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Abstract

We define a notion of conjugacy in singular Artin monoids, and solve the corresponding conjugacy
problem for finite types. We show that this definition is appropriate to describe type (1) singular Markov
moves on singular braids. Parabolic submonoids of singular Artin monoids are defined and, in finite type,
are shown to be singular Artin monoids. Solutions to conjugacy-type problems of parabolic submonoids
are described. Geometric objects defined by Fenn, Rolfsen and Zhu, called (5, k)-bands, are algebraically
characterised, and a procedure is given which determines when a word represents a (j, k)-band.

2000 Mathematics subject classification: primary 20F36; secondary 20M05, 20F05.

1. Preliminaries

Singular Artin monoids are introduced in [9] as a generalisation of singular braid
monoids, defined by presentations related to Coxeter matrices. The singular braid
monoids are singular Artin monoids defined by type A Coxeter matrices. Artin groups
(see [7] or [10]) are subgroups of singular Artin monoids, and Coxeter groups (see,
for example, [20]) are quotients of Artin groups. The Artin groups of type A are the
Artin braid groups, and the Coxeter groups of type A are the symmetric groups. Thus
singular Artin monoids are generalisations of very natural objects.

The main result of this paper is a solution to the conjugacy problem in singular
Artin monoids. In order to solve this problem, we need an appropriate definition of
conjugacy. Perhaps the most natural choices are the following: to say that V and W
are conjugate if

(1) there exists X suchthat VX = X W, or
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(2) thereexist Yand Zsuchthat V=YZ and W= ZY.

The first is reflexive and transitive, but not necessarily symmetric, while the second
is reflexive and symmetric, but not necessarily transitive. We take the first of these to
be the definition of conjugacy in this paper. This first section establishes and collates
results which allow us to show that it is indeed a symmetric relation in the context of
singular Artin monoids, and Sections 2 and 3 present the solution to the conjugacy
problem in singular Artin monoids of finite type. The second notion of conjugacy
defined above we call ‘swap conjugacy’, and we verify that the original definition is
precisely its transitive closure.

Fenn, Rolfsen and Zhu [12] introduced the notion of (j, k)-bands, which are
singular braids satisfying a certain geometric condition on the jth and (j + 1)th
strings of the braid, and they find an equivalent algebraic condition. In the fourth
section, we describe how to determine whether a braid is a (j, k)-band given a word
in the generators which represents it.

In Section 5 we introduce parabolic submonoids of singular Artin monoids, which
are generated by particular subsets of the generators. We show that parabolic sub-
monoids of singular Artin monoids of finite type are themselves isomorphic to singular
Artin monoids. This result mirrors that in Coxeter and Artin groups; although in both
of these cases the result has been shown to hold for arbitrary type. The notion of
a (J, K)-conjugator (a generalisation of a (j, k)-band), where J and K define sub-
sets of the generators, is discussed, and a method for determining when a word is a
(J, K)-conjugator is given. We show that the set of (J, K')-conjugators is not empty
if and only if the. parabolic submonoids defined by J and K are conjugate. We give a
method for determining when two parabolic submonoids are conjugate.

The (j, k)-bands were first introduced in order to prove one case of a conjecture
of Birman [5] about singular braid monoids embedding in the group algebra of the
braid group. The last section of this paper discusses the singular braid monoid
exclusively, particularly the problem of determining when two singular braids close
to give equivalent singular links. Gemein [14] obtained an analogy for singular
braids of Markov’s theorem for braids, which describes the algebraic connections,
called Markov moves, between braids which give equivalent links. We show how to
determine when two singular braids are connected by one Markov move, and give
some stronger results for positive braids connected by ‘positive Markov moves’.

A solution has recently been obtained for Birman’s conjecture by Paris [21]. The
conjecture may be generalised to arbitrary Artin types, and a solution was subsequently
obtained for the generalisation of this conjecture to F C-type (a distinct case to the
finite type case mostly considered in this article) by Godelle and Paris [17]. However,
the finite type case, other than the case originally solved by Paris, remains open. The
result of [17] used results of Godelle’s for Artin groups ([15, 16]) similar to some
obtained here for singular Artin monoids. We hope that the results obtained here
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will contribute towards the resolution of the generalised Birman’s conjecture for finite
type, which remains an object of current study (see, for example, [1]).

Some of the techniques in this paper have been adapted from [7] (particularly the
notion of an a-chain), in which solutions to the word, division and conjugacy problems
for Artin groups were given. That paper, in turn, generalised notions of Garside [13]
who originally solved those problems for the braid group.

We begin by defining positive singular Artin monoids. These turn out to be
submonoids of the singular Artin monoids (defined in Section 3). Let I denote a finite
set. A Coxeter matrix over I is a symmetric I x I matrix M = (m;) where m;; = 1
foralli € I,andm; € {2,3,4,...,00} fori # j. The Coxeter graph Iy, associated
with a Coxeter matrix M is the graph with vertices indexed by I, and where an edge
labelled m; joins the vertices i and j precisely when m; > 3. The convention is to
explicitly show this label only when m; > 4 — thus an unlabelled edge indicates that
m; = 3. Figure 1 shows some Coxeter graphs.

Given a Coxeter matrix M, the positive singular Artin monoid of type M is the
monoid generated by SU T where S = {0; | i € I} and T = {1; | i € I}, subject to
the relations & listed below

mj

{0:0;)™ = (0;0,) whenever 2 < m; < 00,

my —1

(a,-aj)""f"rk = 1;(0;0;) whenever 2 < m; < 00,

i if my; isodd;
and where k={ ' ’

J if my iseven,
LT =TT, whenever m; = 2, and

o;T; = T,0; forall i in 1,

where (ab)” denotes the alternating product aba - - - with p factors. Let ., denote
the positive singular Artin monoid of type M. If two words W and V represent the
same element of ,, we say that W and V are equivalent, and write W ~ V. The
symbol = is used to indicate when two words are the same letter for letter (in other
words, equal in the free monoid on S U T, which is denoted (S U T)*). Notice that
since every relation is homogeneous — that is, both sides of the equation are words of
the same length — whenever W ~ V|, then the length of W and V must be the same.
The length of a word W in the generators S U T is denoted £(W). Let Z* denote the
set {(U, V), (V, U) | U = V is arelation from % }.

A word V is said to divide a word W if there exists a word X such that W ~ VX.
A set of words 2 has a common multiple W if every element of €2 divides W. A least
common multiple is a common multiple which divides all other common multiples.
Notice that by homogeneity, the length of a divisor cannot exceed the length of its
multiple. Thus only finite sets can have common multiples (as infinite sets contain
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words of arbitrary length). However, there are finite sets of words without common
multiples (see the comments following Lemma 1.1, below, for an example).

Many properties of ;5 were discussed in [9], where the word and division problems
for such a monoid were solved, and a unique normal form was described. Furthermore,
it was shown that 5’,; is both left and right cancellative, and that whenever a set Q
has a common multiple in .%}}, it has a least common multiple L(£2) (which is unique
in #}). The crucial result in proving the above properties is the following reduction
property (so named after [7, Lemima 2.1], ‘Reduction Lemma’).

LEMMA 1.1 ([9, Lemma 15]). Forall a,b € SU T, and for all words X and Y,
the equation aX ~ bY implies there exist words U, V and W in (S U T)* such that
X ~UW, Y~ VW and either (aU, bV) isin Z* oraU = bV.

Thus if W, ~ W, then there are words V, R, and R, such that the first letter of W,
and R, coincide, the first letter of W, and R, coincide, W; ~ R,V and W, ~ R, V,
and either (R, R,) € Z* or R; = R,. This result is very useful: we can immediately
apply it to the problem of the existence of common multiples of pairs of generators.
For example, since there is no pair of the form (z; U, t; V), where m; > 2, in #%,
then the reduction property ensures that {t;, 7;} has no common multiple.

In this first section various results are obtained which are useful in the sequel.
Notation and operators defined in full in [9] are more briefly described. The last part
of this section deals specifically with the subset of positive singular Artin monoids
of finite type, which turn out to be precisely the singular Artin monoids associated to
finite disjoint unions of the Coxeter graphs in Figure 1. (The results preceding this
are valid for positive singular Artin monoids of arbitrary type.)

LEMMA 1.2. Suppose that m; > 2. Then there is no common multiple of v; and
(0j0,)™i 31, where p is i if m is even and j otherwise.

PROOF. If m; = 3, then, as remarked earlier, the reduction property precludes t;
and 7; having a common multiple. Suppose that m; > 3,

X ~tuW~ (gjo))™ 31, U,

and that X provides a minimal length counterexample to the lemma. By the reduction
property, there is a word W, such that

W~ (g;0)™ "W, and (0i0;)™ "1, U ~ (0:0;)™ 21, W,.

Cancelling yields t, U ~ o0,0,7, W;. By further applications of the reduction property,

https://doi.org/10.1017/51446788700010442 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700010442

(51 Conjugacy in singular Artin monoids 187

there are words W,, W; and W, such that

U~o, W, and 0,7, Wi ~ 1, Ws,
T, Wi ~ (0,0,)™ *r;W; and W, ~ (0,0,)™'W;, and
W, ~o, W, and  (0,0,)™ ;W5 ~ 1, W,.

But this last equivalence gives a common multiple of 7, and (0,0,)™ ~7;, and of
length less than the length of X, contradicting the assumption of minimality. The
lemma now follows by induction. a

Let a and b be letters from S U 7. A nonempty word C is a simple chain with
source a and target b if there are words U and V such that (aU, CbV) € #%; we also
say that C is a simple a-chain for short. A simple a-chain C is said to be preserving
if (aC, Cb) € #*. Inspection of the relations shows that any simple a-chain whose
target is an element of T must be preserving, and that if C is a simple preserving
a-chain to b, then a is in T precisely when bisin T.

A word C is called a compound a-chain, or just an a-chain, if C = C, - .- C; for
simple chains C, ..., G, where C, is an a-chain, and the source of C;., is the target
of C; for all i > 1. The source and target of C are defined to be the source of C,
and the target of C, respectively. An a-chain is said to be preserving if each of its
component simple chains is preserving.

REMARK 1.3. It was shown in [9] that if C is an a-chain to b and CD is a common
multiple of a and C, then CD is a common multiple of a and Cb; thus the target of C
divides D. In particular, a does not divide C. For each a in § U T, a partial operator
K, : (SUT) - (SU T)" was then defined, with the properties that

(1) K,(W) is defined whenever a and W have a common multiple;

(2) when it is defined, K, (W) ~ W, and K,(W) begins with a if a divides W, or
otherwise is an a-chain;

(3) K,(W) is calculable; and

(4) if a does not divide W, but a divides Wb for some generator b, then K,(W) is
an a-chain with target b.

LEMMA 1.4. A nonemptyword W is equivalent to a preserving a-chain to b precisely
when a does not divide W and aW ~ Wb. Moreover, any a-chain with target in T is
preserving.

PROOF. Suppose that W is equivalent to C = C, - - - C, where each C; is a simple
preserving a;_; chain to a;. Then for each i, (a,_,C;, C;a;) € #%, so a;_,C; ~ Ca;.
Hence ayC ~ Cay, where ay; = a is the source and a; = b is the target of C. Thus
aW ~ Wb, and by Remark 1.3, a does not divide W.
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Now suppose that W is not divisible by a but aW ~ Wb. By the reduction
property, there is some pair (aC;, Uid) in #F and a word V such that aW ~ aC, V
and Wb ~ UydV. Thus C,Vb ~ Wb ~aW ~ aC,V ~ UidV. Suppose C; # U,.
Inspection of the relations tells us that aC, = (0;0;)™ ~'1, and Uid = 7 (g,0;)™ !
for some i and j, where p = i if m;; is odd and j if m; is even. Substituting into the
above, (o; a,v)""f‘zrp Vb ~ 1;(0:0;)™i ~1y. By the reduction property, there is a word
V' such that (0,0;)™ ~*t, Vb ~ 1; V', which contradicts Lemma 1.2. Hence C; = Uj.

Thus C; must be preserving. Since C,Vb ~ CidV, left cancellativity gives
Vb ~ dV, where V is shorter than W. Furthermore, V is not divisible by d since
if it were, V ~ dV” for some word V', and W ~ C,V ~ CidV" ~ aC; V", which
contradicts that a does not divide W. So we can continue in this way replacing W
with V,until W ~ C,G,; - - - C; where each C; is preserving.

Finally, suppose that C = C; - - - C; is an a-chain to 1; for some j. Let a;_, be the
source and a; the target of C; for each i. So C; is a simple a,_;-chain to ;. Thus
it must be preserving, and have source a,_, € T also. Continuing backwards in this
way through C, we have that each simple component is preserving, and that each a;
isin T. O

THEOREM 1.5. For any word W, any generators a and b and r any positive integer,
we have a’' W ~ Wb if and only ifaW ~ Wb.

PROOF. The ‘if’ direction is evident; suppose henceforth that a” W ~ Wb'. If a
divides W, then cancellativity and an inductive hypothesis give the result quickly. We
may suppose a does not divide W. We now use various parts of Remark 1.3: firstly,
since Wb’ is a common multiple of a and W, then K,(W) is defined, and since a does
not divide W, is an a-chain. Let ¢ denote its target. Since K,(W)b" ~ Wb" ~ a" W
is a common multiple of a and W, ¢ divides b", implying ¢ = b. Thus K,(W) is an
a-chain to b.

If a € T, since the number of t’s is preserved by the relation ~, thena” W ~ Wb’
implies that b € T as well, so by Lemma 1.4, K,(W) is preserving, and aW ~ Wb.

From now on, we suppose that a, and hence b, are in S. Write a = o;.
First we show that W is not divisible by 17, for m; > 2. lete > 1 and w =
1 {0:0;)™ ~ ({0 0;)™ )¢~ then w ~ ofv where

({oj0:)™i =1y Yo 0™ 21 if m; even;
v = { ((gj0)™ " oi0;)™ =)~V 2 (g 00)™ P if m; and e odd;

({gj00)™ ~Yo0;)™ =)= D12 (g, 0,)mi ~! 0,05 )™ ~*1;  otherwise.

Further, v is a singleton ~-equivalence class in each case. Since t; and o/ have a
common multiple in w, by [9, Corollary 13] they have a least common multiple, say
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L = ofu. Since L divides w, we have u divides v. Since the number of occurrences
of letters from T is preserved under ~, L must contain at least one such occurrence, s0
u cannot properly divide v; they must be equivalent. Thus w is the lcm of 7; and o7.
This lcm has length m;; e > 3e. Now for any n, a” W ~ Wb"™, so if W were divisible
by 17;, then a” W would be a common multiple of o/ and 7;, and hence would have
length greater than 3nr. Thus for every n, the length of W would have to be at least
2nr, which is absurd. Thus W must not be divisible by t; for m; > 2.

Thus we have that W begins with x where either x = 0; € S, or x = 1; where
i = j ormy = 2. From inspection of the relations, we see that the lcm of a and x
must be aC ~ Cd where C begins with x and d € §; furthermore, a"C ~ Cd’ is
the lIem of a” and x. Thus a’ C divides a” W ~ Wb', so0 W ~ CV for some word V.
Thusa"W ~ Cd"V ~ CVb" ~ Wb',sod"V ~ Vb'. By an inductive hypothesis,

dV ~ Vb,soaW~aCV ~ CdV ~ CVb ~ Wb, completing the proof. a
Forany words Vj, ..., V; over SUT with acommon multiple, aword L(V}, ..., Vi)
can be calculated which is a least common multiple of V;,. .., V; (see [9, Lemma 12]).

Let A(U) denote the set of letters from S U T which divide the word U. Since U is a
common multiple, L(A(U)) always exists, and divides U. If 7; and 7; are in A(U),
then U ~ ;U ~ t; U; for some U, and U;, so applying the reduction property,
my = 2. Thus the product of the elements of A(U) N T is a common multiple of
A(U) N T;and is, in fact, equivalent to LIA(U) N T).

LEMMA 1.6. Let U be a nonempty word such that A(U) C T. Suppose that
VU ~ UW for some words V and W and A(U) N A(V) = @. Then L(A(U))
commutes with V and there is a word U’ shorter than U such that VU ~ U'W.

PROOF. Take any 7; in A(U). Since 7; and V have a common multiple, Remark 1.3
says K. (V) is defined, and since 7; is not in A(V), K (V) is a 7;-chain. Let b be
the target of K, (V). Again by Remark 1.3, since 7; divides K, (V)U ~ VU, b
divides U. So b = 7, for some k, K (V) is preserving, and 7; V ~ Vr,.

Thus for every 7, in A(U), there is a corresponding 7, in A(U) such that 7, V ~
V1,. Moreover, if 1, V ~ V1, then 7, V ~ 7, V, right cancellation then gives 7, = t,.
Thus V defines a permutation 7y on A(U) by 7,V ~ Vmy(1,). By the comment
preceding the statement of the lemma, L(A(U)) is the product of the elements of
A(U) in some order, and the letters all commute. Thus

L(A(U)) V= rl'l e T V-~ V”V(ril) te JTV(TI}) ~ Vti] Ty = VL(A(U))'
Now U ~ L(A(U)) U’ for some word U’ which is shorter than U. Thus

LIAVU ~ VLA(U)HU ~ VU~ UW ~ LIA(U)U'W.
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Cancelling L(A(U)) from the left, VU ~ U W, and U is shorter than U, as
desired. 0

The operator rev : (SU T)* — (S U T)* maps a word to its reverse:
rev(a1a2 v ak_lak) = aiQp-y 0 - 24y,

LEMMA 1.7. Let C be an a-chainto b. Then b € S ifa € S, and b does not divide
rev(C) whenevera € Sorbe T.

PROOF. By inspection of the relations, b € S if a € S, and always, b does not
divide rev(C) if C is simple. Suppose henceforth that a € S or b € T, so either
{a, b} C §,or {a, b} C T. We will show

(*) if C is simple and W any word where b divides rev(W C), then
a divides rev(W).

The result then follows by induction on the number of simple components of C.

The proof of (x) falls into two cases: either (i) rev(C) is a simple b-chain to a,
or (ii) C = 1, (0,0;)" for some i and j withm; > 2,andsome 0 <r <m; — 1. In
case (i), we observe that rev(WC) is a common multiple of rev(C) and b, and so,
by the comments beginning Remark 1.3, a (the target of the b-chain rev(C)) divides
rev(W).

In case (ii), C is a simple a = o;-chain to b, where b = 0; if ris odd and b = o;
otherwise. However, rev(C) is not simple, but a compound b-chain to o; consisting
of simple chains rev({o;0;)") and 7;. Again using Remark 1.3, o; must divide
rev(W),say W ~ Xo;; hence

wWC~ XUj Tj (0','0:,' )r ~ X'l'j (UjO’;)r+l.

Now rev((g; 0;)"*") is a b-chain to 0;, so o; must divide rev(Xt;) = 7; rev(X).
By the reduction property, there exists a word V such that rev(X) ~ (o;0;)™ "' V.
Thus

rev(W) ~ g; rev(X) ~ 0;(0:0;)" "'V = (0;0:)™ V ~ (0i5;)™ V,
so we have o; = a divides rev(W). O

We thank the referee for the stronger version of this result as given above. He also
pointed out that it is now as strong as it can be—there are a-chains C with target b € §
for which b divides rev(C). An example is in type A,, where C = 0,0,0,0; is a
compound 7;-chain to g, but C ~ 010,001, so rev(C) is divisible by its target, o;.

For the remainder of this section, we suppose that A = L(0,, 03, . . ., 0,) is defined,
that is, the elements of S have a common multiple, and A is a least common multiple
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Type Coxeter graph
An (n21) T _n?T_'
4
B, (n>2) —0—0

D, (nz=4) .—I—— ._..._.
E,, (n=6,7,8) .__._I_ ._.—.

1 3 4
F LN
l 6 2 3 4
G2 —o
1 5 2
H; — o —o
1 2 3
H, — o o o
1 m 2 3 4
L{m) (m=)5) o——o
1 2

FIGURE 1. The irreducible Coxeter graphs of finite type. Unlabelled edges have value 3.

of §. Then we say that M is of finite type. It is known (see for example, [20,
Chapter 2]) that the graphs for these types are precisely finite disjoint unions of those
shown in Figure 1. The reader will notice that this list is closed under taking complete
subgraphs. The element A is called the fundamental element, and has a number of
properties which will be referred to shortly. First we need the definition of a square
free word. A word W has a quadratic factor if there are words U and Vover SU T
and a letter a such that W = UaaV. A word is square free if all words equivalent to
it have no quadratic factor. The following results can all be found in [7, Sections 5
and 8] and [9, Section 4].

REMARK 1.8. Properties of the fundamental element A. ([7, Sections 5, 8]; [9,

Section 4].)

(1) A is an element of the positive Artin monoid (that is, a word over S).

(2) A is both a left and right least common multiple of S.

(3) revA ~A.

(4) A word over S is square free precisely when it is a divisor of A.

(5) A generates the centre of ., for all finite Artin types except types A, forn > 2,
Dyis1, E¢ and I,(2g + 1), in which cases A? generates the centre.

We will denote by ¢ either A or AZ, the generator of the centre of ;. Define
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2.%(S) to be the set of words over S for which there is a word A suchthat AA ~ A—
in other words, 2.%(S) is all words (including the empty word) which divide the
fundamental element. According to the previous result, we could define 2.4(S)
equivalently to be the square free words over S (the letters 2.% stand for quadrat frei,
or square free). There are only finitely many words whose length is at most £(A), so
2% (8) is finite. In contrast, there are infinitely many square free words over SU T,
as there are square free words of arbitrary length over S U T, for example (t;t;)* is
square free for any k, provided m; > 2.

LEMMA 1.9. (1) Suppose that BxC ~ B’y C’ where B, B’, C, C' are words over
Sandx,y € T. Then BC~ B'C.
(2) Suppose that A is in 2.F (S) and b is any letter in SU T. If b does not left divide
A, then bA is square free. If b does not right divide A, then Ab is square free.

PROOF. Part (1) follows by observing that the only relations involving an element ¢
of T which may be applied here are of the form (rw, wu) or (wt, uw) forsomeu € T
-and word w over S. The result then follows by induction on the number of such
applications required to transform Bx C into B’y C'.

If b € S, then the statement of part (2) follows from [7, L.emma 3.4] and an
application of rev. If b € T, then by part (1), bA and Ab are square free whenever A
isin 2.%(S). 0

LEMMA 1.10. Ler B and V be words over SU T. Suppose that A is the longest
square free word over S which divides A B, and moreover, that A divides VA B. Then
A divides VA.

PROOF. By (3) and (4) of Remark 1.8, there is a word D over § such that DA ~ A.
So A divides D VA B. Hence every letter of S divides D VA B. In particular, DVAB
is a common multiple of o; and D VA for all g; in S, so K,,(D VA) is always defined.

Suppose o; does not divide DVA. Then K, (D VA) is a o;-chain to b, for some
b € S. Further, b must divide B, since o; divides D VA B (Remark 1.3). Moreover,
Lemma 1.7 says b does not right divide DVA, so in particular b does not right
divide A. Hence Ab is squarefree (by Lemma 1.9) and divides A B, contradicting the
maximality of A.

Thus each o; divides D VA, so their least common multiple A ~ DA divides
DVA. Cancelling D from the left, A must divide VA. a

2. Conjugacy in .%%,; when M is of finite type

Suppose that V and W are words over S U T. We say that V is conjugate to
W (relative 0 #), denoted V < W, if there exists a word X over § U T such that
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VX ~ X W. In this case we say V < W by X. It is not immediately obvious whether
conjugacy is an equivalence relation. It is certainly reflexive, and if V =< W by X and
W =< Zby Y then V < Z by X Y, so conjugacy is transitive.

Throughout the whole of this section, M is assumed to be of finite type. We will
see that this restriction is enough to ensure that conjugacy is also symmetric (although
in the case when M is not of finite type, this is not known).

Let R = 2% (S)U T. Say that V is R-conjugate to W if V < W by some element
of R; that is, if there is a word A in R such that VA ~ A W. This is denoted V <y W.
If Vx4 Wthen V < W. We will show that < is contained in the equivalence relation
generated by <. (This will turn out to be x<.)

LEMMA 2.1. Suppose that V < W. Then there is a positive integer p and words
X(),X],...,Xp WithXoE V, Xp = WandXi_lxRX,-fori= 1,...,p.

PROOF. Suppose V < Wby U, so VU ~ UW. The argument is by induction on
the length of U. If £(U) = Oor 1, then U € R so p = 1. Suppose now that £(U) > 1,
so A(U) must be nonempty.

First suppose that A(U) N S # @. Let A be the longest square free word over §
which divides U. So U ~ A B for some word B and A is not empty. Since A divides
VAB, Lemma 1.10 says there is a word X such that VA ~ AX. But A € X so
V =x X, and moreover AXB ~ ABW, so after cancelling, X B ~ BW. The result
now follows by induction applied to B.

Now we suppose that A(U) € T. Suppose that A(U)NA(V) # &. Thenthere is a
1, €¢ Tsuchthat U~ U and V~ 17, V. Let X = V't;. Then Vi, ~ 1, V't = 1, X,
so V¢ X. Moreover, ;XU ~ t; V', U ~ VU ~ UW ~ 1, U’ W. By cancellation,
XU ~ U W, and the result follows by induction applied to U'.

The only case left is when A(U) € T and A(U) N A(V) = @. These are
precisely the conditions of Lemma 1.6, so there is a word U’ shorter than U such that
VU ~ U W, and so the result follows by induction applied to U'. O

LEMMA 2.2. If Vxy Wthen W < V.

PROOF. Suppose that A is an element of 2% (S) such that VA ~ A W. Then there
is a word D such that AD ~ A, and ADA ~ A?is certainly central, so

AWDA ~ VADA ~ VA* ~ A’V ~'ADAYV,

and after cancelling A we have WDA ~ DAV,andso W < V.

Suppose alternatively that Vr; ~ ;W for some t; in T. If t; divides V then
V ~ 1;X for some word X, so 7; W ~ 1;X 1;, after which cancelling gives W ~ X1,
yielding WX ~ X1,X ~ XV, andso W < V. If 7, does not divide V, then K, (V)
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is a t;~chain to 7;, by (4) of Remark 1.3. In this case, by Lemma 1.4, K, (V) is
preserving, so T, W ~ Vt; ~ 1, V; cancelling gives W ~ V,so W x V. O

THEOREM 2.3. Conjugacy is an equivalence relation.

PROOF. As remarked earlier, conjugacy is reflexive and transitive. Suppose that
V < W. Then by Lemma 2.1 there is an integer p and words Xy, X, ..., X, such
that V = Xy, X, = Wand X;,_; = X, fori = 1, ..., p. By the previous lemma, for
eachi=1,...,p, X, < X,_,. By transitivity, X, =< X,;so W < V. Thus conjugacy
is also symmetric, and hence an equivalence relation. a

Let X be a set of words over S U T. Then define
() ={X| V=xX forsome V€ X}.

Observe that if V is conjugate to W, then there is an integer p and words X, ..., X,
such that V = Xy =<z Xy <x - xx X, = W, s0 W € ¢? ({V}). Furthermore, homo-
geneity forces £(X) = £(V) whenever V =<y X, so

YUV S X € (SUD)" [ LX) = UV},

which is finite—it has at most (2n)*"? elements, where |S| = |T| = n. By reflexivity
of xx-conjugacy, ¢*(X) C ¢**+!(Z) for all numbers k and sets . If p*(Z) = ¢**(T)
then ¢**"(X) = ¢*(X) for all r > 0. So,

e (V) = o (V).
Let
O(V) = (V).
Then ® (V) is precisely the set of all words conjugate to V.
If W = bU for some letter b, then we write ©'W = U. If W does not begin with b
then *”' W is notdefined. We now define a partial operator (/) : (SUT)Y*x (SUT)* —

(S U T)* which does the job of division. Suppose V = aja; - a,. If V divides W,
then

(W/ V) = ""_IK,“(" .“z_lKaz("flKal(W)) )’

and (W/ V) is undefined otherwise. (In fact, if V does not divide W then in trying to
perform the calculation described will result in an ‘undefined’ answer at some stage.)
Moreover, if V divides W then, by [9, Lemma 6], W ~ V(W/ V).

THEOREM 2.4. The set ®(V) of all words conjugate to V is calculable.
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PROOF. For any k > 0, ¢**'({V})) = Uyeprqvy ©({X)). Consider X € o*({V}).
Then £(X) = £(V), and

(XD ={Y e SUTV | XA ~ AY for some word A in R}

={Y € (SUT)"Y | (AY/X) # oo and ((AY/X)/A) is the
empty word for some word A in R}.

So to calculate ¢({X}), for each of the elements A of X and for each of the (2n)*V
elements Y of (S U T)*Y, the two calculations (AY/X) and ((AY/X)/A) must be
made. There are at most |T| 4 (|S] + 1)*® = n+ (n + 1)*® words in R, so this adds
up to at most 2(2n)*¥ (n + (n + 1)*®) calculations. Since there can be no more than
(2n)"™ elements of ¢*({V}), at most 2(2r)*V(n + (n + 1)*®)(2n)*¥ calculations
need to be done to calculate p**!({V}), once ¢*({V}) is calculated. By definition
d(V) = @ ({V}), so at most

221"V (n + (n + 1) 2n)* M 2n)* " = 2V N (n 4 (n + 1)'@)

calculations are required to determine ¢ (V). O

Thus the conjugacy problem is solvable in positive singular Artin monoids. To
determine if W is conjugate to V, calculate ®( V) (which is finite) and see whether W
is a member.

3. Conjugacy in singular Artin monoids of finite type

Suppose that M is an I x I Coxeter matrix as defined in the first section. Let §~*
denote the set {o;”' | i € I} of formal inverses of S. Then the singular Artin monoid of
type M, denoted .#y, is the monoid generated by S U S~! U T subject to the relations
Z described in Section 1, and the free group relations on S:

o0 =070, =1 foralli e 1.

If two words V and W over SU S~! U T represent the same element in .%, then write
V= W.

Throughout the rest of this section, M will be of finite type. In this case, the
singular Artin monoid Sy is also said to be of finite type. The reader is reminded that
this means the Coxeter graph of M is a finite disjoint union of graphs in the list in
Figure 1. The singular Artin monoid of type A, is commonly known as the singular
braid monoid on n + 1 strings, as defined in [4] and [5].

Theorem 20 of [9], known as the Embedding Theorem in the sequel, says that .%,;
embeds in .#}s. The proof of this theorem made much use of the fundamental element
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A, and the central element ¢ (which is either A or A?, depending on the type, as per
(5) of Remark 1.8). Suppose V = Uoor,.l‘1 Ulaiz‘1 U--- Uk_loi:1 U, where each U, is a
word over S U T. Then, as in [9, Section 5], define

01(V) = Upgi, Uig, Uz - - - Uii&i, U,
6,(V) =k,

where ¢; = (¢ /0;), which is defined because every letter of S divides {. Thus
Ve (V) = V.

Two words V and W over SU S~! U T are said to be conjugate in .#) if there exists
aword X over SU S~! U T such that VX ~ X W. The following result shows that
conjugacy in .%; is just the restriction of conjugacy in .#y. Thus it will make sense
to use the notation V < W for conjugacy in .%, also.

LEMMA 3.1. If V and W are conjugate in %y, then there is a word X over SU T
suchthat VX = X W.

PROOF. Suppose that V, W, and Y are words over SUS~!U T such that VY ~ YW.
Since £ ~%(g,(Y) ~ Y, multiplying through by %" gives V8,(Y) = 6,(Y)W, soin
fact V and W are conjugate by a word X = 0,(Y) over SUT. O

THEOREM 3.2, Let V and W be words over SUS™'UT with6,(V) > 0,(W). Then V
is conjugate to W in #y precisely when 6, (V) is conjugate to £ #V'=%")g, (W) in ).
In particular, words over SUT are conjugate in %y precisely when they are conjugate
in #;. Thus the conjugacy problem is solvable in Fy.

PROOF. Suppose 6;(V) is conjugate to &%=V-%Wg (W) in #,¢. Then there is a
word X over S U T such that 6;(V)X ~ X¢%-Wg (W), Multiplying by & %™,
using the fact that £ ~%(V§,(V) &~ V, and the centrality of ¢, we have VX ~ X W.

On the other hand, suppose that V and W are conjugate in .¥y. By Lemma 3.1,
there is a word X over S U T such that VX ~ X W. Multiplying through by %"
gives 8,(V)X =~ X¢&M-8Mg (W), but, since 6,(V) > 6,(W), all the words in the
equation are over the alphabet S U T. By the Embedding Theorem of [9], this gives
(V)X ~ X&=WM=8WMg (W), so 6,(V) is conjugate to £#V-%MQ (W) in #,. O

The remainder of this section deals with some results which we hope may explain
our choice of the definition of conjugacy. There does not seem to be a general
semigroup theoretic definition of conjugacy. Howie [18] introduces the following
notion, which we call here ‘swap conjugacy’, in the context of a certain class of
semigroups called equidivisibible semigroups. Say that V and W are swap conjugate
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if there exist X and Y such that V &~ X Y and W = YX. This notion is a natural one
in the context of singular braids; these may be considered as geometric realisations
of elements of singular Artin monoids of type A. This is discussed in more detail in
Section 6.

Swap conjugacy is clearly reflexive and symmetric; though not necessarily transi-
tive. In Howie’s context, transitivity is easily shown to hold. However, even in the
positive singular Artin monoid of type A,, swap conjugacy fails to be transitive. For
example, 040,03 is swap conjugate to 0,0,0, ~ 0,010;, which is swap conjugate to
0,020,. Using the fact that 00,0, is in a singleton equivalence class of words in YA*;,
it is easy to see that the only words which are swap conjugate to it are 0,0,0,, 00,0,
and 0,0,0,. Thus 0,0,0; is not swap conjugate to ¢,0,03 in YA‘:.

We mention that, on the other hand, o,0,0, = (0,0;) (0, oza,") is swap conjugate
10 010,07 = (olazorl“)(o, 03) in #,. Thus this relation is coarser in .%,; than in .#;
preventing us from ‘bootstrapping’ our way from %, up to % as has been the
technique previously.

It turns out that provided we restrict our interest to the transitive closure of swap
conjugacy in .%),, we obtain the same relation as that of conjugacy as defined in this
paper. (At the time of writing, the author does not know if swap conjugacy in %) is
transitive.) If V and W are swap conjugate then we write V = W. We remind the
reader that M is assumed to be of finite type.

LEMMA 3.3. Let V and W be words over SU T suchthat Vx4 W. Then V = W.

PROOF. There exists A € R = 2.%(5) U T suchthat VA ~ AW.IfA € 2% (S)
then A is invertible, and so V = (A)(A~'V) and W =~ (A~ V)(A), whence V = W.

Otherwise, A = t; for some . Suppose that 7; divides V. Then V ~ t; V' for some
word V' over SU T, and we have 1; V't; ~ 1; W. After cancelling, we have W ~ V'z,,
and immediately V = W. Finally, suppose that 7; does not divide V. However, t;
does divide Vt;, so by (4) of Remark 1.3, K,,(V) is a t;-chain to ;. Lemma 1.4 says
this 7;-chain must be preserving, and so K, (V)1; ~ 7.K,, (V). Since V ~ K, (V), we
have 7;V ~ V1, ~ 1; W. After cancelling, we have V ~ W, so V and W are trivially
swap conjugate. O

LEMMA 3.4. If V and W are words over S U S~' U T such that V == W, then
g™V =™ W for all integers m.

PROOF. This is immediate by the centrality of ¢. 0

THEOREM 3.5. Let V and W be words over SU S~' U T.
(1) IfVv= W, then V< W.
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(2) If V x W, then there exists an integer p > 0 and a sequence Zy, Zy, . .., Z,
suchthat V=2o= 2, =---=2Z,=W.

PROOF. (1) If V = W, then there exist X and Y such that V~ XY and W= YX.
Thus VX ~ XYX ~ XW,andso V x W.

(2) Suppose V < W. By Lemma 3.1 we may suppose that VU =~ UW for some
U € S U T. There exists an integer m = max{6,(V), 6,( W)} such that V = " V+
and W ~ ¢~ W* for some words V* and W+ over S U T. Multiplying through by
¢™, and using the fact that ¢ is central, we have VU = UW?. By the Embedding
Theorem of [9], V* U ~ UW*. By Lemma 2.1, there is an integer p > 0 and words
Xo, X1, ...,Xp with

VP =Xoxp Xy xpn--- = X, = W
By Lemma 3.3, we have
ViseXo=X = - =X,=W"
Multiplying through by ¢ =, and invoking Lemma 3.4,
VeZiy=2Z,=---=22Z,=W,

where Z; = ¢ "X, foreachi =0, 1,...,p. O

4. Centralisers in singular Artin monoids of finite type

For generators a and b, denote by the set Z(a, b) the set of words W over SUS™'UT
such that aW =~ Wb. The centraliser of a generator a, which will be denoted Z(a),
is then the set Z(a, a). Whenever Z(a, b) is not empty, it is infinite in size—since,
for example, whenever P € Z(a, b) then a*P is in Z(a, b) also for arbitrary k. We
assume throughout this section that M is of finite type. We will show (Proposition 4.6)
that Z(x;, x;) is not empty precisely when the vertices i and j of 'y, are connected
by a sequence of edges labelled by odd m,,, only.

LEMMA 4.1. The set Z(a, b) is empty if a and b are not both in S, not both in §7',
and not both in T.

PROOF. It can be seen from the relations that the number of letters of T appearing
in a word is invariant under applications of the relations, since each relation either has
no occurrences of T or one on each side. Thus an equation of the form aW ~ Wb
means that either both @ and b come from T, or neither a nor b comes from 7.
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Now suppose that o; W &~ Wo;'. Since W ~ £~%")g, (W), multiplying both sides
of the original equation by the central element & ~%") gives 0,0,(W) = 6,( W)oj“.
Thus 0:6,(W)o; =~ 6,(W), and so by [9, Embedding Theorem], 0,6,(W)o; ~ 6,(W).
But this cannot be the case, as equivalent words in .%,; must have the same length. O

It is clear from the definition that Z (ai", Uj") = Z(o;, 0y), since o; W = Wo;

precisely when Waj‘l ~ 0;' W. Thus we will momentarily restrict our consideration
of Z(a, b) to the case where a and b are both from SU T.

It turns out that preserving a-chains are important elements of these sets. Preserving
chains are characterised by the property of Lemma 1.4 that a nonempty word W is
equivalent to a preserving a-chain to b precisely when a does not divide W and
aW ~ Wb. Thus preserving a-chains to b and all words equivalent to them are
in Z(a, b).

LEMMA 4.2. Letaandbbein SUT anda # b. A word W over SUT isin Z(a, b)
precisely when it is equivalent to a word of the form a™ P where m is a non negative
integer and P is a preserving a-chain to b.

A word W over SU T is in Z(a) precisely when it is equivalent to a word of the
Jorm a™ P where m is a non negative integer and P is either a preserving a-chain to
a or the empty word.

PROOF. In light of previous comments, we only need to prove the ‘only if” direction.
Suppose W € Z(a, b). There is some integer m > 0 such that a™ divides W but a™*!
does not divide W. Then W ~ a™V for some V which is not divisible by a. Since
aW ~ Wb, then a™'V ~ a™Vb, and so aV ~ Vb by left cancellativity. By
Lemma 1.4, V is equivalent to a preserving a-chain P with target b,and W ~ a™ P.

The argument for when a = b is almost the same, except that P may be empty. O

Now take any word W over SU S™'U 7. Then W ~ £ 7%6,(W) where k = 6,(W),
anon-negative integer. Since ¢ is central, then W is in Z(a, b) precisely when 6,(W)
is in Z(a, b). We know the form of such elements from the previous Lemma. Thus

W= ¢*a™P wherek,m > 0 and P is
PROPOSITION 4.3. Z(a, b) = { W | a preserving a-chain to b or may be the
emptywordifa=0>b

LEMMA 4.4. Foranyiandj, Z(o7', 0;") = Z(0:, 0;) = Z(7;, T;).

PROOF. That Z (cri_', Uj"l) = Z(0i, 0;) was noted earlier. A quick inspection of
the relations % shows that the source and target of a simple preserving chain must
be both in S or both in 7. Further, if P is a simple preserving o;-chain to oj,
then ;P ~ Pt;, and if P is a simple preserving z;-chain to 1;, then o; P ~ Po;.

https://doi.org/10.1017/51446788700010442 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700010442

200 Ruth Corran [18]

Since compound preserving chains are just concatenations of suitably matching simple
preserving chains, the same results hold there: if P is a preserving o;-chain to o;, then
;P ~ Pt;, and if P is a preserving t;-chain to 7;, then 0; P ~ Po;.

Now suppose W € Z(0;, 0;). Then Proposition 4.3 says W ~ ¢ o™ P where P
is a preserving o;-chain to o; and k and m are non-negative integers. So

TW=xr1 "‘ori'"P ~ et P oy P & {"‘ori’"Ptj ~ Wr;,

so W € Z(1;, 1;). Thus we have that Z(0;, 0;) € Z(7;, 7;). The reverse inclusion is
analogous. O

Thus it makes sense to denote the set Z(o;', 0;') = Z(0i,0;) = Z(1;, 7;) by
Z{i,j).

PROPOSITION 4.5. Whether or not a word W over SU S'U T is in Z(i,j) is
calculable.

PrROOF. The word W is equivalent to & ~%(")g, (W), and since ¢ is central, W is in
Z(i, j) precisely when 6, (W) is. Calculate (01(W)/a,.") fork =0,1,..., p where
p is the integer such that U = (6,(W)/a?) is defined, but (6,(W)/o? *1) is not. (At
most £(6,(W)) calculations need to be done.) Then we need to determine whether or
not U is a preserving o;-chain to o;. According to Lemma 1.4, this is equivalent to
determining whether o; U ~ Ug;. This is the case precisely when (Uo; /0;) is defined
and equivalent to U, or in other words when ((Uoj /0;)/ U) is defined and empty.

The next results of this section describe precisely when Z (i, j ) is not empty. It is
clear that Z (i, i) is never empty as ", 6, and t/" are in Z(i, i) for all integers n and
non-negative integers m. If m;; is odd then (o; o;)™i~! is a preserving o;-chain to gj,
so Z (i, j ) is not empty. Moreover if Z(i, j) and Z(j, k) are nonempty then Z (i, k) is
nonempty as Z(i,j)Z(j, k)= {VW | Ve Z({,j)and We Z(,k)} C Z(, k).

PROPOSITION 4.6. The set Z(i, j ) is nonempty precisely when there is an integer
r > Qand a sequencei = iy, ..., I, = j suchthatm,_,, isoddforeachk =1,...,r.

PROOF. If there is such a sequence, then from the preceding comments it is clear
that Z(i,_,, i;) is nonempty foreach k = 1, ..., r; and thus

Z(,j)2ZG, i)Z(, i) - Z(ir-1,])
is nonempty also.

On the other hand, suppose Z(i, j) is nonempty. If i = j then the result holds
with r = 0. Suppose then that i # j, and take W € Z(i, j ). From Proposition 4.3,
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there are non-negative integers k and n and P, a preserving o;-chain to g;, such that
W = ¢ ~*o P. Thus preserving o;-chains to o; exist.

Suppose P = P, P,--- P, is such a o;-chain to o;, where each P; is a simple
preserving chain. By excluding the simple components whose source and target
are the same, we obtain a subsequence jg, ji,...,J, of 1,2,..., p such that P/ =
P;,P;, --- P; is a preserving o;-chain to o; and each P;, is a simple preserving o;-
chain to a;,, where i; # i;,,. (So i = i and i, = j). The only such words are
(04,,00,) =1 with my,;,,, odd. (If m,, is even, then (0,0,)™+! is a preserving o,,-
chain to 0,). Thus the sequence i = i, iy, ..., i,-1, I, = J satisfies the requirements
of the theorem entirely. a

A word is said to be t-free if it has no occurrences of letters from T.

SCHOLIUM4.7. The set Z(i, j ) is nonempty if and only if there is a T-free preserving
o;-chain to o;.

The group whose presentation is given by the generators S U S™! and relations all
those of .}, with no occurrences of letters from 7 is called the Artin group of type
M. It is a subgroup of the singular Artin monotd of type M. The Artin group of type
A, is often called the braid group on n + 1 strings. Let

Zs(i,j) ={We Z(i,j)| Wis t-free} = Z(i,j) N (SU S7)*.
From Scholium 4.7, we know this is nonempty precisely when Z (i, j ) is nonempty.

PROPOSITION 4.8. The set Zs(i, j ) consists precisely of those words W over SU S™!
such that Wo; and o; W represent the same element of the Artin group of type M.
Membership of Zs(i, j ) is calculable.

The results of the next corollary follow immediately from Proposition 4.6 and an
examination of the list of Coxeter graphs of finite types given in Figure 1.

COROLLARY 4.9. (1) Ifiandj are not in the same connected component of 'y,

then Z(i, j) is empty.

(2) If i and j are in the same connected component of I"y and the connected
component is not of type B,, F;, G, or I,(2m), then Z(i, j) is always nonempty.

(3) Ifiandj areina connected component of type B,, then Z (i, j ) is empty precisely
whenl e {i,jlandi #j.

(4) Ifiandj areinaconnected component of type F,, then Z(i, j ) is empty precisely
when {i, j} is either {1, 3}, {1, 4}, {2, 3}, or {2, 4}.

(5) Ifiandj are in a connected component of type G, or I,(2m), then Z(i,j) is
nonempty precisely when i = j.
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COROLLARY 4.10. The results of Corollary 4.9 hold with Z (i, j ) replacing Z (i, j ).

Fenn, Rolfsen and Zhu [12] introduced the notions of (j, k)-bands and singular
(j, k)-bands in the braid group and singular braid monoid—which in this article are
called the Artin group of type A and the singular Artin monoid of type A respectively.
These bands turn out to be geometric analogues to elements of Zs(j, k) and Z(j, k)
respectively. The relevant result, [12, Theorem 7.1], is the following, which shows
that a singular braid with a (possibly singular) (j, k)-band has precisely the required
property for belonging to Z(j, k) in .%,,.

THEOREM 4.11 (Fenn, Rolfsen and Zhu). For a singular braid x in the singular
braid monoid, the following are equivalent:
(@) ojx =xo0u;
() o/x = x0y, for some nonzero integer r;
(©) o/x =x0|, for every integer r;
d) Tix=x7;
(e) t/x = x71,, for some nonzero integer r;

J
(f) x has a (possibly singular) (j, k)-band.

By the equivalence of (a) with (f) we deduce that a singular braid has a (j, k)-band
if and only if it can be represented by an element of Z(j, k).

The method of [12] to identify elements of the centraliser of a generator in the
singular braid monoid relies on the geometric realisation of the Artin type A, as
braids. There are no known geometric realisations for types other than type A, so the
method of (j, k)-bands cannot be extended in an obvious manner to the other types.
The algebraic method provided here covers all types: By combining Theorem 1.5,
Proposition 4.3, Lemma 4.4 and Proposition 4.5, we can extend this theorem of Fenn,
Rolfsen and Zhu above to arbitrary type (that is, not just type A):

THEOREM 4.12. An element x of Fy is in Z(j, k) if and only ifaj”x ~ xof for
some non-zero integer p, if and only if 1/x ~ x7 for some non-zero integer r. For
any x, this is calculable.

In [12], the authors remark that ‘it may not be obvious, from a presentation as a
word in the generators, whether a word has a (j, k)-band’. However, Proposition 4.5
and Proposition 4.8 provide ways of determining inclusion in Z(j, k) and Zs(j, k)
respectively.

Birman [5] conjectured that the monoid homomorphism 75 from the singular braid
monoid to the group algebra of the braid group defined by n(o*') = o*' and n(r;) =
o, — o, ! is injective. Among many other interesting results about braids and singular
braids, the Fenn er al.’s paper [12] confirms certain cases of Birman’s conjecture
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using results about centralisers. It is hoped that the results of this paper may help
in determining the truth or otherwise of Birman’s conjecture in general. In the final
section, the singular braid monoid and its relationship with singular links is discussed.
Next, we define parabolic submonoids and describe some results about conjugacy of
parabolics.

5. Parabolic submonoids of singular Artin monoids

Recall that M is a Coxeter matrix over /, a finite indexing set. For J C [, it is
clear that the submatrix M, of M containing the entries indexed by J is also a Coxeter
matrix. We use the following notation:

Si={o;1jeJ}, Si'=lo'ljed), T={yljelJ)

Recall that % denotes the defining relations of .%%;f. Denote by %, the defining
relations of % . The next two observations follow from the definitions of these
relations:

(1) %#F C #*.

2) If(X,Y) € #Z* and X is a word over S; U Ty, then Y is a word over S; U T}
also, and (X, Y) € #7.

Suppose that V and W are words over S; U T;. If V and W represent the same element
of 5”;,‘/ write V ~; W. Note that the relations ~ and ~; are identical; in this section
we will use ~; for clarity. The observation (1) above ensures that if V ~, W, then
V ~; W. Conversely, suppose that V ~; W. Since V and W only contain letters from
S; U Ty, the second observation says that the only relations from %% which can be
used to transform V into W are those which lie in Z} anyway; thus V ~; W. This
proves

PROPOSITION 5.1. %) embeds in ;.

Now suppose that V and W are words over S; U §;' U Ty. The notation V~; W
(respectively, V =; W) implies V and W represent the same element of %, (respec-
tively, F). Itis clear that if V=, W, then V=, W. However, to prove the stronger
result that V=; W implies V~; W, we use the Embedding Theorem of {9}, which
has only been proved for finite types.

Suppose that M is of finite type. Then A, the least common multiple of S, is
defined, and is a common multiple of S;, a subset of S;. Thus a least common
multiple of §; exists, so M, is of finite type. (Or alternatively, one may observe that
the list of Coxeter graphs of Figure 1 is closed under taking full subgraphs). We will
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denote by A, the fundamental element of .%y,, and by ¢, its corresponding central
element (either A, or A% according to (5) of Remark 1.8).

Let V and W be words over S, U S;' U T;. Then there exists an integer m such
that V=, {7 V* and W=, {7 Wt where V* and W* are words over S; U T;. By the
comments following the proposition, we have that V =, {"‘ Vtand W=, ;T WH.

Suppose that V=, W. Multiplying through by ¢;™, we have V*=; W*. By
the Embedding Theorem ([9, Theorem 20]), V* ~; W*. Proposition 5.1 then ensures
Vt~, W*, andso V* =, W*. Finally, multiplying through by ¢ resultsin V=, W.
Thus

PROPOSITION 5.2. Suppose that M is of finite type. Then ¥y, embeds in %y.

The submonoid P; of %), generated by S, U S;' U T; is called the parabolic
submonoid defined by J. The image of the natural embedding described in the
previous proposition is precisely P;. Thus we have

THEOREM 5.3. Parabolic submonoids of singular Artin monoids of finite type are
(isomorphic to) singular Artin monoids.

The Artin group of type M is the subgroup of %, generated by S U S™'. The
previous result was first proved for parabolic subgroups of finite type Artin groups
in [7] and [10]. The set of types for which it holds for Artin groups was gradually
extended via various techniques of proof, eventually to include all types in [11].
Paris [22] provides an alternative proof via CW-complexes. It is not immediately
clear how to generalise this to singular Artin monoids; although the author suspects
that Theorem 5.3 does hold for arbitrary types of singular Artin monoids.

The rest of this section is devoted to investigating when parabolics are conjugate.
Our first step is to generalise Paris’ definition of conjugators of parabolics of Artin
groups ([22]), and to do so we must introduce some notation. Let X, and X, be sets
of words. Then ¥, & ¥, means that the sets of & equivalence classes of elements of
3, and X, respectively coincide, X, X, denotes the set (X Y | X € ¥, Y € ¥,}, and
if W is a word then WX, = {W}X,. Using the terminology of Paris, given subsets J
and K of I, we define a (J, K)-conjugator to be a word V over SU S~! U T such that
VS; = S¢ V. Thus Z(i, j) is the set of all ({j }, {i{})-conjugators.

Suppose that V is a (J, K)-conjugator. Then V defines a bijection fy : J — K by
Vo; = o5, V. Well-definedness is assured by right cancellativity, and injectivity by
left cancellativity. Foreachj € J, V lies in Z(fy(j), j); and thus

Ve )ZUvi)i).
jeJ
Conversely, if f : J — K is a bijection, and some word W lies in the intersection
of Z(f(j).j) forall j € J, then Wo; = or;yW forall j € J, andso Wisa
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(J, K)-conjugator. Since membership of Z (i, j) is calculable (Proposition 4.5), we
can determine when a word is a conjugator.

THEOREM 5.4. Suppose that J and K are subsets of 1. Let F = {bijections f :
J = K. The set of all (J, K) conjugators is UfeF ﬂje, Z(f (j),j). Membership
of this set is calculable.

If J is a subset of I, then we denote by I'y,, the full subgraph of "y, on the vertices
labelled by J—that is, the graph whose vertices are J, and for which there is an edge
between vertices j; and j, in ['y, precisely when there is one between j; and j, in T'y,.

PROPOSITION 5.5. Suppose that J and K are subsets of 1. If the set of (J, K)-
conjugators is not empty, then "y, and 'y, are isomorphic.

PROOF. Supposethat Visa (J, K)-conjugator; so V defines abijectionf : J — K,

as described already. Thus |J| = |K|. It remains to show that m; = my ;) for each
iandj in J.

Fix i and j, and suppose that m;; < my ). Then Vo; = oy, V, and similarly
for j, and so

(or wOr )™ V = Vieio;)™ = V{o;0,)™ = (07 )07 @)™ V.

After cancelling V from the right, we obtain (oy ;07 ;))™ = (07;)07»)™, and so
the Embedding Theorem implies (oy ;07 ())™ ~ (07)0r )™ . By the Reduction
Lemma (which is Lemma 1.1 of this paper), (07,07 ),)™ ™9 divides (07 0y ())™ ;s
and so we have m;; = my s ). The case when m;; > my ;) is analogous. O

We say that two submonoids @, and Q, of . are conjugate if there exists a
word V over SU S~! U T such that VQ; =~ Q,V. Suppose that J and K are subsets
of I, and that V is a (J, K)-conjugator with corresponding bijection f : J — K.
Thus V € Z(f(j),j) for each j € J, and so, by Lemma 44, Vo; = o5V,
Vo' ~ o7, Vand Vi; = 17, V. Thus if U is any word over S; U S;' U Ty, then,
since K = f (J), VU = UV, by pushing each letter of U through V one at a time,
for some U’ over Sk U Sg' U Tx. Similarly, for any word W over Sx U Sg' U T, there
is a word W’ over S; U S," U T, satisfying WV = VW'. Thus VP, = P¢V, and we
have:

LEMMA 5.6. If the set of (J, K) conjugators is not empty, then P; and Px are
conjugate.

In Theorem 5.8, we will show that the converse of this lemma holds, although
the converse of the preceding proposition does not. To see why, we will exploit
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results about, and connections between, Coxeter and Artin groups and singular Artin
monoids. Recall that throughout, M is a finite type Coxeter matrix over /.

The Artin group of type M, denoted 9y, is the group generated by SUS~! subject to
the braid relations {(0,0,)™ = (0;0;)™ and the free group relations 0;0,”' =0, 0, =1.

Suppose that V and W are words over SU S™' U T such that V &~ W. If V may be
transformed into W using only the relations from above, we will write V =5 W. In
particular, if V and W are t-free (that is, are words over S U §™!) with V ~ W, then
the only relations which can be used to transform V into W are the t-free defining
relations of .}y, which are precisely those above, so V &g W. Thus the Artin group
%y embeds in the singular Artin monoid .%),.

The Artin group % is also a homomorphic image of .y, by a map ™~ which we
define first on generators, and then show it can be extended homomorphically. Define
“from SUST'UT to SUS™! to be the identity on § U S~!, and such that 7; = o;
for each i € I. Extend ™ to words over S U ™' U T in the obvious way. Observe
that if p; = p, is any defining relation of .y, then 5, = p, is one of the relations
above. Thus ™ is a well-defined map from =~ equivalence classes of words in .#) to
=5 equivalence classes of words in %; so V =~ W implies Vg W.

The Coxeter group of type M, denoted by &, is a quotient of %, obtained by
identifying each element of S with its inverse, that is, 4, is generated by S U §~!
subject to the braid relations and the relations 6> = 1 foreachi € I. If V and W are
words over SU S~! such that V may be transformed into W using only these relations,
then write V = W. For any word V over S U S~!, denote by V the word obtained
by replacing each occurrence of o;! in V with g;. Then V = V, showing that every
element of ¢, may be expressed as a word over S. (We could have chosen S as a
set of monoid generators for Zy.) A word over § is said to be reduced if it is of
shortest length amongst all words representing the same element of ;. We will use
the following standard results (see [6] or [20]):

(1) The set of all reduced words is precisely 2.% (S).
(2) If V and W are reduced words such that V = W, then V ~ W (that is, V may
be transformed into W using only the braid relations).

IfJCIl,and W, = _ﬁ, is the subgroup of &, generated by S,. Suppose that J and
K are subsets of I for which there is a word V over S such that VW, = W, V. There
is always an element v of minimal length in the coset VW,, and Howlett [19] has
shown:

(3) If vW; = Wy with v a minimal length coset representative, then vS; = Skv.

The properties (1), (2) and (3) above allow us to refer to Coxeter groups to determine
conjugacy of parabolic submonoids of singular Artin monoids, due to the following:

THEOREM 5.7. Suppose that M is a finite type Coxeter matrix over I, and that J
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and K are subsets of I. Then P; and Py are conjugate in Sy if and only if W;
and Wy are conjugate in ¥ .

PROOF. Suppose that there is a word V over SU S~' U T such that VP, = Py V.
Then VP, g PK V and so VP, = PKV Let U = V and recall that W, is
precisely P,; thus UW, = Wx U, so W, and Wy are conjugate in Z,,.

Conversely, suppose that VW, = Wy V for some word V over S. Then there exists
a minimal length word v (a word over S) in the coset VW, so for this element

@ vW, = Wgv,

(b) v is reduced, and

(c) v is notright divisible by any word in W,.
Then by (3) above, vS; = Skv, so there is a bijection f : J — K defined by
vo; = 0y ;)v. The points (b) and (c) ensure that vo; is reduced, and so by (2) above,
we have vo; ~ oy (v, forall j € J. Thus the word v is a (J, K)-conjugator, and so
by Lemma 5.6, P; and Py are conjugate. O

Notice, as a scholium, that if W; and Wy are conjugate, then we can find a (J, K)-
conjugator v which lies in 2% (S).

THEOREM 5.8. Suppose J and K are subsets of 1. The following statements are
equivalent.
(1) 2% (S) contains a (J, K) conjugator.
(2) The set of (J, K) conjugators is not empty.
(3) P, and Py are conjugate.

PROOF. Clearly (1) implies (2). Lemma 5.6 is precisely that (2) implies (3). Finally,
(3) implies W; and Wy are conjugate by the previous theorem, and then the comments
immediately above imply (1). O

The equivalence of (1) and (3) allows us to calculate whether P, and Py are
conjugate. Let F denote the bijections from J to K. Recall that the set of (J, K)-
conjugators is Ufe,. ﬂjel Z(f(),j), so P, and Px are conjugate if and only if
for some f € F, there exists a word in 2% (S) which lies in Z(f (j), j) for each
j € J. Since J, F and 2.4 (S) are finite, and by Proposition 4.5, membership of
each Z(f (j ), j) is calculable, we have only a finite number of possibilities which we
need to check, to determine whether or not P, and Py are conjugate.

THEOREM 5.9. Let P, and Py be parabolic submonoids of the singular Artin

monoid of type M, where M is of finite type. It is calculable whether P, and Pk are
conjugate.
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Theorem 5.8 provides the desired converse of Lemma 5.6. The converse of The-
orem 5.5 turns out not to hold, that is, there are occasions when the Coxeter graphs
of J and K are isomorphic, but P; and Pk are not conjugate. This fact comes directly
from the same result of Howlett [19] for parabolics in Coxeter groups. For example,
in type Dy, there are three distinct A3 parabolics, none of which are conjugate to one
another. The idea is, if I'y, and I"y, are isomorphic subgraphs of 'y, the correspond-
ing parabolics are conjugate if and only if one subgraph may be shifted along I'y
one edge at a time, via isomorphic subgraphs, to eventually coincide with the second
subgraph. Since A;-type subgraphs of I'p, cannot be shifted in any way to produce
an Aj subgraph, the three distinct subgraphs correspond to non-conjugate parabolics.
Howlett [19], and Brink and Howlett [8] give complete description of how parabolic
subgroups of Coxeter groups with isomorphic graphs can fail to be conjugate, and by
Theorem 5.7, their list for finite types completely describes the situation for singular
Artin monoids of finite types also.

6. Markov moves and the singular braid monoid

Singular braids may be defined geometrically in a similar way to the geometric
braids of Artin [3]. The important amendment to the definition is that the strings of a
singular braid may intersect—although at most two strings may intersect at any one
point, and there may be at most a finite number of such intersections. The notion
of equivalence of singular braids is rigid vertex isotopy (see [5, Section 5]). The
set of (equivalence classes of) singular braids on n strings forms a monoid under
concatenation, often denoted SB,. Baez [4] first presented this monoid, and Birman
first showed that the relations suffice ([S, Lemma 3]). Their presentation is precisely
that of the singular Artin monoid of type A,_, defined above. See Figure 1 for the

Coxeter graph of this type. For this section, we will use the notation:
Se={01,00,...,0}, St=A{o7" 05 ...,07", Ti={n,n..., 0}

Thus the presentation of S B, ([4, 5]) has generators S,_; U S,,‘_lI U T,_,, and relations:

l=0i07"'=0"0; o .
foralli,withl<i<n-—1,
0,T; = 1;0;
0i0; = 0;0; . .
whenever |{ — j| > 2,
0T, =T1;0;

00;0; = 0;00; . .
whenever |i —j|=1.
0','0']'1,' = TjU,'O'j
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As in Artin’s well known presentation of the braid group, the generator o; represents
the braid with just a single crossing of the ith string over the (i + 1)th string, and o,
represents the braid with just the (i + 1)th string crossing over the ith string. The
generator 1; represents the braid with no crossings but a single intersection between
the ith string and the (i + 1)th string. The permutation associated to each of these
singular braids is the transposition (i i + 1).

The singular braid monoid SB, arose in the context of knot theory and Vassiliev
invariants of knots. A singular braid 8 may be closed by associating the corresponding
endpoints, to produce a singular link 8. Birman showed that every singular link is
equivalent to a closed singular braid 8 on n strings, for some n ([5, Lemma 2]).
(See also [2] for a generalisation of this result.) The question becomes, when do
inequivalent singular braids close to produce equivalent singular links? Gemein [14]
answered this with his ‘singular version’ of Markov’s theorem, stated below. He uses
the notation (B, n) to indicate that B is a singular braid on »n strings.

Proposition 5.2 implies that there is an injective homomorphism from the singular
Artin monoid of type A,_; to the singular Artin monoid of type A,, type A being
in the list of finite types. This is a map from S$B, to SB,.;, and may be described
geometrically as follows: given a singular braid (8, n), append an extra string in the
(n + 1)th place which has no interaction with the other strings of the braid. The new
braid is denoted (8, n + 1). A word over S,_; U S,,“_'1 U T, representing (B, n) will
also serve to represent (8, n + 1). The additional fact that this map is injective means
that if 8 and y are singular braids on n strings such that (8, n + 1) = (y, n + 1), then
(B,n)=(y,n).

Given a singular braid (8, n), the notation (8¢,, n + 1) now makes sense—first
apply the map ‘adding a string’ to obtain (f, n + 1), and then concatenate this new
braid with o,. We now state Gemein’s result [14].

MARKOV’S THEOREM (SINGULAR VERSION). Let (8, n) and (8', n’) be two braids.
Let K and K’ be the two associated closed braids. K and K' are equivalent as links
if and only if (B8, n) and (B’, n’) are related by a sequence of the following algebraic
operations, called Markov’s moves:

(1) @ (F'BoF' n) e (B, n);
() (B, n) e~ (BT, n);
(2) (B, n) e~ (Bot,n+1).

Both parts of (1) may be combined into the one statement:
(xB,n) e (Bx,n) forx e S, US UT, ;.

Suppose that V and W are words over S,_; U S;}, U T,_, representing x8 and fx
respectively. Then V is swap conjugate to W (defined in Section 3). Applying
Theorem 3.5, we immediately obtain the following
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PROPOSITION 6.1. Let 8 and y be singular braids on n strings, represented by the
words V and W over S,_ U Sn'_l, U T, respectively. Then B and y are related by an
arbitrary sequence of singular Markov moves of type (1) ifand only if V < W.

Turning now to the second type of Markov move, we make use of the normal form
for the singular Artin monoid given in [9, Section 5]. An operator N,, on words over
S, U ;' U T, is defined, which has the properties that for all words V and W over
S,US'UT,

(1) N,(W)is calculable,
(2) N.(W)=~ W,and
(3) W= Vifand only if N,(W) = N,(V) ([9, Theorem 23]).

Thus we get immediately from (2) and (3) the following:

PROPOSITION 6.2. Let (8, n) and (y, n + 1) be singular braids represented by the
words V over S,_, U S,;'_'l U T,_,and Wover S, U S, VU T, respectively. Then B and
y are related by a type (2) Markov move if and only if either N (W) = N ,(Vo,) or
Nn(W) =N,(Vo, ).

Combining this result with Proposition 6.1 and (1), we have

THEOREM 6.3. It is calculable when two singular braids differ by an application of
a Markov move.

We can consider positive braids—those which may be represented by positive
words, that is, words with no inverses. The positive Markov moves are defined to
be:

(1) (xB,n) e~ (Bx,n)forx € S, UT,_;,and

(2) (B,n) e~ (Bop,n+1).

Given any positive braid 8 on n strings, and any positive integer N, we will calculate
a set which contains all words representing positive braids which can be obtained
from 8 by up to N applications of positive Markov moves. Define the set

Q = {(W,n+ 1) | n is a non-negative integer, and W is a word over S, U T,}.

Elements of Q2 are said to be allowable.

Let K be a set of allowables. For each n, define K, = {W | (W, n) € K}. The set
¢(K,) is the set of all words over S,_, U T,_, which are X-conjugate to elements of K,,.
By Lemma 3.3, ¢ (K,) contains all words which are swap-conjugate to elements of K.
Thus ¢(K,) contains all words corresponding to the application of a positive Markov
move of type (1) to words in K.
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For any set K of allowables, we may define

K, ={(Wo,,n+1)| (W,n) e K}, and
K_={(W,n)]| (Wo,,n+1) € K and (W, n) is allowable}.

Then K, UK _ contains all words corresponding to the application of a positive Markov
move of type (2) to words in K. We now define K’ = K U K, U K_, and let

nK ={(W,n) | W e o(K))}.

Then uK contains only allowables, and is finite if K finite. Moreover, since K’ is
calculable, ¢(K’) is calculable (Theorem 2.4) and so u K is calculable.

THEOREM 6.4. Let (B, n) and (y, n’) be positive singular braids represented by
allowables (V, n) and (W, n’) respectively. If (B8, n) is related to (y,n’) by N pos-
itive Markov moves, then (V, n) lies in u¥{(W, n")}. Conversely, if (V, n) lies in
uM{(W, n')} for some positive integer N, then (B, n) and (y,n’) are related by a
sequence of positive Markov moves. Membership of uN{((W, n')} is calculable.
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