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Abstract

We give a characterization of pairs of weights for the validity of weighted inequalities involving certain
generalized geometric mean operators generated by some Volterra integral operators, which include the
Hardy averaging operator and the Riemann–Liouville integral operators. The estimations of the constants
are also discussed. Our results generalize the work done by J. A. Cochran, C.-S. Lee, H. P. Heinig,
B. Opic, P. Gurka, and L. Pick.
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1. Introduction

Let 0< b ≤∞,�= {(x, t) ∈R2
| 0< t < x < b}, and φ :� 7→ (0,∞). Consider the

Volterra integral operator

Tφ f (x) :=
∫ x

0
φ(x, t) f (t) dt, f ≥ 0, (1.1)

with φ satisfying the following conditions:

(81)
∫ x

0 φ(x, t) dt = 1 for all 0< x < b;
(82) for any r > 0, there exists M(r) > 0 such that

exp
(∫ x

0
φ(x, t) log[φ(x, t)−1tr−1

] dt

)
≥ M(r)xr

∀ 0< x < b.

The geometric mean operator generated by Tφ is defined by

Gφ f (x) := exp[Tφ log f (x)]. (1.2)

This research is supported by the I-Shou University of the Republic of China under grant ISU95-02-21.
c© 2009 Australian Mathematical Society 0004-9727/09 $A2.00+ 0.00

463

https://doi.org/10.1017/S0004972708000841 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708000841


464 D.-C. Luor [2]

In the case that φ is homogeneous of degree−1, conditions (81) and (82) are satisfied
if ∫ 1

0
φ(1, t) dt = 1 and 0< exp

(∫ 1

0
φ(1, t) log[φ(1, t)−1tr−1

] dt

)
<∞.

In particular, they hold for φ(x, t)= αtα−1/xα and φ(x, t)= α(x − t)α−1/xα , where
α > 0.

This paper deals with the exponential inequality(∫ b

0
(Gφ f (x))qu(x) dx

)1/q

≤ C

(∫ b

0
f (x)pv(x) dx

)1/p

, (1.3)

where 0< p, q <∞, and u, v are measurable functions defined on (0, b), almost
everywhere finite and positive. A considerable number of works are devoted to the
study of (1.3). We refer the reader to Heinig et al. (see [7]), Opic and Gurka [22], Pick
and Opic [26], and Persson and Stepanov [24] for φ(x, t)= 1/x , Cochran and Lee [4],
Čižmešija and Pečarić [3], Jain and Singh [12], and Jarrah and Singh [13] for φ(x, t)
= αtα−1/xα , Jain et al. [10] and Jain et al. [11] for φ(x, t)= h(t)/

∫ x
0 h(y) dy,

Heinig et al. [9], Heinig [8], and Love [15, 16] for φ to be homogeneous of degree−1,
Nassyrova et al. [20] and Persson et al. [25] for φ satisfying the Oinarov condition,
and Kaijser et al. (see [14]) for general φ.

The purpose of this paper is to extend the results in [7, 22, 26] to more general
φ. Furthermore, we discuss some applications of our main result to the case that φ is
homogeneous of degree −1, including φ(x, t)= αtα−1/xα and α(x − t)α−1/xα for
α > 0. Our results are generalizations of works of [4, 7, 8, 9, 22, 26].

Throughout this paper we assume that all functions are measurable on their
domains, and u, v given in (1.3) are almost everywhere finite and positive. For
0< p <∞ and η ≥ 0, define

L+p,η :=

{
f : (0, b) 7→ [0,∞]

∣∣∣∣ ∫ b

0
f (x)pη(x) dx <∞

}
.

If η ≡ 1, we write L+p instead of L+p,η. For 0< z <∞, we define z∗ by
1/z + 1/z∗ = 1. We also take exp(−∞)= 0, log 0=−∞, and 0 · ∞ = 0.

2. Preliminaries

To prove the main results, we need a key tool which is given by Muckenhoupt,
Bradley, and Maz’ja (see [2, 18, 19, 23, 27, 29]) as follows.

THEOREM 2.1. Let 0< p, q <∞, p > 1, and 0< b ≤∞. Suppose that ρ and η are
nonnegative functions, and η1−p∗ is locally integrable. Then(∫ b

0

(∫ x

0
f (t) dt

)q

ρ(x) dx

)1/q

≤ C

(∫ b

0
f (x)pη(x) dx

)1/p

(2.1)
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holds for all f ∈ L+p,η if and only if A <∞, where

A =


sup

0<ξ<b

(∫ b

ξ

ρ(x) dx

)1/q(∫ ξ

0
η(x)1−p∗ dx

)1/p∗

if p ≤ q,{∫ b

0

(∫ b

x
ρ(t) dt

)r/q(∫ x

0
η(t)1−p∗ dt

)r/q∗

η(x)1−p∗ dx

}1/r

if q < p,

(2.2)
and 1/r = 1/q − 1/p. Moreover, the best constant C in (2.1) satisfies

A ≤ C ≤

(
1+

q

p∗

)1/q(
1+

p∗

q

)1/p∗

A if 1< p ≤ q <∞,

q1/q
(

p∗q

r

)1/q∗

A ≤ C ≤ q1/q(p∗)1/q
∗

A if 1≤ q < p <∞,

q1/q(p∗)1/q
∗

A ≤ C ≤ q1/q A if 0< q < 1< p <∞.

(2.3)

The following Lemma 2.2 deals with the existence of Gφ f (x) for f ∈ L+p,v .

LEMMA 2.2. Let p > 0, φ satisfy (81), and
∫ x

0 φ(x, t) log φ(x, t) dt be finite for all
0< x < b. Suppose that v is almost everywhere finite and positive, and (2.4) holds:

Tφ log(1/v)(x) is well defined and Tφ log(1/v)(x) <∞ for all 0< x < b. (2.4)

Then, for all f ∈ L+p,v , Gφ f (x) exists and is finite for all 0< x < b.

PROOF OF LEMMA 2.2 We first prove that if h ∈ L+1 , then Gφh(x) exists

for all 0< x < b. Suppose that
∫ b

0 h(t) dt <∞. Then, for any 0< x < b,∫ x
0 h(t) dt =

∫ x
0 φ(x, t)φ(x, t)−1h(t) dt <∞. By [6, Theorem 187],

∫ x
0 φ(x, t)

log[φ(x, t)−1h(t)] dt is well defined and

exp
(∫ x

0
φ(x, t) log[φ(x, t)−1h(t)] dt

)
= lim

r→0+

{∫ x

0
φ(x, t)(φ(x, t)−1h(t))r dt

}1/r

exists and is finite. Since

Tφ log h(x)=
∫ x

0
φ(x, t) log φ(x, t) dt +

∫ x

0
φ(x, t) log[φ(x, t)−1h(t)] dt,

we see that

Gφh(x)= exp
(∫ x

0
φ(x, t) log φ(x, t) dt

)
exp

(∫ x

0
φ(x, t) log[φ(x, t)−1h(t)] dt

)
exists and is finite for all 0< x < b. For f ∈ L+p,v , let h = f pv and hence h ∈ L+1 .
Since −∞≤ Tφ log h(x) <∞,

Tφ log f (x)=
1
p
(Tφ log h(x)+ Tφ log(1/v)(x))

and Gφ f (x)= Gφh(x)1/pGφ(1/v)(x)1/p exists and is finite for all 0< x < b. 2
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For any s > 0, let hs
= f pv. Then by a similar argument given in the proof

of Lemma 2.2, we see that Gφ f (x)= Gφh(x)s/pGφ(1/v)(x)1/p. This implies the
following lemma.

LEMMA 2.3. Let 0< p, q <∞ and φ, v be given in Lemma 2.2. Then (1.3) holds for
all f ∈ L+p,v if and only if, for any s > 0,

(∫ b

0
(Gφh(x))sq/pw(x) dx

)p/(sq)

≤ C p/s
(∫ b

0
h(x)s dx

)1/s

(2.5)

holds for all h ∈ L+s with the same best constant C as in (1.3). Here

w(x)= Gφ(1/v)(x)q/pu(x). (2.6)

3. Main results

Let 0< p, q <∞, δ > 1, and w be given by (2.6). We define

Aδ :=


sup

0<ξ<b
ξ (δ−1)/p

(∫ b

ξ

x−δq/pw(x) dx

)1/q

if p ≤ q,{∫ b

0

(∫ b

x
t−δq/pw(t) dt

)p/(p−q)

x (δq−p)/(p−q) dx

}(p−q)/(pq)

if q < p.

(3.1)
Our main result can be described as follows.

THEOREM 3.1. Let 0< p, q <∞, φ satisfy (81) to (82), and (2.4) hold. Then (1.3)
holds for all f ∈ L+p,v if and only if Aδ <∞ for all δ > 1. Moreover, the best constant
C in (1.3) satisfies

sup
δ>1

LδAδ ≤ C ≤ inf
δ>1

UδAδ, (3.2)

where

Uδ =


inf
s>1

(
p + (s − 1)q

p

)1/q( p + (s − 1)q
(δ − 1)q

)(s−1)/p

M

(
δ

s

)−s/p

if p ≤ q,

inf
s>1

(
sq

p

)1/q( s − 1
δ − 1

)s/p−1/q

max{(s∗)s/p−1/q , 1}M
(
δ

s

)−s/p

if q < p,

(3.3)
and

Lδ =


(

δ − 1
δ − 1+ exp(−εδ)

)1/p

if p ≤ q,(
δq − q

p

)1/q

min(M (δq−p)/(p(p−q))
l , M (δq−p)/(p(p−q))

u ) if q < p.

(3.4)
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Here ε ≥ 0 is the largest number that satisfies∫ t

0
φ(x, z) dz ≥ εtφ(x, t) ∀(x, t) ∈�

and Ml , Mu are positive constants that satisfy

Ml x ≤ exp
(∫ x

0
φ(x, t) log t dt

)
≤ Mu x ∀ 0< x < b.

If φ is homogeneous of degree −1 and
∫ 1

0 φ(1, t) dt = 1, then

exp
(∫ x

0
φ(x, t) log[φ(x, t)−1tr−1

] dt

)
= xr exp

(∫ 1

0
φ(1, t) log[φ(1, t)−1tr−1

] dt

)
,

and (82) is satisfied with M(r)= exp(
∫ 1

0 φ(1, t) log[φ(1, t)−1tr−1
] dt) if this

constant exists and is positive. Therefore, we now apply Theorem 3.1 to the case
that φ is homogeneous of degree −1 and where it satisfies (8H1)–(8H3):

(8H1)
∫ 1

0 φ(1, t) dt = 1;

(8H2) M1 = exp(
∫ 1

0 φ(1, t) log φ(1, t) dt) <∞;

(8H3) M2 = exp(
∫ 1

0 φ(1, t) log t dt) > 0.

For such a case, (81) and (82) are satisfied. We may choose

M(δ/s)= exp
(∫ x

0
φ(x, t) log[φ(x, t)−1tδ/s−1

] dt

)
x−δ/s = M−1

1 Mδ/s−1
2

and Ml = Mu = M2. The following theorem can be obtained from Theorem 3.1.

THEOREM 3.2. Let 0< p, q <∞, and let φ be homogeneous of degree −1 and
satisfy (8H1)–(8H3). Suppose that (2.4) holds. Then (1.3) holds for all f ∈ L+p,v
if and only if Aδ <∞ for all δ > 1. The estimation of C can be obtained by
(3.2)–(3.4) with

M(δ/s)= M−1
1 Mδ/s−1

2 , Ml = Mu = M2. (3.5)

In the case when p ≤ q ,

Uδ =


M1/p

1 M (1−δ)/p
2 if 1< δ ≤

M1 M2 pe

q
+ 1,(

(δ − 1)q
M1 M2 p

)1/q

M1/p
1 M (1−δ)/p

2 e(1−δ)/(M1 M2 pe) if δ >
M1 M2 pe

q
+ 1,

(3.6)
and hence Uδ ≤ M1/p

1 M (1−δ)/p
2 .
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In [9, Theorem 2.1] Heinig et al. gave a sufficient condition for (1.3) to hold
if b =∞, φ is homogeneous of degree −1, and φ satisfies (8H1) and (8H3).
On the other hand, Heinig [8] proved that in the case p = q = 1, by adding some
other conditions, the sufficient condition given in [9, Theorem 2.1] is also necessary.
Our result yields a complete characterization of u and v in (1.3) for φ satisfying
(8H1)–(8H3).

Consider the particular case b =∞, u(x)= xm , and v(x)= xn . Then w(x) defined
by (2.6) reduces to w(x)= M−nq/p

2 xm−(nq/p). For q < p, Aδ =∞ for all δ > 1.

If p ≤ q and (m + 1)/q = (n + 1)/p, then Aδ = M−n/p
2 (p/(δq − q))1/q . Since

Uδ ≤ M1/p
1 M (1−δ)/p

2 , by (3.2) and (3.3),

C ≤ M1/p
1 M−n/p

2 inf
δ>1

M (1−δ)/p
2

(
p

δq − q

)1/q

= M1/p
1 M−n/p

2 (−e log M2)
1/q .

Therefore,(∫
∞

0
(Gφ f (x))q xm dx

)1/q

≤ M1/p
1 M−n/p

2 (−e log M2)
1/q
(∫
∞

0
f (x)pxn dx

)1/p

.

(3.7)
The following corollary considers the case when φ(x, t)= αtα−1/xα , where α > 0.

For such a case,
M1 = αe1/α−1, M2 = e−1/α, ε = 1/α. (3.8)

COROLLARY 3.3. Let 0< p, q <∞ and α > 0. Suppose that u, v are almost
everywhere finite and positive, and (2.4) holds with φ(x, t)= αtα−1/xα . Then(∫ b

0

{
exp

(
α

xα

∫ x

0
tα−1 log f (t) dt

)}q

u(x) dx

)1/q

≤ C

(∫ b

0
f (x)pv(x) dx

)1/p

(3.9)
holds for all f ∈ L+p,v if and only if Aδ <∞ for all δ > 1. The estimation of C can be
obtained by (3.2)–(3.4) with (3.5) and (3.8).

Consider the case b =∞. For α = 1, Corollary 3.3 reduces to [22, Theorem]
and [26, Corollary 3.10]. For general α, inequality (3.9) was also investigated
in [9, 12, 13]. In [9, Theorem 2.2], it was shown that (3.9) holds for all f ∈ L+p,v if
and only if Aα+1 <∞ (in the case when p ≤ q) or Ap(α+1)/q <∞ (in the case when
q < p). Corollary 3.3 contains these results; in addition, it also provides an estimation
of C . If p ≤ q and (m + 1)/q = (n + 1)/p, then by (3.7),(∫

∞

0

{
exp

(
α

xα

∫ x

0
tα−1 log f (t) dt

)}q

xm dx

)1/q

≤ α1/p−1/q exp(1/q + (n − α + 1)/(αp))

(∫
∞

0
f (x)pxn dx

)1/p

. (3.10)
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If p = q = 1 and m = n, then (3.10) is the well-known Cochran–Lee’s inequality.
We can also apply Theorem 3.2 to the case when φ(x, t)= α(x − t)α−1/xα , where

α > 0. In this case,

M1 = αe1/α−1, M2 = e−γ−0
′(α+1)/0(α+1), ε =

{
0 for 0< α < 1,

1 for α ≥ 1.
(3.11)

The constant M2 can be obtained by the following equalities:

log M2 = α

∫ 1

0
zα−1 log(1− z) dz =−α

∫ 1

0

∞∑
n=1

zn+α−1

n
dz =−γ −

0′(α + 1)
0(α + 1)

,

where γ is the Euler constant and 0(x) is the gamma function. The last equality is
based on [1, Theorem 1.2.5]. We have the following corollary.

COROLLARY 3.4. Let 0< p, q <∞ and α > 0. Suppose that u, v are almost
everywhere finite and positive, and (2.4) holds with φ(x, t)= α(x − t)α−1/xα . Then(∫ b

0

{
exp

(
α

xα

∫ x

0
(x − t)α−1 log f (t) dt

)}q

u(x) dx

)1/q

≤ C

(∫ b

0
f (x)pv(x) dx

)1/p

(3.12)

holds for all f ∈ L+p,v if and only if Aδ <∞ for all δ > 1. The estimation of C can be
obtained by (3.2)–(3.4) with (3.5) and (3.11).

Another type of characterization can also be found in [20, Theorem 5.1] for the case
when 0< p, q <∞, α > 0 and in [8, Corollary 3.1] for the case when p = q = 1,
α ≥ 1.

4. Proof of Theorem 3.1

We first prove the sufficient part. Suppose that Aδ <∞ for all δ > 1. Condition
(82) ensures that

∫ x
0 φ(x, t) log φ(x, t) dt is finite for all 0< x < b. By Lemmas 2.2

and 2.3, inequality (1.3) holds for all f ∈ L+p,v if and only if (2.5) holds for all h ∈ L+s ,
where s > 1. Since

∫ x
0 φ(x, t) log[φ(x, t)−1tδ/s−1h(t)] dt is well defined, by Jensen’s

inequality and (82),

Gφh(x) ≤ exp
(
−

∫ x

0
φ(x, t) log[φ(x, t)−1tδ/s−1

] dt

) ∫ x

0
tδ/s−1h(t) dt

≤ M(δ/s)−1x−δ/s
∫ x

0
tδ/s−1h(t) dt. (4.1)
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This implies that∫ b

0
(Gφh(x))sq/pw(x) dx

≤ M(δ/s)−sq/p
∫ b

0

(∫ x

0
tδ/s−1h(t) dt

)sq/p

x−δq/pw(x) dx .

Replace p, q, f (t), ρ(x), and η(x) in Theorem 2.1 by s, sq/p, tδ/s−1h(t),
x−δq/pw(x), and x s−δ , respectively. Then (2.5) holds and

C ≤


(

p + (s − 1)q
p

)1/q( p + (s − 1)q
(δ − 1)q

)(s−1)/p

M(δ/s)−s/p Aδ for p ≤ q,(
sq

p

)1/q( s − 1
δ − 1

)s/p−1/q

max{(s∗)s/p−1/q , 1}M(δ/s)−s/p Aδ for q < p.

(4.2)
Since (4.2) is true for arbitrary s > 1 and δ > 1, we have the upper estimations of C
given in (3.2) and (3.3).

In the following we prove the necessary part of Theorem 3.1. The idea is based
on the proof of [24, Lemma 1] and [26, Lemma 3.2]. Consider the case p ≤ q . By
Lemma 2.3, the inequality(∫ b

0
(Gφh(x))q/pw(x) dx

)1/q

≤ C

(∫ b

0
h(x) dx

)1/p

(4.3)

holds for all h ∈ L+1 with the same constant C as in (1.3). Let ξ > 0, δ > 1, and let
ε ≥ 0 be the largest number that satisfies

∫ t
0 φ(x, z) dz ≥ εtφ(x, t) for all (x, t) ∈�.

Let

h(t)= χ(0,ξ)(t)ξ
−1
+ χ(ξ,b)(t)e

−εδξ δ−1t−δ.

Then (∫ b

0
h(x) dx

)1/p

≤

(
δ − 1+ e−εδ

δ − 1

)1/p

. (4.4)

On the other hand, for ξ < x < b,∫ x

0
φ(x, t) log h(t) dt =

∫ ξ

0
φ(x, t) log ξ−1 dt +

∫ x

ξ

φ(x, t) log[e−εδξ δ−1t−δ] dt

= − log ξ − δ
∫ x

ξ

φ(x, t) log
[

t

ξ

]
dt

− εδ

∫ x

ξ

φ(x, t) dt.
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Moreover, since∫ x

ξ

φ(x, t) log
[

t

ξ

]
dt = log

[
x

ξ

] ∫ x

ξ

φ(x, t) dt +
∫ x

ξ

φ(x, t)

(
−

∫ x

t

1
y

dy

)
dt

= log
[

x

ξ

] ∫ x

ξ

φ(x, t) dt −
∫ x

ξ

1
y

∫ y

ξ

φ(x, t) dt dy

= log
[

x

ξ

]
−

∫ x

ξ

1
y

∫ y

0
φ(x, t) dt dy,

we have∫ x

0
φ(x, t) log h(t) dt = − log ξ − δ log

[
x

ξ

]
+ δ

∫ x

ξ

(
1
t

∫ t

0
φ(x, z) dz

)
− εφ(x, t) dt

≥ log[ξ δ−1x−δ].

This shows that Gφh(x)≥ ξ δ−1x−δ for ξ < x < b and∫ b

0
(Gφh(x))q/pw(x) dx ≥ ξ (δ−1)q/p

∫ b

ξ

x−δq/pw(x) dx . (4.5)

By (4.3)–(4.5),

C

(
δ − 1+ e−εδ

δ − 1

)1/p

≥ ξ (δ−1)/p
(∫ b

ξ

x−δq/pw(x) dx

)1/q

. (4.6)

Since (4.6) holds for all 0< ξ < b,

C ≥

(
δ − 1

δ − 1+ e−εδ

)1/p

Aδ. (4.7)

Inequality (4.7) is true for all δ > 1, and we have the lower estimation given in (3.2)
and (3.4).

Consider the case q < p. Let {bn} be an increasing sequence which converges to b
and

wn(x)= [min(w(x), n)]χ(0,bn)(x)+ [min(w(x), x−2q/r )]χ[bn,b)(x),

where 1/r = 1/q − 1/p. For δ > 1, define

hn(x)= x (δq−p)/(p−q)
(∫ b

x
t−δq/pwn(t) dt

)p/(p−q)

for 0< x < b.
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By the dual Hardy inequality (see [23, Theorem 6.2]), we see that∫ b

0
hn(x) dx ≤

(
p

δq − q

)p/(p−q) ∫ b

0
wn(x)

p/(p−q) dx <∞

and Gφhn(x) exists and is finite for all 0< x < b. Replace h by hn in (4.3). Since
wn ≤ w, (∫ b

0
(Gφhn(x))

q/pwn(x) dx

)1/q

≤ C

(∫ b

0
hn(x) dx

)1/p

. (4.8)

By (82),

Gφhn(x) ≥

{
exp

(∫ x

0
φ(x, t) log[t (δq−p)/(p−q)

] dt

)}(∫ b

x
t−δq/pwn(t) dt

)p/(p−q)

≥ M̃ px (δq−p)/(p−q)
(∫ b

x
t−δq/pwn(t) dt

)p/(p−q)

,

where M̃ =min(M (δq−p)/(p(p−q))
l , M (δq−p)/(p(p−q))

u ). Therefore,∫ b

0
(Gφhn(x))

q/pwn(x) dx

≥ M̃q
∫ b

0

(∫ b

x
t−δq/pwn(t) dt

)q/(p−q)

x (δq
2
−pq)/(p2

−pq)wn(x) dx

=
(δq − q)M̃q

p

∫ b

0

(∫ b

x
t−δq/pwn(t) dt

)p/(p−q)

x (δq−p)/(p−q) dx .

By (4.8),

C ≥

(
δq − q

p

)1/q

M̃

{∫ b

0

(∫ b

x
t−δq/pwn(t) dt

)p/(p−q)

x (δq−p)/(p−q) dx

}(p−q)/(pq)

.

Let n→∞. Since wn ↑ w, we have C ≥ ((δq − q)/p)1/q M̃ Aδ . This holds for all
δ > 1, so we have the lower estimation given in (3.2) and (3.4). This completes the
proof.

5. Concluding remarks

REMARK 5.1. In [17, Theorem 2], Manakov showed that if 1< p < q <∞, b =∞,
and

∫
∞

0 η(x)1−p∗dx =∞, then the upper estimation of C given in (2.3) can be
replaced by

C ≤

(
0(q/τ)

0(1+ 1/τ)0((q − 1)/τ)

)τ/q
A, for τ = q/p − 1. (5.1)
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Hence if 0< p < q <∞ then Uδ given in (3.3) can be replaced by

Uδ = inf
s>1

(
s − 1
δ − 1

)(s−1)/p(
0(sq/(q − p))

0(q/(q − p))0((sq − p)/(q − p))

)(q−p)/(pq)

M

(
δ

s

)−s/p

.

(5.2)

REMARK 5.2. Suppose that 0< p, q <∞, b =∞, u and v are positive and finite al-
most everywhere, φ satisfies (81) and (82), and (2.4) holds. Define w(x)= Gφ(1/v)
(x)q/pu(x). By Theorem 3.1 and the results in [20, 24, 25, 28], the following (1)–(5)
are equivalent.

(1) (∫
∞

0
(Gφ f (x))qu(x) dx

)1/q

≤ C

(∫
∞

0
f (x)pv(x) dx

)1/p

, f ∈ L+p,v.

(5.3)
(2) Aδ defined by (3.1) is finite for all δ > 1.
(3) For all δ > 1, (∫

∞

0

(
1
x

∫ x

0
f (t) dt

)δq/p

w(x) dx

)p/(δq)

≤ C

(∫
∞

0
f (x)δ dx

)1/δ

, f ∈ L+δ . (5.4)

(4) For all δ > 1,(∫
∞

0
f (x)δq/pw(x) dx

)p/(δq)

≤ C

(∫
∞

0
f (x)δdx

)1/δ

, f ∈ L+δ and f ↓,

(5.5)
where f ↓ means f is nonincreasing.

(5) The constant B is finite, where B is defined by (5.6):

B :=


sup
ξ>0

ξ−1/p
(∫ ξ

0
w(x) dx

)1/q

if p ≤ q,{∫
∞

0

(
1
x

∫ x

0
w(t) dt

)p/(p−q)

dx

}(p−q)/(pq)

if q < p.

(5.6)

The constant C that occurs in (5.3)–(5.5) may be different. More equivalent conditions
can also be found in [5, 21], but we leave the details to the reader.
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