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SUMMARY

The present paper provides an approach for the design and analysis of variety trials that are used to obtain quality
trait data. These trials are multi-phase in nature, comprising a field phase followed by one or more laboratory
phases. Typically the laboratory phases are costly relative to the field phase and this imposes a limit on the number
of samples that can be tested. Historically, this has been achieved by sacrificing field replication, either by testing a
single replicate plot for each variety or a single composite sample, obtained by combining material from several
field replicates. An efficient statistical analysis cannot be applied to such data so that valid inference and accurate
prediction of genetic effects may be precluded. A solution that has appeared recently in the literature is the use of
partial replication, in which some varieties are tested using multiple field replicates and the remainder as single
replicates only. In the present paper, an approach is proposed in which some varieties are tested using individual
field replicate samples and others as composite samples. Replication in the laboratory is achieved by splitting a
relatively small number of field samples into sub-samples for separate processing. It is shown that, if necessary,
some of the composite samples may be split for this purpose. It is also shown that, given a choice of field
compositing and laboratory replication strategy, an efficient design for a laboratory phase may be obtained using
model-based techniques. The methods are illustrated using two examples. It is demonstrated that the approach
provides more accurate variety predictions compared with the partial replication approach and that the gains can
be substantial if the field variation is large relative to the laboratory variation.

INTRODUCTION

Accurate phenotypic information on quality traits is
vital for successful variety selection in plant breeding
programmes and for genetic research including
genomic selection and the identification of quantitat-
ive trait loci. Many quality traits, such as flour yield,
dough rheology and bread-baking characteristics for
wheat, are obtained from multi-phase experiments in
which varieties are first grown in a field trial then
further processed in the laboratory. Quality testing
tends to be labour intensive and expensive, so there is
typically a limit to the total number of samples that can

be tested. Historically, this has led to the practice of
testing a single field replicate for each variety (or a
single composite sample formed by combining grain
from the individual replicate plots for that variety) and
no randomization or replication of grain samples in the
laboratory. Such an approach may preclude efficient
prediction of the genetic effects of interest.

Recent work, in particular Smith et al. (2006) and
Brien et al. (2011) have shown the importance of using
sound experimental design techniques (including
randomization and replication) in all phases of a
multi-phase experiment. The testing of replicates from
the field phase is vital since without this there is no
valid estimate of error. Replication in a laboratory
phase involves the splitting of the experimental units
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from the previous phase and testing as separate
samples. Both Smith et al. (2006) and Brien et al.
(2011) recommend laboratory replication, although
the latter suggested that it is only required when
‘. . .uncontrolled variation in the laboratory is large
relative to the first phase’ or when ‘. . .the relative
magnitudes of field and laboratory variation are to be
assessed.’ In the current authors’ experience with
quality traits, one or both of these is generally the case.

The cost of quality testing and consequent restriction
on number of samples was addressed in Smith et al.
(2006) with the use of partial replication. In this
approach, and for a two-phase experiment, a sub-set of
the varieties is tested using multiple field replicate
samples (the remainder being tested using a single
replicate only), then a sub-set of the selected field plot
samples is split to produce replicate samples for the
laboratory analysis. This has been found to work well
in terms of minimizing both selection errors and cost,
but when the field trial is a fully replicated trial it can be
wasteful in the sense that field plots of some varieties
are completely ignored. Smith et al. (2011) considered
a similar issue but in the context of grain quality traits
that are derived from a single (field) phase alone: they
proposed that some varieties should be tested using
individual replicate samples and others using com-
posite samples. In this way, all field plots are used to
generate data on the trait/s of interest. Smith et al.
(2011) demonstrated that with such data it is possible
to fit mixed models that enable the efficient prediction
of genetic effects. In the present paper, the approach of
Smith et al. (2011) is extended to suit the first phase in a
multi-phase experiment. The concepts will be dem-
onstrated using two motivating examples.

Motivating examples

Example 1: Wheat variety classification project

Prior to their commercial release, wheat varieties in
Australia are classified according to their end-use
capabilities. Classification is based on data submitted
by private breeding companies to an expert advisory
panel. Data on each candidate variety are obtained
from a number of field trials and on a range of (multi-
phase) traits including flour yield, and dough and
baking characteristics. Accurate classification of vari-
eties is crucial since growers are paid differentially on
this basis. Accuracy is heavily dependent on the use
of appropriate data, both in terms of the type and
nature, so that protocols regarding experimental

design and data requirements are fundamentally
important. Currently, the data used for classification
are based on fully composited data (i.e., composites of
all field replicates within a trial), from several designed
field trials with no experimental designs for the
laboratory phases. Such data do not allow a statistical
examination of protocols since potential sources of
variation (including variety× trial interaction, be-
tween-plot variation in the field and between-sample
variation in the laboratory) are confounded, so cannot
be quantified or modelled. A recent project has been
designed to enable estimation of all these sources
so will ultimately allow examination of protocols
for wheat variety classification. The full project spans
3 years with 24 field trials grown across Australia each
year. In the present paper, the experimental design for
the measurement of flour yield for one of these field
trials is considered.

The field trial under study comprised 54 plots
arranged in a rectangular array of six columns by
nine rows. There were three replicates each of 18
varieties with replicate blocks aligned with pairs of
columns. Methods for designing the milling phase of
this trial will be described, noting that budgetary
constraints have necessitated a restriction of 40
samples for milling.

Example 2: Genomic selection in wheat population

A wheat population with diverse genetic composition
has been constructed in order to investigate marker-
trait associations and genomic selection for a range of
complex traits. The population has been genotyped
using single nucleotide polymorphism (SNP) and
diversity arrays technology (DArT) markers and is
being phenotyped through a number of field trials. The
field trial under study comprised 1000 plots arranged
in a rectangular array of 50 columns×20 rows.
There were 773 entries grown in the trial and these
comprised 760 test lines and 13 commercial varieties.
A resolvable p-replicate design (Cullis et al. 2006)
was used in which 554 entries were sown as single
replicates and 213 as two replicates. There were six
entries that had additional replication (Table 1).
Replicate blocks for the replicated entries were aligned
with columns with the first replicate comprising
columns 1–25 and the second columns 26–50. The
trait considered here is flour yield. Unlike the field
trial described in the previous section, in which it
was planned from the outset that all varieties would
be milled, cost considerations necessitated a limit of
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<550 samples for milling, so it was not possible to mill
all entries. It was decided to use 480 entries, chosen
from the full set of 773 both on the basis of their genetic
diversity as identified using the markers and the fact
that they had sufficient grain for milling. The latter was
important for this trial, which was unexpectedly low-
yielding. A summary of the field replication status of
the chosen entries is given as the final columns in
Table 1.

DESIGN AND ANALYSIS FOR MULTI-PHASE
TRIALS

Review of methods

In terms of the design of multi-phase trials, Smith et al.
(2006) and Brien et al. (2011) demonstrate the need for
the application of valid experimental design techni-
ques (in particular, replication and randomization) in
all phases. Experimental designs for field trials are well
established and widely adopted. Thus in a multi-phase
setting the design of the first phase is usually well
constructed. The principles employed for this phase
should also be applied to the second (and higher)
phases. In terms of replication this means that for the
two-phase milling examples there must be replication
carried through from the field trial into the milling
process, then replication applied in the milling process
itself. The latter is achieved by taking grain samples
from individual field plots and splitting into sub-
samples (typically two), then milling these separately.
In the context of quality testing, fully replicated

multi-phase designs are usually prohibitively expens-
ive and not necessary from a statistical perspective.
Typically, there are restrictions on the total number of
samples that can be tested in the laboratory. In the
context of two-phase experiments, Smith et al. (2006)
achieve this using ‘p/q replicate’ designs. In these

designs, individual field replicates are used for a
proportion, p, of varieties with the remainder tested
using a single replicate only. This defines the field plots
to be tested, a proportion, q of which, is then replicated
in the laboratory. The approach is easily generalized
for experiments requiring more than two phases.

In terms of the analysis of multi-phase trials, Smith
et al. (2006) use a linear mixed model approach that
accommodates the block structure for each phase as
well as allowing for additional sources of variation and
correlation. Let k denote the number of phases in the
trial and s denote the number of samples for which a
measurement is obtained. The linear mixed model for
the s×1 vector of data y can be written as:

y = Zgug +
∑k

r=1

Xrτr +
∑k

r=1

Zprupr + e (1)

where ug is the vector of random variety effects, τr is the
vector of fixed effects associated with phase r (r=1,. . .,
k), upr is the vector of random non-genetic (peripheral)
effects associated with phase r and e is the vector of
residuals. The matrices Zg, Xr and Zpr are design
matrices. Typically the vectors of random peripheral
effects contain sub-vectors that will be denoted by uprt.
Then the variance matrices for the random effects are
given by

var(ug) =Gg

var(uprt ) =Gprt ⇒ var(up) = ⊕qr
t=1Gprt

var(e) =R

In the simplest models, all variance matrices are scaled
identities with Gg=σ

2
gI,Gprt = σ2prt

I and R = σ2I, where
identity matrices have dimensions commensurate
with the length of the associated vector of effects.
However, more complex forms, including separable
auto-regressive processes of order 1 for the modelling
of spatial correlation in the field plot effects (Smith
et al. 2006) can be used. All analyses in the present
paper were conducted using themixedmodel software
ASReml-R (Butler et al. 2009) within the R statistical
computing environment (R Development Core Team
2011). ASReml-R (Butler et al. 2009) output includes
residual maximum likelihood (REML) estimates of
the variance parameters, empirical best linear un-
biased estimates of the fixed effects and empirical best
linear unbiased predictions (EBLUPs) of the random
effects.

In terms of the experimental design, first note that
multi-phase experiments are typically designed se-
quentially rather than simultaneously with the second

Table 1. Example 2: summary of replication in the
field for all entries and sub-sets of entries chosen for
milling

All entries Entries for milling

Plots/entry Entries Plots Entries Plots

1 554 554 330 330
2 213 426 145 290
3 4 12 3 9
4 2 8 2 8
Total 773 1000 480 637
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(and higher) phases often constructed after the field
trial has been harvested. This may be necessary for
several reasons including the fact that in standard
selection trials only those varieties that are selected on
the basis of grain yield are then tested for quality traits.
Thus the varieties to be tested are only known after
conclusion of the field trial. Similarly, the choice
of plots to be replicated in the laboratory may be
dependent on the field trial since quality testing
requires a minimum amount of grain and there may
be some plots with insufficient material to split into
sub-samples for separate processing.

Given a valid design for the first phase, a second
phase design is sought using the model-based techni-
ques of Butler (2013). In this approach, one criterion
that can be used is A-optimality, so that the goal is to
seek designs that minimize the average pair-wise
(prediction error) variance of the variety effects (or
some sub-set thereof) given a pre-specified model of
the form in Eqn (1). Bueno Filho & Gilmour (2007)
discuss the fact that the use of this criterion minimizes
the probability of making incorrect selection decisions
and also provides, in the random treatment effects
setting, ‘. . . a sensible utility function for ranking
treatments and for estimating treatment effects’. All
designs in the present paper were generated using the
package ‘optimal design’ (od; Butler 2013), which runs
within the R statistical computing environment (R
Development Core Team 2011). The syntax of od
(Butler 2013) is consistent with ASReml-R (Butler et al.
2009). The package produces designs given a speci-
fied model (and associated variance parameter values)
and starting design. To illustrate these concepts the first
motivating example is considered.

Example 1: Wheat variety classification project

A fully replicated design for this experiment (assuming
two laboratory replicates) would require 108 samples
to be milled (i.e., 18 varieties× three field replicates×
two laboratory replicates). It was noted previously
that cost considerations for the project necessitated a
limit of 40 samples for milling. Using the p/q replicate
ideas of Smith et al. (2006), one scheme that will
achieve this uses values of p and q both equal to one-
third. Thus six out of the 18 varieties will be milled
using all three field replicates (a total of 18 plots) and
the remainder using a single replicate each (a total of
12 plots). Note that for the second group, there needs
to be a choice of which replicate plots to test and
which to ignore. Then of the 30 field plots to be tested,

ten will be replicated in the laboratory. With these
values of p and q, one possible selection of varieties
and plots to be replicated is shown in Fig. 1. The plots
to be replicated in the milling process have been
chosen to provide reasonable spatial coverage across
the field. Additionally, they were chosen from plots
sown with the 12 varieties that are only being milled
with single field replicates. In this way, an attempt is
made to balance the total number of samples for each
variety (see also the following section). In the example,
this results in six varieties with three samples each, ten
with two and two with a single sample. Note that it
may not always be possible to have the luxury of
choosing the plots to be replicated (see later).

In terms of the laboratory design, first note that
samples will be milled as eight samples per day for
each of 5 days. There is often a break in the middle of
each day, making a total of ten milling sessions (half
days). Experience has shown that there are often
substantial effects associated with milling sessions.
This is a natural blocking factor that should be
accommodated in the experimental design (Brien
et al. 2011). Resolvability has been enforced in the
sense that samples to be replicated in the laboratory
are positioned with one replicate in sessions 1–5
(milling replicate 1) and the other in sessions 6–10
(milling replicate 2). This will be examined in more
detail later.

In terms of the analysis the base-line mixed model
for the data is as in Eqn (1) with k=2 and s=40. The
only fixed effects are τ2, which is simply an overall
mean (τ1 is omitted). The peripheral effects for the first
phase comprise up11 which represents the 3×1 vector
of field replicate effects and up12 which represents
the 54×1 vector of field plot effects. Note that the
corresponding 40×54 design matrix Zp12 will contain
zero columns for those field plots that are not milled.
The peripheral effects for the second phase comprise
up21 which represents the 2×1 vector of milling
replicate effects and up22 which represents the 10×1
vector of milling session effects. In the base-line mixed
model all variance matrices have the simple variance
component form as described previously.

The second phase design can be constructed in od
(Butler 2013) using a model that is the same as that
described for the analysis except with the addition of
random row and column effects for the first phase
(denoted up13 and up14, respectively). These were
added to the design model as a precautionary
measure. A choice has been made not to confound
field and milling replicates, so in the starting design
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approximately half of the samples from each field
replicate have been allocated to each milling replicate
(see later). This then allows estimation of both the field
and milling replicate sources of variation. An example
(optimized) design based on values of the variance
parameters σ2g=1·0, σ2p11=0·1, σ2p12=0·2, σ2p13=0·1,
σ2p14=0·1, σ

2
p21=0·3, σ

2
p22=0·2 and σ2=1·0 is shown

in Fig. 2. Note that it has been assumed, without loss of
generality, that the residual variance has a value of 1·0,
so that all other variance values can be regarded as
ratios relative to residual variance. The values were
chosen on the basis of experience from analysing
numerous milling trials.

Reduced example 1 :8 field plots

In order to more clearly illustrate the principles of
resolvability and orthogonality of field and milling
replicates alluded to previously, a very small sub-set of

the field trial for that example is considered. The eight
plots in the top left-hand corner of Fig. 1, namely rows
1 and 2 and columns 1–4, constitute a valid resolvable
p replicate design (Cullis et al. 2006) for six varieties.
The varieties Derrimut and Emu Rock are grown in two
plots each (once in each replicate) and the varieties
Wallup, Yitpi, GBA Sapphire and Mace in single plots.
The data for this reduced field phase are shown
in Table 2. Note that due to the small size of the trial,
the two-dimensional (row×column) layout has been
ignored and the plots have been indexed simply as
1–8. In this example, it is assumed that all eight field
plots will be milled with four of these being replicated,
making a total of 12 samples to be milled (henceforth
called ‘milling samples’). In terms of the choice of field
plots to be replicated it is aimed to equalize the (total)
number of milling samples for each variety. Thus the
varieties replicated in the laboratory are those varieties
that did not have field replicates (varieties Yitpi,
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Derrimut
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Fig. 1. Field layout for example 1 showing plots to be milled in p/q replicate design. Field trial comprises 18 varieties and 3
replicates (columns 1, 2; columns 3, 4 and columns 5, 6). Plots coloured light grey and white are to be milled as individual
replicates (varieties in light grey plots have a single replicate only; varieties in white plots have all three replicates). Plots
coloured dark grey will not be milled. Plots to be replicated in the milling phase are circled.
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Wallup, GBA Sapphire and Mace). This provides two
observations for each variety.

It is assumed that the 12 samples will be milled as
three per day for each of 4 days. Days are natural
blocking factors and resolvability is enforced so that
the field samples to be replicated (field plots 3, 4, 5

and 8) will have one sub-sample milled in days 1 or 2
(milling replicate 1) and the other in days 3 or 4 (milling
replicate 2). Finally, field and milling replicates have
not been confounded, so the remaining field samples
(field plots 1, 2, 6 and 7) have been allocated such that
for each field replicate, the samples are balanced
across both milling replicates. Therefore, a starting
design that encompasses the two aspects of resolv-
ability and orthogonality of field and milling replicates
is formed. One possibility is as given in Table 3 as the
first six columns. Finally, od (Butler 2013) is used to
determine an optimum design. In each iteration of the
design search, two rows of the data-frame are swapped
subject to the constraint that swaps may only occur
within milling replicates. If the swap results in a
reduction in the A-optimality value the resultant data-
frame ismaintained for the next iteration. The optimum
design given a mixed model with random variety
effects, field replicate and plot effects and milling

Milling day
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1 2 3 4 5

Longreach Cobra:1

GBA Sapphire:3

Emu Rock:2

Bonnie Rock:3

Derrimut:2

Cunningham:2

Annuello:2

Gregory:2

Lincoln:1

Kennedy:1

Katana:1

Janz:1

Yitpi:1

Mace:2

Elmore Cl Plus:1

King Rock:1

Wallup:3

Longreach Cobra:3

Crusader:3

Gregory:3

Yitpi:2

Cunningham:2

Emu Rock:2

Kennedy:2

Annuello:2

Mace:1

Lincoln:3

GBA Sapphire:3

Mace:3
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Bonnie Rock:3
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Yitpi:3
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Derrimut:2

Longreach Cobra:2

Gregory:1

Katana:1

Elmore Cl Plus:1
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Fig. 2. Milling layout for example 1 using p/q replicate design. Laboratory phase comprises 40 samples milled as four per
session with two sessions per day (morning session=orders 1–4; afternoon=5–8) and for 5 days. Samples are labelled
according to their variety and field replicate number. A total of 30 field samples were milled and ten of these were
replicated in the milling process (samples coloured grey). Milling replicates were aligned with sessions (replicate 1=days 1
and 2 and morning of day 3; replicate 2=afternoon of day 3 and days 4 and 5).

Table 2. Reduced example 1: data for field trial
comprising eight plots and six varieties

Fplot Frep Variety

1 1 Derrimut
2 1 Emu Rock
3 1 Yitpi
4 1 Wallup
5 2 GBA Sapphire
6 2 Derrimut
7 2 Emu Rock
8 2 Mace
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replicate and day effects (with variance component
ratios of 1, 0·1, 0·2, 0·3 and 0·2, respectively) is shown
as the final columns of Table 3. Note that the
A-optimality value for the starting design was 0·856,
whereas for the optimum design it was 0·845.

Compositing strategies

It was shown earlier how the p/q replicate ideas of
Smith et al. (2006) provided an approach for limiting
the cost of multi-phase testing while still enabling a
valid statistical analysis. However, there was substan-
tial ‘waste’ in the sense that for the varieties to be
tested, only a sub-set of the field plots was used, with
many plots ignored altogether. In the first example
where all varieties grown in the field were subse-
quently milled, only 30 out of a total of 54 plots were
used in the milling process.
In the context of costly traits measured from

single phase (field) trials, Smith et al. (2011) suggested
the use of individual replicates for a proportion of
varieties and composite samples for the remainder. For
the latter a single sample is used for each variety but it
represents a composite sample from all replicate plots
for that variety rather than just a sample from a single
replicate.
The compositing ideas of Smith et al. (2011) will

now be extended for the multi-phase setting. For
simplicity the focus is on two-phase experiments
and compositing considered for the first phase only.
The model-based approaches for design and analysis

described earlier also apply here. The linear mixed
model can be written as

y = Zgug + X1τ1 + Zp1up1 + X2τ2 + Zp2up2 + e

= Zgug + C1X∗
1τ1 + C1Z

∗
p1up1 + X2τ2 + Z p2up2 + e

(2)
where all terms are as previously defined for Eqn (1).
The difference now is that the design matrices for
the first phase are non-standard with X1=C1X

*
1 and

Zp1 = C1Z∗
p1, whereC1 is an s×n averagingmatrix that

reflects the compositing of samples from the first phase
(and n is the number of plots in the field trial). The
concepts will be illustrated in the context of the two
motivating examples.

Example 1: Wheat variety classification project

Previously in the present paper, a milling design was
constructed in which 30 field samples were tested
and ten replicated in the laboratory. In that setting
each field sample corresponded to a single field
plot. A design will now be considered with the
same number of field samples but with some of
these corresponding to composites of several
plots. Replication in the laboratory will remain at ten
samples.

Smith et al. (2011) describe in detail compositing
strategies for field trials that have two replicates and
briefly allude to designs with more replicates, and
suggest that in the latter there are numerous possibi-
lities for compositing strategies. In terms of a three
replicate design (as is the case in this example), Smith

Table 3. Reduced example 1: data-frames (starting and optimized design) for milling trial comprising
12 samples milled as 3 per day for each of 4 days

Mrep Mday Mord Fplot

Starting design Optimized design

Frep Variety Fplot Frep Variety

1 1 1 3 1 Yitpi 8 2 Mace
1 1 2 4 1 Wallup 7 2 Emu Rock
1 1 3 5 2 GBA Sapphire 5 2 GBA Sapphire
1 2 1 8 2 Mace 3 1 Yitpi
1 2 2 1 1 Derrimut 1 1 Derrimut
1 2 3 7 2 Emu Rock 4 1 Wallup
2 3 1 3 1 Yitpi 3 1 Yitpi
2 3 2 4 1 Wallup 4 1 Wallup
2 3 3 5 2 GBA Sapphire 2 1 Emu Rock
2 4 1 8 2 Mace 8 2 Mace
2 4 2 6 2 Derrimut 6 2 Derrimut
2 4 3 2 1 Emu Rock 5 2 GBA Sapphire
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et al. (2011) suggest that the simplest approach
would be to either test three individual plot samples
for a variety or a single sample that is a composite
of all three plots for the variety. In this strategy,
each variety has either one or three field samples
tested. In the context of the two-phase example, the
required number of field samples (30) can be obtained
by compositing all three replicates for each of 12
varieties and testing three individual replicates for
each of six varieties. Laboratory replication is achieved
by splitting ten of the individual field replicate
samples for separate testing. In this strategy, henceforth
called ‘A’, varieties may be classified into one of
four types:

T1: the variety has three field samples (i.e., from all
individual field replicates) and none are replicated
in the laboratory.

T2: as for T1 except that two of the field samples are
replicated in the laboratory.

T3: as for T1 except that all three field samples are
replicated in the laboratory.

T4: the variety has a single field sample (i.e., a
composite of all three field replicates) and this is
not replicated in the laboratory.

The number of varieties of each type for strategy A is
given in the bottom section of Table 4.

An alternative strategy involves three possible
types of testing for a variety, namely one field sample
(a composite of all three replicates), two field
samples (a composite of two replicates and a separate
sample for the remaining replicate) and three samples
(individual replicate samples). With laboratory repli-
cation, this strategy (‘B’) also results in four types of
variety, namely T2, T3 and T4 as previously defined,
and additionally

T5: the variety has two field samples (i.e., a composite
of two field replicates and a separate sample for
the remaining field replicate) and neither is
replicated in the laboratory.

The number of varieties of each type for strategy B is
given in the bottom section of Table 4.

In strategies A and B, replication in the laboratory
has been restricted to those field samples that
corresponded to individual plot samples. In the second
example, due to the limited amount of grain harvested
for some plots, most of the field samples replicated
in the laboratory phase corresponded to composite
samples (see later). This possibility is therefore

Table 4. Summary of variety types (T1–T9) for example 1. An individual variety, i, has fi field samples and cij
is the number of field plots in the jth sample; dij is the number of laboratory samples for the jth field sample.
Values in the body of the top section of the table are the number of field/laboratory samples for a variety of a
given type. These are followed by the total number of laboratory samples, ri, for a variety of a given type and
the effective replication, ri−αi, for the simple mixed model described in the text with a plot variance ratio of
1/3. The lower section of the table gives the number of varieties of each type for each strategy (A–D) and the
average effective replication for each strategy for the simple mixed model

cij dij T1 T2 T3 T4 T5 T6 T7 T8 T9

1 1 3/3 1/1 1/1 2/2
1 2 2/4 3/6 1/2
2 1 1/1 2/2 1/1
2 2 1/2
3 1 1/1
3 2 1/2

ri 3 5 6 1 2 2 4 2 3
ri−αi 2·25 3·15 3·60 0·90 1·61 1·64 2·70 1·60 2·16

Strategy Number of varieties of each type Average ri−αi

A 2 2 2 12 1·60
B 2 2 10 4 1·61
C 4 4 6 4 1·67
D 14 4 1·72
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considered for the current example as strategy ‘C’.
This has four types of variety, namely T4 and T5 as
previously defined, and additionally

T6: as for T4 but the (composite) sample is replicated
in the laboratory.

T7: as for T1 except that one of the field samples is
replicated in the laboratory.

The number of varieties of each type for strategy C is
given in the bottom section of Table 4.
Finally, a strategy suggested by a referee is

considered in which all 18 varieties have two field
samples, each of which is a composite of two field
replicates. There are three types of composite samples,
that is, corresponding to field replicates 1 and 2, field
replicates 1 and 3 and field replicates 2 and 3. The
allocation of varieties to composite types can be
achieved as an incomplete block design with two
replicates of 18 varieties and three incomplete blocks.
This strategy means that 36 (rather than 30) field
samples are formed so only four (rather than ten) of
these can be replicated in the laboratory phase. There
are therefore two types of variety for this strategy (‘D’),
namely

T8: the variety has two field samples, each being
a composite of two field replicates, so that one of
the replicates is used twice, that is, in both
composites (for example, replicates 1 and 2 in
one sample and replicates 1 and 3 in the other).
Neither sample is replicated in the laboratory.

T9: as for T8 but one of the field samples is replicated
in the laboratory.

The number of varieties of each type for strategy D is
given in the bottom section of Table 4.
The structure of all four strategies can be summar-

ized by letting fi be the number of field samples
tested for the ith variety and defining cij ( j=1,. . ., fi) to
be the number of field plots associated with the jth
field sample for variety i and dij to be the number
of laboratory samples formed from the jth field sample
for variety i. Possible values of cij for the current
example are 1 (an individual field replicate sample), 2
(a composite of two field replicates) and 3 (a composite
of three replicates). Possible values of dij for the current
example are 1 or 2 with the latter reflecting the fact that
the field sample will be replicated in the laboratory.
Table 4 gives the values of cij and dij for each of the
types T1 through to T9, and the associated number of
field and laboratory samples for an individual variety
of that type.

In terms of the laboratory design, the same blocking
factors as previously described were used. The base-
line mixed model for analysis is as in Eqn (2) with the
same fixed and random effects as for the analysis
model described previously. The design matrices for
the first phase involve C1 which is a 40×54 matrix that
reflects the compositing strategy. For strategy A, the ith
row of C1 (which corresponds to the ith sample) has
elements given by:

. 1 in column j if this sample corresponds to field plot j
alone;

. 1/3 in columns j, k and l if this sample corresponds to
a composite of field plots j, k and l;

. 0 otherwise.

In the base-line mixed model all variance matrices
have the simple variance component form as pre-
viously described.

The second phase design can be constructed
using the same approach as previously described.
The A-optimality values for optimized designs for the
individual strategies were 0·919 (A), 0·9024 (B),
0·8147 (C) and 0·7768 (D). Thus strategy D had the
lowest A-optimality value which may reflect the fact
that the heterogeneity between varieties in terms of the
number of samples is the smallest (most varieties have
two samples, while a few have three samples: Table 4).

In order to explore the factors driving the
A-optimality values for these strategies, algebraic
forms for the prediction error variances (PEVs) for
individual varieties are derived, as these are closely
linked to the A-optimality value. This is done for a very
simple linear mixed model with random effects for
varieties (with variance denoted σg

2) and field plots
(variance σp

2). As before the residual variancewas fixed
at σ2=1 so that σg

2 and σp
2 may be interpreted as

variance ratios. All fixed effects (including an overall
mean) are excluded from the model. In this case, the
PEV for variety i can be written as

(ri − αi + 1/σ2g)−1 (3)

where ri =
∑ fi

j=1 dij is the total number of samples
for variety i and ri−αi may be thought of as the
effective replication for variety i. The form of ri−αi
for strategies A, B, C or a p/q replicate design is
∑ fi

j=1 (σ2p/cij + 1/dij)−1 . The forms for strategy D are

more complex. For a T8 variety, ri − αi = (3σp
2/8+

1/2)−1 and for a T9 variety, ri − αi = (3σp
2/8+3/8−1/

(8(σp
2+3)))−1. Note that for the full mixed model, the

ratio of the sum of all field error sources of variation
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(i.e., field replicates, rows, columns and plots) to
laboratory variation (i.e., milling replicates, sessions
and the residual) was 1/3. Thus, as an example, the
formulae using σp

2 = 1/3 for the simple model have
been applied. The resultant effective replication for a
variety of any particular type is given in Table 4.
Finally, simple averaging of these values across all 18
varieties for each strategy gives values of 1·6, 1·61,
1·67 and 1·72 for strategies A, B, C and D. These
values are consistent with the A-optimality values of
the designs optimized for the full mixed model.

It is informative to consider the effective replication
for this simple model for a range of values of σp

2.
Figure 3 shows the average effective replication (across
all varieties) for strategies A, B, C and D expressed as a
percentage of the corresponding values for the p/q
replicate design described earlier. The average effec-
tive replication (and thence A-optimality value) for any
of the designs that employed compositing is superior to
that of the p/q replicate design and this superiority
increases as the field plot variance ratio increases.
Among compositing strategies, strategy C is superior to
all others except when the plot variance ratio is small,
in which case it has slightly lower effective replication
than strategy D.

A comparison of strategies using the effective
replication displayed in Fig. 3 is based on the known
plot and residual variances. Similarly, the superiority
of strategy D over A, B and C when the full mixed
model was usedwasmeasured in terms of A-optimality
values from the design generation stage so that all
variance parameters were assumed known. In order
to confirm these findings in the context of data
analysis (thence estimation of variance parameters)
a simulation study was conducted. The data were
generated on the basis of the designs described for
strategies A, B, C and D and the p/q replicate design.
The model used for data generation was the same
as that used for design construction, namely with
random effects for varieties (with σg

2 = 1·0 ), field
replicates (σ2p11 = 0·1), field plots (σ2p12 = 0·2), field
rows (σ2p13 = 0·1), field columns (σ2p14 = 0·1), milling

replicates (σ2p21 = 0·3), milling sessions (σ2p22 = 0·2)
and residuals (σ2=1·0). In each simulation only one
set of effects was generated for each term in the
model and used for all strategies. The model fitted to
the data matched that used for design generation. The
results, namely the accuracy of the variety EBLUPs and
the reliability of the REML estimates of variance
parameters are presented in Table 5 as means over

1000 simulations. Accuracy was defined, for each
variety, as the correlation between the true and
predicted effects (EBLUPs) (Mrode 2005). These values
were then averaged across varieties to provide the
accuracies shown in Table 5. Reliability for each
parameter estimate was computed as a coefficient of
variation (CVMSE) based on the mean-squared error,
namely the square root of the mean-squared error
expressed as a percentage of the true value for that
parameter.

A key finding from the simulation study was that
strategy D, which appeared to be the superior strategy
in terms of design A-optimality values, had the poorest
accuracy for variety predictions. An examination of the
CVMSE of variance parameter estimates for this strategy
revealed that many of the parameters, in particular the
field plot error variance, were poorly estimated. This
may be due to the fact that this strategy does not
involve any individual field plot samples, since all are
composites of two field replicates. The simulation
study identified strategy C as the best in terms of the
accuracy of variety predictions. Note that an identical
simulation study was conducted but with larger field
variance parameters, namely σ2p11 = 0·4 for field
replicates, σ2p13 = 0·2 for field rows, σ2p14 = 0·2 for

field columns and σ2p12 = 1·0 for field plots. The

accuracies for this scenario were 0·576, 0·579, 0·608,
0·565 and 0·509 for strategies A, B, C, D and the p/q
replicate design.

Plot variance ratio
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Fig. 3. Effective replication for example 1 for strategies A,
B, C and D as a percentage of effective replication for p/q
replicate design. Computed algebraically based on the
simple mixed model described in the text and for a range
of values for the plot variance ratio, σp

2.
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Example 2: Genomic selection in wheat population

The 480 entries selected for milling will be tested using
either individual field replicate or composite samples
as follows:

. Single field sample:
C2: 114 entries with a composite sample (com-

posite of two replicates);
R1: 337 entries with a sample from a single

replicate.
. Two field samples:

R2: 29 entries with two individual replicate
samples.

Thus there are a total of 509 field samples to be tested.
Note that these involve 623 out of the 637 field plots
sown with the 480 chosen entries (Table 1). The field
sampling and compositing is summarized in Table 6.
In the previous section, the varieties to be compos-

ited, as opposed to using each replicate separately,
were chosen at random. In the current example, the
decision was driven by the fact that there is a minimum
sample size (amount of clean grain) required for
milling and subsequent end-product testing. Upon
harvesting of this field trial it was found that some plots
had insufficient material to form a sample for quality
testing. In this case, the only mechanism to facilitate
quality testing of the associated entry was to use a
composite sample (provided the entry was sown with
more than one plot). Many of the 114 entries in the C2
group were composited for this reason.
Laboratory replication will be used for 37 of the 509

field samples making a total of 546 laboratory samples
for milling. These will be milled as seven samples per
day for each of 78 days. As with the choice of entries to

composite, the choice of field samples to replicate in
the milling process was influenced by the minimum
grain requirements. In the current example, there were
very few individual replicate samples with sufficient
material to allow replication in the milling process.
Therefore the majority (25 out of 37) of field samples
replicated in the laboratory corresponded to com-
posite samples (see Table 6).

In terms of the laboratory design similar blocking
factors as described earlier are used, the only
difference being the use of milling days rather than
sessions (half-days). The base-line mixed model for
analysis is as in Eqn (2) with the fixed effects τ2
comprising an overall mean (and τ1 omitted), the
peripheral effects for the first phase comprising up11
(the 2×1 vector of field replicate effects) and up12 (the
623×1 vector of field plot effects) and the peripheral
effects for the second phase comprising up21 (the 2×1
vector of milling replicate effects) and up22 (the 78×1
vector of milling day effects). The design matrices for

Table 5. Example 1 simulation study: accuracy of variety EBLUPs and coefficient of variation based on
mean-squared error (CVMSE) of REML estimates of variance parameters for strategy A, B, C, D and p/q replicate
design (mean over 1000 simulations)

A B C D p/q

Accuracy 0·656 0·655 0·702 0·643 0·644
Parameter True value CVMSE (%)
Variety 1·0 50 47 40 47 50
Field rep 0·1 95 84 119 353 102
Field column 0·1 70 75 84 287 65
Field row 0·1 104 114 172 435 87
Field plot 0·2 63 82 121 1098 105
Mill rep 0·3 85 86 87 92 86
Mill session 0·2 42 45 42 41 58
Residual 1·0 18 20 18 31 19

Table 6. Example 2: distribution of field and milling
samples across testing regimes for 480 entries chosen
for milling. C2 entries: tested as composite of two
field replicates; R1 entries: tested as single field
replicate; R2 entries: tested as two field replicates

Testing
regime Entries

Field
plots

Field
samples

Milling
samples

R1 337 337 337 349
C2 114 228 114 139
R2 29 58 58 58
Total 480 623 509 546
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the first phase involve C1 which is a 546×623 matrix
that reflects the compositing strategy. The ith row of C1

(which corresponds to the ith sample) has elements
given by:

. 1 in column j if this sample corresponds to field plot
j alone;

. 1/2 in columns j and k if this sample corresponds to a
composite of field plots j and k;

. 0 otherwise.

The second phase design can be constructed in od
(Butler 2013) using a model that is the same as that
described for the analysis except with the addition
of random row and column effects for the first phase
(denoted up13 and up14, respectively). The starting
design is constructed as resolvable so that field samples
to be replicated are allocated with one sub-sample in
days 1–39 (milling replicate 1) and the other in days
40–78 (milling replicate 2) and the design search
is subsequently restricted to swaps within milling
replicates. Once again it has been decided to not
confound field and milling replicates so in the
starting design it is ensured that the samples from
each field replicate are allocated approximately
equally across the two milling replicates. The
values chosen for the variance parameters were
σ2g = 1·0, σ2p11 = 0·1, σ2p12 = 0·2, σ2p13 = 0·1, σ2p14 = 0·1,
σ2p21 = 0·3, σ2p22 = 0·2 (and σ2 = 1.0). As with example

1, a simulation study was conducted in order to
examine the reliability of estimation. The model used
for data generation was the same as that used for
design construction. In each simulation the model
fitted to the data matched that used for design
generation. A total of 1000 simulations were conduc-
ted and the results presented asmeans over simulations

(Table 7). The CVMSE of all parameter estimates are
much lower than for the first example, due to the
much larger number of samples involved. They suggest
that it is possible to reliably estimate the variance
parameters using the generated design.

CONCLUDING REMARKS

In the present paper, it has been shown how the use of
both individual field replicate samples and composite
samples can produce valid experimental designs for a
multi-phase variety trial. Replication in the laboratory
phase was achieved by splitting some field samples
and processing separately. In contrast to the use of
composite field samples alone (or a single field
replicate), this approach enabled the application of
an appropriate mixed model analysis to the resultant
data. The use of a mixture of composite and individual
plot samples was shown to be superior to the p/q
replicate approach of Smith et al. (2006) in terms of the
accuracy of predictions of genetic effects. The gains
were the greatest when (non-genetic) variation in the
field was large relative to that from the laboratory
phase. In the first example, in which there were three
field replicates, a range of compositing strategies were
possible. Four strategies were compared under simu-
lation and it was found that in order to maximize
accuracy, it was important to attempt to balance the
total number of samples across varieties and to ensure
that sufficient individual plot samples were tested.
A key finding was that the best strategy in terms of
design A-optimality value was one of the poorest in
terms of accuracy (average correlation between the
true and predicted variety effects) under simulation.
Thus, if the aim is to maximize accuracy and thence
genetic gain, this example suggests that the traditional
paradigm of using A-optimality as the design criterion
may not be sufficient and there may be a need to
incorporate the uncertainty of variance parameter
estimation. This is likely to be most critical for designs
involving small numbers of samples and varieties,
such as the first example. In this example, which
involved 40 samples and 18 varieties, the CV of
variance parameter estimates was much higher than
for the second example which involved 546 samples
and 480 varieties.

The approach presented in the present paper also
has practical advantages compared with that of Smith
et al. (2006) since it offers a flexible means of dealing
with the problem of minimum grain requirements. The
second example was a case where, due to low plot

Table 7. Example 2 simulation study: coefficient of
variation based on mean-squared error (CVMSE) of
REML estimates of variance parameters (means over
1000 simulations)

Parameter True value CVMSE (%)

Entry 1·0 9
Field rep 0·1 20
Field column 0·1 5
Field row 0·1 4
Field plot 0·2 48
Mill rep 0·3 70
Mill day 0·2 4
Residual 1·0 5
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yields, a valid design could only have been achieved
with the use of the proposed approach. It was then
possible to select varieties to be composited or tested
as individual replicates according to the amount of
grain harvested from the associated plots. Additionally,
sufficient laboratory replication was achieved by
splitting some of the composite samples.
In the present paper, model-based techniques

have been used in order to produce designs for the
second (laboratory) phase given a design for the first
phase. The laboratory phases in multi-phase trials are
typically unbalanced and non-orthogonal (even more
so with the advent of partial compositing) and have
several potential sources of non-genetic variation. An
interesting design issue is the manner in which major
sources of variation should be accommodated across
phases. In the case of orthogonal multi-phase designs
Brien et al. (2011) recommended confounding ‘. . .big
first phase unit sources . . . with potentially big second
phase unit sources’. This has not been done in the
present paper and instead, terms have been fitted in
the linear mixed model to accommodate all potential
sources of variation. This is particularly important in
the presence of correlated random effects, for exam-
ple, spatial correlation across field rows and columns,
in which case the modelling of such trends, which can
increase accuracy substantially, may be precluded if
field rows and columns are confounded with labora-
tory blocking factors. Additionally, in the majority of
experiments with which the authors have been
involved, it would have been difficult from a practical
perspective to have confounded, or even near-
confounded, big first phase units with big second
phase units. In the second example, the field phase
comprised 50 columns and 20 rows, whereas the
laboratory phase comprised 78 days and seven
samples per day. Also, not all varieties grown in the
field were tested in the laboratory. Thus the differential
numbers and sizes of blocks in the two phases would
make confounding extremely difficult. However, in the
small p/q replicate example the model-based design
approach resulted in confounding of this nature, with
field replicate effects being confounded with milling
day effects. This may have been a function of the
type of model used (i.e., a simple variance component
model) and the optimality criterion. In terms of the
former, note that the analysis of multi-phase traits
may involve more complex variance models, in
particular spatial correlation structures for field plot

effects. At present in od (Butler 2013), correlated
effects are only allowed at the residual level (i.e.,
associated with the final phase) but this will be
addressed in future versions of the software. The use
of more complex models for design generation may
break the type of confounding observed in the small
example.
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