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APPLICATION OF THE HURWITZ ZETA FUNCTION
TO THE EVALUATION OF CERTAIN INTEGRALS

ZHANG NAN YUE AND KENNETH S. WILLIAMS

ABSTRACT.  The Hurwitz zeta function ((s, a) is defined by the series

1
(s,a) = Z

= (n+ a)y’

for0 < a < 1and o = Re(s) > 1, and can be continued analytically to the whole
complex plane except for a simple pole at s = 1 with residue 1. The integral functions
C(s,a) and S(s, a) are defined in terms of the Hurwitz zeta function as follows:

Q2ry (1 —s,a)+¢(1 —s,1—a))

Cs.0) = 4 ['(s)cos Zs
Q) (€ —s,a)—¢(1—s,1— a))
Ssa) = 4 I'(s)sin Zs

Using integral representations of C(s,a) and S(s,a), we evaluate explicitly a class of
improper integrals. For example if 0 < a < 1 we show that

00 e *logx T 1 12101 ‘a))
/0 e —2e—*cos2ma+1  2sin2ma log ((27r) I'(a)

1. Introduction. The Hurwitz zeta function {(s, a) is defined by the series

x 1
(11) . g(S,a):r;)m

for0 < a < 1 and ¢ = Re(s) > 1. The reader will find the basic properties of {(s,a) in
[3, Chapter 12]. When a = 1 {(s, a) reduces to the Riemann zeta function

) = Z —

,n'

Following [17, §2.17], an integral representation of {(s, a) is

e(l a)x
x"1 dx, o>1.

(1.2) D=5 | /°°
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Using this integral representation (s, a) can be continued analytically to the whole com-
plex plane except for a simple pole at s = 1 with residue 1 by means of the integral

efm'sr(l _ S) e(lAa)z -

(1.3) {(s,a) = - e lzs dz,

where C is the contour consisting of the real axis from oo to € (0 < ¢), the circle |z| = ¢,
and the real axis from e to 0o. We remark that relations and values for the Hurwitz zeta
function and its derivatives have been given by many authors, see for example [1], [2],
[4], [51, [6], [7], [9], [10], [14], [15].

For 0 < 0 we deduce from (1.3) that ((s, a) can be expressed in the form

2 —s) 7 . 7s
o "2

where C(s, a) and S(s, a) are the functions defined by

(1.4) ((s,a) = C(1 — s, a) +cos Z;—SS(l —s,a)),

(1.5  Cls,a)=Y %x"_"_a, Ss,a) =3 Smn:”m, 0<a<l, o>0.
n=1 n=1

The functions C(s, a) and S(s, a) can be continued analytically to the whole complex
plane. In terms of the Hurwitz zeta function, we define the functions

(1.6) A(s,a) = ((s,a) +{(s,1 —a) = ———TI(1 — s)sin —C(l ,a),

4
(2 )ls

)] u(s,a)y = ¢(s,a) —((s,1 —a) = ———I'(1 — s)cos —S(l ,a).

4
(2 )1 s

In §2 we determine explicitly the value of S'(1,a), 0 < a < 1 (see Proposition). We
also obtain integral representations of C(s, a) and S(s, a) (see (2.16) and (2.17)).

In §3 we use the integral representations for C(s, a) and S(s, a) to evaluate a class of
improper integrals. One of the results obtained is the following: for0 <a < 1

00 e *logx ™ 1 1—2a L (1 — a))
dx=————1 2 4 .
/0 2 _2e*cos2ra+ 1" 2sin2na og(( ™ T(a)

This integral can be found in [13, p. 572]. Special cases of this integral are discussed in
[18]. In addition the integral

/ (e *cos2ma — e~ %) logx

e —2e*cos2ma+ 1
is evaluated for certain values of a, namely, @ = 1/2,1/3,1/4,1/6. The values of the
integrals obtained when a = 1/2,1/4 appear in [13, p. 572] but those fora = 1/3,1/6
appear to be new.

Finally in §4 we use the integral representations of S(s,1/ 4) (resp C(s,0) and
C(s, 1/2)) to obtain the following integral representation of ¥ (2n “)X (resp. 52,4 n‘ :
S =S 1 /4y =S 1 > &

= @n+ly T(s)Jo e+l

3 1 o e
) = ,1215_(1—5;)r(s>/o Sl o> 1.

*Ydx, >0,
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Using the first of these representations with s = 2k + 1, we obtain a new recurrence
relation for S(2k + 1). The second of the two representations with s = 2k yields the
recurrence relation for ((2k) given by G. Stoica in [16].

2. Evaluation of S'(1,a). From the theory of Fourier series, for 0 < a < 1, we

have
X sin2nma 1
2.1 S(1,a) = =7(=—a),
2 (5-4)
X 2
2.2 Cla) =3 f‘&n”l‘f = —log(2 sinma).
n=1

From (1.4) and (2.1), we obtain

sin2nma 1

2.3) (0.0) = 2 -,
and hence by (1.6) and (1.7), we have
(2.4) A(0,a) = ((0,a) +(0,1 —a) =0,
2.5) (0, a) = ¢(0,a) —¢(0,1 —a) = 1 — 2a.
PROPOSITION.  For 0 < a < 1, we have
Il - a)

2.6) S'(1,a) = g log +(1 — 2a)(v +log2m) }.

I'(a)
PROOF. Differentiating both sides of (1.7), putting s = 0, and appealing to (2.1) and
(2.5), we obtain
2
2.7 1 (0,a) = (v +log2m)(1 — 2a) — =S'(1, a).
T

However, from Hermite’s formula for the Hurwitz zeta function

1—s
a 2 a—s . ( X) dy
s_1+2/0 (a+y) z{sm sarctana }e27ry__1,

it is easy to see ([19, p. 271]) that

2.8) {(s,a) = %aﬂ +

2.9) ¢(0,a) = logT(a) — % log2m
and from (1.7)
(2.10) 1'(0,a) = log (T(@)/T(1 — a)).

From (2.7) and (2.9), we deduce (2.6). [
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REMARK 1. Since )
X sin2nma

S,a)=—3"

n=1

we have from (2.6), making use of I'(a)['(1 —a) =

logn,

sinma’

sin2nma

1 o0
@11 — %

n=1

1 1 1 .
logn = logI'(a)—(Y+log 27r)<§ —a) —3 log m+ > log(sin ma),

which is a famous formula due to Kummer [11] (see also [19, p. 210 ]).
Differentiating (1.6) and putting s = 0 we have, using (2.4) and (2.2),

2.12) X (0,a) = C(1,a) = —log(2 sina).

If we differentiate both sides of (1.6) twice and take s = 0, we see that

(2.13) A(0,a) = 27C(1,a) — 2C'(1,a) + 2(log 2m)C(1, a),
or equivalently

, " X cos2nma
(2.13) M'(0,a) = —2(7 +log 2m) log(2 sinwa) + 2 Z — log n.

So far we have the expressions (1.2), (1.6), and (1.7) for ((s,a), C(s,a) and S(s, a) re-
spectively. Now we obtain other integral representations of these functions. Taking the
real and imaginary parts of the identity

21ra1 00 ) )

1 — re27ml Z 7rnaz, |r| < 1,

we have
rsin2ma X

2.14 2mna, 1,
(2.14) — 2rcos 27ra +1 ,,S;" sin2mna, - |r| <

2 — 00
(2.15) reos cma = 27 eos2ma, [ < 1.

— 2rcos 27ra +1 3

For 0 > 0, we have

00 r
[) e dx = _(s_)

nS
Multiplying this equality by sin nt, summing over n, interchanging the order of summa-
tion and integration, and appealing to (2.14), we obtain

efxxs—l

T(s)S(s,a) = sin2ma | dx.
(5)5(s, @) = sin 7ra/0 e —dercos2ma+l
Hence we have
(2.16) sin27a ex dx = T(5)S(s,a), 0<a<1, o>0
. = S, ’ 5 .
0 e 2 —2e*cos2ma+ 1 =a= g
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Similarly, from (2.15), we have

/00 (e *cos 2ma — e~ %)
(2.17) 0 e 2x—2¢*cos2ma+ 1

X ldx =T(s)C(s,a), 0<a<l, o>0;
ora=0,1, o>1.

The formulae (2.16) and (2.17) give integral representations of S(s,a) and C(s,a) re-
spectively. Then, from (1.4), (2.16) and (2.17), we obtain the integral representation of

{(s,a):

ooe"cos%s—%a)—cos%xv_ldx 0<a<l > 0:
0 e — 2¢* cos 2ma + 1 ’ asth @ ’

¢ —s,a) =202m)"*°
ora=1, o>1,

or

s

w1 [ €sin(F +2ma) —sinF | )
() =20m" [T e o2y, 0<a<1, o<

(2.18)
ora=1, o<0.

These expressions will be used in the following sections.

3. Evaluation of certain integrals. By differentiating (2.16) and (2.17) and using
the values of S(1,a), S'(1, a), C(1,a), and C'(1, a) obtained in §2, we are able to evaluate
certain improper integrals.

THEOREM 1. For0 < a < 1 we have

e logx T 1 1—2aT( ——a))
3.1 dx = — log| (2 a’ ) )
G- /000 & —2ecos2ma+ 1 2sin2na og(( ™ I'(a)
In particular, fora = é, %, %, % the integrals in (3.1) become
o ¢*logx 21 (5
. —— 0% == - 1/6)},
(3.2) /0 eZX_e”_ldx \/g{6log27r log I'( /6)}
elogx m V21T (3/4)
(3.3) b S dr=Flog ST
¢ logx o @m'*re/3)
(34) /:dex“ N R VTV R
o elogx 1 ™
(3.5) [ e = 2<log : 7).
PROOF. From (2.16), we obtain
00 e *logx 1 /
/0 e —2¢*cos 2ma + 1 d = sin2ma (F(S)S(s’a))s:‘
1
= —{T()S'(1,a) + T'(HS(1,a)}.
sin27a
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In view of (2.1) and (2.6), we have

/oo e *logx
0 e 2 —2e*cos2ma+ 1

1 {w[ I'(1 —a)
= lo

dx

+(1— 2a)(7+log27r)} — 77‘((—;— — a)}

sin2ma | 2 T'(a)

7r I —a) }
_ 1 +(1—2a)log2r},
ZSin27ra{o T@ T~ 2o

which is (3.1).
For a = 1/2, the value of the integral on the right side of (3.1) should be considered
as the limiting value as a — 1/2:

oo ¢*logx . 1 'l —a)
== —2a)l
0 (e"+1)2dx 2 a:»lir;Z si1327ra{ T'(a) + (1= 2a)log2m
L (r'd
= —{ (12) -l—log27r}.
21T

Taking s = 1 in the well-known formula [12, p. 320]

SX

o b (5=

L (- )

and taking s = 1/2 we obtain

e e

we obtain

ra/2) x  l—ex
— oe e
0 1—e
1
11 —1:
=7 +/0 T—; dt
= -V —2log2.
Hence we have o |
ogx ™
—dx = ~(log = —
o @+12 ™ 2(°g2 7).
which proves (3.5). [

REMARK 2. The integral in (3.1) can be expressed in the following equivalent forms:

1 oo log x 1 loglog L log log x
2 A coshx — cos 2ma o -/0 x2 — 2xcos2ma + 1 . /I'QO x2 —2xcos2ma+ 1
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Similarly, from (2.12), (2.13) and (2.17), we have

—2x)

/oo (e *cos2ma — e

li
1 = (I .
0 e 2 —2¢*cos2ma+ 1 ogx dx ( (©)CCs a))s=1

=T()C'1,a)+T'(1H)CA,a),

that is by (2.2)
(e™* cos2ma — e %)
3.6) /0 e —2e*cos2ma+ 1

or by (2.13)

logxdx = C'(1,a) +71og(2 sinma),

—Zx)

(3.6)’ /oo (e7*cos2ma —e

. 1 "
TRy y—1 logxdx = —(log 2m) log(2 sinma) — 5)\ (0, a).

It appears to be difficult to determine C'(1, a) explicitly for general a, so we just evaluate
C'(1,a)fora = ; ; 1 l . For these values of a, C(s, a) can be expressed in terms of {(s).

THE CASEa = 1/2.  We have

C(s %) Q' =~ 1)(s)
={—(1og2)(s—1)+%(1og22)(s—1)2+---}{;—1—+7+--.}
:—log2+<%log22—710g2)(s—1)+~-

so that

N1
(3.7) C’(l,z) = 5 log’2 —Vlog2.

From (3.6) witha = 1/2 and (3.7) we obtain

o logx 1 )
(3.8) [0 = —5(0g2)".

THE CASEa = 1/3. We have

C(s5) = 56"~ 14

_1 1102 2 VL
-E{—(log3)(s—l)+ (log? 3)(s — 1) + }{ — 4 }
1 1
:—510g3+< log?3 — —10g3>(s—1)+---
so that

o1 1
3.9) c’(l, 5) = ; log? 3 — >Vlog3.
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From (3.6) witha = 1/3 and (3.9) we obtain

(3.10) /000 (¢ +2)logx

1
== dx = —=(log3)*.
eX e+ 1 2(og )

THE CASEa = 1/4. We have
1 _ A—=smyl=s _
Cs7) =27@" ~1x)

3 (1 _ (s—1Dlog2 , - l)zlog22+ )
2 2 4

_1)\2
(—(s ~1)log2+ (s_zl log?2+ - - -)C(s)

_ (H(s~— Dlog2 3

: 4-(s—1)21og22+-.-)(L+v+---)

s—1

- 110g2+(§log22—%10g2)(s~ Dt

) 4
so that
1 3 Y

/ - = = 2 —_——
G.11) c(1,4) Zlog?2 — = log2.
From (3.6) witha = 1/4 and (3.11) we obtain

~ logx . 3.,

(3.12) /0 S o=~ log’2

Replacing x by x/2 in (3.12), as

o dx
fo e+ 1 = log2,

we recover (3.8).

THE CASEa = 1/6. We have

I

1 1 1—s 1—s
Cls.2) = 50 =201 = 3'7)(s)
(s—1)y?
2

1
E((s—l)logz— 10g22+~~~)

(s —1)
2

((S—l)10g3— 10g23+...)<(s)

I

(%(s — 1)*(log2)(log3) +- - )(ﬁ +Y )

= %(10g2)(10g3)(s— D+

so that

Iy 1
(3.13) c’(l, 6) = (log2)(log3).
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From (3.6) witha = 1/6 and (3.13) we obtain

oo (¢ — 2)logx

3.14
( ) 0 e¥ —e'+1

dx = (log2)(log3).

REMARK 3. Since
X cos 2nma

Cla)y=-3"

n=1

we deduce respectively from (3.7) (or (3.11)), (3.9), (3.13)

logn

X 1)1 1
(3.15) Z - ) 8" _ ylog2 — > log?2
2nm
o0 cos—logn 1 1. ,
(3.16) > 2 = 7log3 — L log’ 3,

n= I

X, cos 5 logn

3.17) = —%(log 2)(log 3).

™

n

n=

4. A recurrence relation for %% 5. Taking @ = | in (2.16) and defining

N NS oV
4.1) S(s) = (5. 7) =X o °70
we have
“4.2) I'(s)S(s) = e c>0.

It is very easy to see that C(s, 0) = ((s), and (2.17) with a = 0 becomes the well-known

formula:

4.3 r 2 e >
4.3) ($)C(s) = h w4 o .
Also

and (2.17) with a = 1/2 reduces to

o 1
(4.4) (1 — 21"(s)C(s) = /0 Sy 0>0.
Adding (4.3) and (4.4), we obtain
4.5) @2 — 2" H0(s)(s) = 2 /m o> 1.

We are now ready to prove the following theorem.
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THEOREM 2. For nonnegative integers k, we have

(4.6) 2(—1)1(21)' Cr™4S(2) + 1) + (— 1M (2K SQk+ 1) = (/2)**".

PROOF. Taking s = 2k + 1 in (4.2), we have

00 e"x2k oo (lo t2k
(2k)!S(2k+1):/0 = t2g+)1

But in view of

logt 2k 1 (logt 2k
/oo(c;g) dt:/ (g™
o+l +
we have
@.7) 202k sk+ 1) = [ doeD”
’ ’ N 2+1
Considering the integral of the complex function F(z) = “‘I—ﬁ;ﬁ- along the contour shown

in the figure below, we obtain by Cauchy’s residue theorem

-R —£ 0 € R

—& R
@8 [ Fodz+ | FQdz+ [ F@ds+ [ Fode = 2miRes(F).i).
Now we evaluate the residue on the right side of (4.8). We have

(

1)
Res(F(2).1) = Z—%_—i(logz)z’ﬂz:i = %(log i = —2—)——(7r/2)2k.

On the semicircle Cg, we have

2k 2k
Fz) = O(UOgR) )/( F(2)dz = 0((l°gRR) ) L0, asR— oo

R2

and on the semicircle I',, we have

F(2) = O((log o)), [ F(z)dz = O(=(loge)*) 0, as=— 0.
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In addition we have
R (logt + i)

—E
/_R F(x)dx = A 52
Hence letting ¢ — 0 and R — 00 in (4.8) we obtain
oo (log)?* + (log t + mi)* s
[0 1+22 dr=(=1) 2% °
Taking the real part of the above equation, we deduce (4.6).
In particular, taking k = 0, 1,2,3,4 in (4.6), we have S(1) = 7, S(3) = %, S8) =

35,81 = &80, 59) = 75y

Slmllarly, making the substltution t = € in (4.5), we obtain
. oo (log#)*~!
2 =2"HT(s)(s) = 2/1 (oz_g)T_ d, o>1,
and with s = 2k
log £)2-!
_ol-2 — 1) — (_g_
(2 — 21722k — 1)1 ¢(2k) 2/100 .
Since
(IOgI)Zk 1 /[ (10gt)2k l
o2 -1 P—1 L
we have
o (log £)%!
— 1 o)
4.9) 2(1- 22k)(2k Do = [7 = .

skt )
Considering the integral of Efz%)l— along the contour shown in the figure below

and applying Cauchy’s residue theorem, we obtain
4. 10)
Z( 1@~ e (1 - 5 )+ 0tk - 0 (1 - 5z )b

j*

=—n*/4, k>1.
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The recurrence relation (4.10) was obtained in [16] by a longer argument. In particular,

2 4 6 8 10
s m 7r s s
= — 4 = —, 6 = —, 8 = —, 1 0 = .
2 5 @) =755 O =753 ¢(®) 9450 ¢(10) 93555
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