the notion of cap(w, E) isthe notion of w-modified Chebyshev constant.
When w is an admissible weight function on a closed set E C C, we define

ta(W, E) := peigfi1 [W'(2)[Z" + pl[,

where || - ||e denotes the sup norm on E. The w-modified Chebyshev constant of E is
defined by
t(w, E) := lim [ta(w, E)]Y/",
n—oo

where the limit is know to exist [MS2]. The connection between t(w, E) and cap(w, E) is
found by [MS2]

t(w, E) = exp(—F(w, E)) = cap(w, E) exp( / Qdu(w, E)).
Here we give the following example to view the constants.

ExAMPLE. [MS2] SupposeE is a compact set, and w: E — [0, 00) is an admissible
weight satisfying

w(2) <1forzeE, andw(Z) = 1for z€ boundary of E

Let ve be the equilibrium measure for E (vg is defined only on the boundary of E) and
o € M (E) be arbitrary. Then

//Iog{| z—t| w@wt)} tdve( dve(t) = //Iog{| z—t |}t dve(2) dve(t)
< / / Iog do(z) do(t)

<[/ P ErTO) t|W(z)W(t) do(2) do(t)
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Thus, by the uniquenessof the solution to the minimal energy problem, wehave py, = v,

S= supp(ve), and cap(w, E) = cap(E).
Animportant special caseiswhenE = T andw(z) = |2%,s> 0,then S, = {z: |Z] =

1}.
To each polynomial gs(2) = IIj_,(z — X«), we associate the normalized zero distribu-
tion measure v(gn) defined by

1 n
v(gn) = - > bxer
k=1

whereéy, isthepoint distribution with total mass 1 at x,. For anon-empty compact subset
K of C, welet D,,(K) denote the unbounded component of 6\ K, Pc(K) = C_:\ Doo(K)
denote its polynomial convex hull. Mhaskar and Saff proved, among other things, the
following fact.

THEOREM 2.1 [MS1]. For the monic sequence of polynomialspn(2) = 2" + - -,
n=0,1,..., supposethat

(2.1) lim [[wpnlld" < exp(—F), neA

and also that the following interior condition holds:
For any closed subset A of the interior of Pc(S),

(2.2). limv(pn)(A) =0, neA
n—o0
Then, in the weak * sense,

limv(pn) = p(W,E), neA.
n—oo

In order to use potential theoretic methods, we view 1/|wn(2)|*/" as our weight func-
tions. Set X is said to be uniformly distributed with respect to ¢(2) if the relation
lim [wn(2)*'" = |6(2)]
n—oo

holds uniformly for z on an arbitrary closed subset of some region V where V contains
|zl < linitsinterior but containsinitsinterior nolimit point of the set {1/z} ;. Define

2¢(1/2)
2

V(@) =

Then
lim [By(@)|Y" = [4:(@)|

Denote, for T > 0,

Rr:={z| [¥( |< T}, and Ur := {z| [(2) |= T}.
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Itiseasytoseethat T C Rrif T>1and T = R;.
From now on, we always assume X to be uniformly distributed with respect to ¢(2)
and consider the weight function

1
 [e@I

Letdp = p/(0) dd + dus() be the Lebesgue decomposition of du with respect to dé.
If /2" log u/(A) df > —o0, we define the Szegd function with respect to 1 as follows:

w(2)

dl+z
a7 _

> logp/(6)do).

D(2) = exp[4—17r ./027T
Definekn(2) = =L, 6i(0)4i(2) and ®n(2) = ¢n(2)/ $5(0). Let
T1:=max{T: sup‘ @){T\EJ kn(2) |< o0},

T, := max{T : D~}(z)isanalytic forz € Ry},
(A1 — z2)

Ts := lim sup |®,(0)[*/",
N—oo
oo}.
V=12 2

The following theorem shows the rel ations between those constants.

T, = max[T I sup max
n [¢@=T

THEOREM 2.2[P4]. Let f5" logu'() d§ > —oo, and X be uniformly distributed with
respect to ¢(2). Assume min{Ty, To, T4, 1/T3} > 1 and max{Ty, T2, T4, 1/ T3} < oo.
Then L

Ti=To=Ts==
1 2 4 T3

The following theorem will give the limiting distribution of the zeros of ¢, (2).

THEOREM 2.3. If [2"log u'(A) df > —oo, and let A be any subsequence of positive
integer s such that
lim |PaQ)Y"=p, neA.

Assume ¢%(2) = Gn(2)/Wn(2), 0n(2) = anZ" +--- € Py. Let X be uniformly distributed
with respect to ¢(2) and assumethat Pc(Ry/,) = Ry/,,. If 0 < p < 1, then, in the weak
topology,

r!'_(g V(qn) = M(Wv Rl/p)i nen,
where on(2) = &n(2)/an.

For the case p = 1, we have
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THEOREM 2.4. Let X be uniformly distributed with respect to ¢(2) and |z,| < r,
n=1,...,andr > 1. Supposethat

1
(2.3) Aim — i;chi(o)l =0,
and
(2.4) JL”;'“’"(O)'l/n =1, neA.
Then

n“_[-?o V(qn) = ,u(W, T)v neA.

3. Proofs. Wefirst prove the following Lemma.

LEMMA 3.1. Forw(z) = 1/|4(2)] and1 < T < oo, we have

cheb(w,Rr) =T
Proor. Notice that
1 I ,(z—2z) IL.(z—2)| ||wa(2
n — Zn < i=1 < i=1
wnr = min || <[] <[RSS RS,
Thus,
cheb, Rr) = lim spts ", Ry) < im sup B 5| = 1wl =T

Onthe other hand, let C(2) = 2"+ - - - be
IW'(@Cn@)|, = ta(W, Rr).

Notice that limy_., TT[; [z] = 0 since X is uniformly distributed with respect to ¢(2),
then co ¢ Rr. Also Cn(2)/Wj(2) is analytic in C \ Ry for T > 1. By the maximum
principle, we have

Cnh(2 Cn(oo)
G lw@ = W)
Also, let x, € Ut such that
qm){ﬁ@
W5 (%n) WA(2) IR,
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Thus, from (3.1), we have

ta(W, Rr) = [W'(2Cn(2)Ig,

> W) Ce)
— W )] [
C:(2)
e

= [W'(Xn)Wp(Xn)|
> (W)W, (Xn).

Rr

Let {xn} be the subsequence convergentto xo € Ur, then

lim t/"(w, Rr) > 1im sup W ()W () [/ > [1:00)| = T.
n—oo N—o0

PrROOF OF THEOREM 2.3. From Theorem 2.2, we have

3.2) jim @A -2 _ 1 ZERy,

M 1-a? D@’

Since 1/D(2) has at most a finite number of zeros inside every disk in Ry/,, from
Rouché's theorem, the number of elements of the sets

{z:ze Ry, andgn(2) = 0}

is bounded. Notice that Pc(Ry/,) = (Ry/,), for any closed subset A of the interior of
Pc(Ry,), we have
1im »(Gn)(A) = 0.

So, we proved (2.2) in Theorem 2.1 for E = Ry, andw(2) = 1/|4(2)].
On the other hand, consider w(z) = 1/|¢(2)|. Then

(3.3) IW'@on@)r,, < \?v”(é)) . 1’:”8 0 lon@llr,, \2’“8 .
From (3.2), we get 1

|i1§gpll¢2(2)llm/p =l

Thus, from (3.3),

(3.4) lim (W@ <1

Notice that, ¢%(2) = Gn(2)/Wn(2) = 2E2*% then

Wa(2)
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o aozn +---+a,
(2 = Uniwn(z) .
And so ap = ¢n(0)17n. From (3.2),

#n(0) 1

nll—To /1— |22 - D(0)’

then limp_.o, |¢%(0)|*/" = 1. Thus, from the given condition,

lim |an|Y™ = lim |n(0)|¥" = lim |®,0)|Y" = p, neA.
n—o0 n—o0 n—00
Together with Lemma 3.1 and (3.4), for n € A.

1/n 1/n

. 1
R < lim |—
1/p N—0oo | dn

lim [W'@a @I = lim i""n(z)¥

Ry/p

1
5= cheb(w, Ry/,) = exp(—F(W, Ry /,)).

Thisis(2.1) in Theorem 2.1for E = Ry, and W(2) = 1/[¢(2)|. From Theorem 2.1, this
completes the proof of the theorem. ]

PROOF OF THEOREM 2.4. First, notice that all zeros of ¢} (2) liein |z > 1 and
Ry = T. So for any closed subset A of |z < 1, we have

1im »(Gn)(A) = 0.

Thisis(2.2) in Theorem2.1for E= T and W(2) = 1/|4(2)|.
Next, we prove (2.1) in Theorem 2.1. In [P3], we proved that

k(@) < ko ﬁl{1+ Om(O)|(L+ [20]) + [ ®m(O)]2}

Noticethat if |®n(0)| < land|zn <1, m=12,...,then

(3.5) @) < o [1{1+30n(0)} < loep(3 3 [n(O)]}.
Also from Lemma 3.2 in [P3], we have
I P p—
P42 @ 1-z2=1 znz<Dn(0)kn(Z)-
Noticethat if |k(2) /kn(2)| < 1,|2] <1land|Py(0)| <1,then
» 1 k@I
3.6) 9@l <25t A1
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From the remark, we have

it 1 7 <1
27 ]1-2z2 —1-r’ -
And so,
e b Ast
Together with (3.6), (3.5) and (2.3), we have
1/n
s < i K@Y
@ fim 3@} < fim |8~ 1

Together with a, = ¢n(0)i1, and lim,_., |®n(0)|/" = 1 for n € A, we get

1/n 1/n
tim W@l 7" = fim | W2 SR
@ [ @] (4@
Sr!Ln;"t'ﬂnwn(z) T _“II_’TO} an T_““_’n;"|¢n(o) T
1/n
< Jim [ @@ fim | ool = 1= cheb(w,R)

cheb(w, T) = exp(—F(w, T), neA.
Thisis(2.1) in Theorem2.1for E = T andw(z) = 1/|w(2)|. This completesthe proof. =
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