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Summary

The non-linear Boussinesq equations describing axisymmetric convection in a cylinder
with an initially uniform magnetic field have been integrated forward in time
numerically. When the field is weak a strong central fluxrope is formed at the
axis. In this case the maximum field strength can be limited either kinematically
or by dynamical effects, and the equipartition prediction Bzmax N 4nupu2 is easily
exceeded. If the field is strong oscillations can occur and hysteresis ?s possible

as the field is increased and decreased.
1. Introduction

The interaction between convection and a magnetic field determines many features
observed in the solar photosphere. Sunspots and smaller scale magnetic field
elements are symptoms of the ability of convection to concentrate a weak average
field into strong fluxropes. Oscillatory phenomena such as running penumbral waves
can occur in the presence of a strong field. To study such effects it is necessary
to solve non-linear problems, and clearly to do so in three dimensions if at all
possible. The recent work of Jones, Moore and Weiss (1976) on axisymmetric con-
vection is easily extended to include the presence of a magnetic field with average
strength Bo' This problem is geometrically three-dimensional but depends mathe-
matically on only two variables, thereby rendering itself tractable to numerical
computation. The normal equations of Boussinesq convection are modified to include
the effect of the Lorentz force in the vorticity equation, and in addition the
electromagnetic induction equation is solved to update the magnetic field as the

system is integrated forward in time.
2, The Problem

To solve the equations it is convenient to set up stream functions for the

velocity and magnetic fields thus:-

- v =1l 13
u=Va(o, e 0 C7 52 0, ¥ Br)'
- X = (. 1 X 1
B=VaA, 1 0 = (-7 3.0, 735,

We use cylindrical polar coordinates (r, 0, z). The geometry of the problem is

shown in figure 1.
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Fig. 1

Geometry for the axisymmetric problem, showing basic cy11nder on left and
axis-edge cross-section on right.

The equations V.u = 0 and V.B = 0 are automatically satisfied by the above u

and B fields. Those remaining can be non-dimensionalized and put in the following

form:
N _ e _ 10T p. % 1 2 2.1
3t = -V.(Qu) + bR V. (B 5c TR V.(r2 Vet , 2.1)
—g% = -V.(Tu) + —lé V.M , ) (2.2)
(pR)
—g-?f = V.0 + —1—5 7. (00 , (2.3
p4(PR) T
1 0% 13y 92
where W= (VAE)S =-3 (—2— -7 ot + —g- y =1, (2.4)
or 3z
1 0% 1
1= apy = -2 &% -1, ——X) =3, (2.5)

¥ 8r2 ror” Bz
There are five dimensionless parameters specifying each solution to the problem;

these are

2 2
_ goATd _ o - N - kK
R v 0 27 ampwn ' P k* P3 n

a, the ratio of cell width to cell height. The non-dimensionalization has been

, and

conducted with length scale d (layer depth), time scale (d/gagl‘)%, field strength
scale Bo and temperature scale AT. The density and coefficient of volume expansion

of the fluid are p and o ;v ,k, and n are its viscous, thermal and magnetic
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diffusivities respectively, and g is the acceleration due to gravity.
The following boundary conditions are used:

T

T, +AT, B =0,y=0, 6=0 (z=0)
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0, w=0 (z = 1)

[} r
oT
3 =0, xY=const., =0, w=20 (r = a)
9T _ _ _ = -
5;—0,)(—0, =0, w 0 (r=0 .

The conditions on the fluid are those commonly known as stress-free. The con-
straint ¥ = const. at r = a fixes the total flux in the cylinder and circumvents

Cowling's theorem, so that steady solutions are possible.

The above equations and boundary conditions have been solved by finite-difference
methods similar to those described in Moore, Peckover and Weiss (1973). \The
equations were integrated forward in time until the solutions converged to a steady
state or a repeating oscillation. In many cases one solution was started from
another, and in this way the effects of continuously varying one parameter could be

investigated.

3. Discussion of Results

To correspond most closely with highly conducting astrophysical plasmas the
program was run with values of k/n ranging from 10 to 50. For fixed and moderately
non-linear values of the Rayleigh number the following types of solution are found
as Q is increased.

i) For very weak fields the convection is unaffected and concentrates all the flux
kinematically into a central rope. The structure of this rope is fixed by the
balance between diffusion and advection in the induction equation. The maxi-
mum field strength Bm is higher than the input field Bo by a factor of the order
of the magnetic Reynolds number, and the profile of the rope is Gaussian. Such
solutions have been described by Weiss (1966) and Clark and Johnson (1967).

ii) As Q is increased a regime ensues where the imposed field remains compressed in
a fluxrope but can exert a dynamical influence on the convective flow. Within
the rope motion is minimal: at its edge, typically a few mesh points from the
axis, there is a shear layer and the velocity reaches a value comparable with
that in the absence of the field. The dynamics are dominated by a balance
between the total thermal and magnetic torques; dissipation can be ohmic or
viscous, and the maximum field can be successfully predicted by a power law of

the form
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o Y
~ R_B L3 (3.1)
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The numerical experiments yield average o = 8= 0.63 and y = 0.77; the power-law
behaviour extends over typically two orders of magnitude. The greater ability of a
three-dimensional geometry to concentrate flux means it is far easier to chart this
regime in the axisymmetric case than for two-dimensional rolls. It is also possible
to advance physical arguments based on a boundary-layer structure (Galloway, 1976),
and predict a law similar to (3.1). The exact values of O, B and Y depend on whether
viscous or ohmic dissipation is dominant, and the formulae involve weakly varying

logarithms, but agreement with the numerical experiments is generally very good.

An example of one of these dynamically limited solutions is shown in figure 3,
which is the case Q = 100, R = 20Rc, p=1, p3 = 10, and a = 4/3. (Here Rc =
Q7/91*). The fluxrope is almost stagnant; at its edge there is a current
sheet which generates a large localized amount of negative vorticity. Within the
fluxrope horizontal temperature gradients cause a very weak countercell to develop;
this has an advective effect on the field and causes the fluxrope to develop a
maximum some distance away from the axis. The run of the fluxrope profile as Q

increases is shown in figure 2.

Q=1 Q=5 Q=20 Q = 100 Q = 1000

Fig. 2. Fluxrope profiles for R = 20Rc, p=1, k/n =10, a = 4/3

iii) The central fluxrope broadens as Q is further increased and eventually it
occupies about a half of the radius of the cell. At this stage the rope begins to
oscillate whilst the outside circulation remains steady, and there is a corres-
ponding variation in the heat transport. This form of solution has a natural
explanation. The initially imposed field B0 is weak enough to allow steady con-
vection, which concentrates the flux into a rope of strength Bm and radius %a. Flux
conservation suggests Bm v 4BO, and this means that, considered in isolation, the
central rope is overstable to linear theory. The frequency of the computed solution

agrees moderately well with such a linear prediction. When the senses of the two
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solution.
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circulations are opposite, upward moving plumes are adjacent and the heat transport
is a maximum. When the senses are the same, the cold downdraught of the countercell
is next to the hot updraught of the main flow and lateral diffusion reduces the heat

transport to a minimum.

iv) Finally Q is so strong that only finite-~amplitude oscillations are possible.
These are confined mainly to the outer half of the radius, so that the solutions
are quite different to the eigenfunctions of linear theory. Periods are typically
10% - 20% faster than the linear values, presumably because the essentially quad-

ratic Lorentz term in (2.1) is badly underestimated in the linear approximation.

The nature of the solutions depends on the five dimensionless parameters defined
earlier. However there are also occasions when the system adopts a configuration
dependent on the initial conditions, so that hysteresis occurs. This effect is
encountered when the field is fairly strong. A solution with given (Q,R,p,K/n,a)
can then be steady if it is part of a branch with @ increasing, and oscillatory if
part of a branch with Q decreasiug - the system remembers what it was doing for
earlier values of Q. This effect can be quantified by using the Nusselt number N,
averaged in time if necessary, as a measure of the amplitude. A graph showing the
variation of N with Q@ as the latter is increased and decreased is shown in figure
4. For this example, Q = 10,300 marks the onset of overstability and Q = 2535 the
transition from steady to oscillatory modes according to linear theory. The slight

increase in N as Q increases in the lower branch at Q = 4000 appears real.

I 1) 100 1000 10,000

Fig. 4. Variation of N against log Q@ for R = 20R,p = 1, Kk/n = 10, a = 4/3.
------ oscillatory solution -.-.-.— mixed steady-oscillatory solution
steady solution.
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It is interesting to compare these hysteresis effects with the results of
Huppert (1976) on double-diffusive convection, also described elsewhere in these
proceedings. Broadly similar results are obtained but the magnetic results are
more regular and do not show the sudden jumps in N found in the salt case. Further-

more no subcritical instabilities have yet been found in the present study.

Applications of this work to the production of intense solar magnetic fields
are discussed in Galloway, Proctor and Weiss (1976). The fluxrope solutions give
fields limited either by the magnetic Reynolds number or by formula (3.1); in a
Boussinesq fluid the equipartition argument Bzmax " 4ﬂupu2 is quite irrelevant since
the pressure can adopt arbitrarily high values. The numerical results give fields
up to six times greater than this prediction. We conclude that in the solar photo-

sphere the maximum field strength is limited by the gas pressure.
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