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Summary 

The non- l inear Boussinesq equations describing axisymmetric convection in a cyl inder 

with an i n i t i a l l y uniform magnetic f i e l d have been integrated forward in time 

numerically. When the f i e l d i s weak a strong central fluxrope i s formed at the 

a x i s . In th i s case the maximum f i e l d strength can be l imited e i t h e r kinematically 
2 2 

or by dynamical e f f e c t s , and the equipart i t ion predict ion B % 4-rrypu i s e a s i l y 

exceeded. If the f i e l d i s strong o s c i l l a t i o n s can occur and h y s t e r e s i s i s poss ib le 

as the f i e l d i s increased and decreased. 
1. Introduction 

The in terac t ion between convection and a magnetic, f i e l d determines many features 

observed in the so lar photosphere. Sunspots and smaller sca le magnetic f i e l d 

elements are symptoms of the a b i l i t y of convection to concentrate a weak average 

f i e l d in to strong fluxropes. Osc i l la tory phenomena such as running penumbral waves 

can occur in the presence of a strong f i e l d . To study such e f f e c t s i t i s necessary 

to solve non- l inear problems, and c l ear ly to do so in three dimensions i f at a l l 

p o s s i b l e . The recent work of Jones, Moore and Weiss (1976) on axisymmetric con­

vection i s e a s i l y extended to include the presence of a magnetic f i e l d with average 

strength B . This problem i s geometrical ly three-dimensional but depends mathe­

matical ly on only two var iab les , thereby rendering i t s e l f tractable to numerical 

computation. The normal equations of Boussinesq convection are modified to include 

the e f f e c t of the Lorentz force in the v o r t i c i t y equation, and in addition the 

electromagnetic induction equation i s solved to update the magnetic f i e l d as the 

system i s integrated forward in time. 

2. The Problem 

To so lve the equations i t i s convenient to s e t up stream functions for the 

ve loc i ty and magnetic f i e l d s thus : -

»-VA(0.£o>-(-i fto.££». 
We use c y l i n d r i c a l polar coordinates ( r , 9, z) . The geometry of the problem i s 

shown in f igure 1. 
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Magnetic -field -top ^ = | Temp.T=T0 

B0-Xr\Vfcia >0 j - i i ' u i u i i y ^ . 
u n i f o r m 

A A /tv 4̂  * ^ 

X 
Bobtom 2 = 0 
Temp. T=T„+AT 

edge 
r=a 

F i g . 1 

Geometry f o r the a x i s y m m e t r i c prob lem, showing b a s i c c y l i n d e r on l e f t and 
a x i s - e d g e c r o s s - s e c t i o n on r i g h t . 

The e q u a t i o n s V._u = 0 and V.B_ = 0 are a u t o m a t i c a l l y s a t i s f i e d by t h e above _u 

and 13 f i e l d s . Those r e m a i n i n g can be n o n - d i m e n s i o n a l i z e d and p u t i n t h e f o l l o w i n g 

f orm: 

f = - V . ( f i u ) + ^ V . ( B J ) - I 1 + (£)* V.<-_ V(r2n», (2.1) 
r dr R 2 

3T 
3t 

-V. (Tu) + 
( p R ) ' 

V.(VT) (2.2) 

g = - V . ( X u ) + 
P 3 ( p R ) ' 

r2V.(-|-Vx) , ( 2 . 3 ) 

where ( V A U ) 6 = - 7 ( - ^ - - ^ + - * > 
dr dz 

( 2 . 4 ) 

dr dz 
There a r e f i v e d i m e n s i o n l e s s p a r a m e t e r s s p e c i f y i n g e a c h s o l u t i o n t o t h e prob lem; 

t h e s e are 

2 2 
A n , . 3 B d 

B = g a A T d _ j Q _ o 
KV 4irypvri ' 

v K 
~i P„ = — . and K 3 n 

a, t h e r a t i o o f c e l l w i d t h t o c e l l h e i g h t . The n o n - d i m e n s i o n a l i z a t i o n has been 

conduc ted w i t h l e n g t h s c a l e d ( l a y e r d e p t h ) , t ime s c a l e (d /ga /5 1 ) . f i e l d s t r e n g t h 

s c a l e B and t e m p e r a t u r e s c a l e AT. The d e n s i t y and c o e f f i c i e n t o f volume e x p a n s i o n 

o f t h e f l u i d are p and a ; v ,K, and r) a r e i t s v i s c o u s , thermal and m a g n e t i c 
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diffusivi t ies respectively, and g is the acceleration due to gravity. 

The following boundary conditions are used: 

T = T + AT, B = 0, * = 0, 0) = 0 (z = 0) o r 

T = T , B = 0 , i> = 0, 01=0 ( z = l ) 
o r 

dl 
-g— = 0, x = const. , fy = 0, u = 0 (r = a) 

9 T 

J^ = 0, X = 0, * = 0, (J = 0 (r = 0) . 

The conditions on the fluid are those commonly known as s t ress- f ree . The con­

s t ra in t x = const, at r = a fixes the to ta l flux in the cylinder and circumvents 

Cowling's theorem, so that steady solutions are possible. 

The above equations and boundary conditions have been solved by finite-difference 

methods similar to those described in Moore, Peckover and Weiss (1973). The 

equations were integrated forward in time unt i l the solutions converged to a steady 

s ta te or a repeating osci l la t ion. In many cases one solution was s tar ted from 

another, and in this way the effects of continuously varying one parameter could be 

investigated. 

3. Discussion of Results 

To correspond most closely with highly conducting astrophysical plasmas the 

program was run with values of K/T\ ranging from 10 to 50. For fixed and moderately 

non-linear values of the Rayleigh number the following types of solution are found 

as Q i s increased. 
i ) For very weak fields the convection i s unaffected and concentrates a l l the flux 

kinematically into a central rope. The structure of th is rope i s fixed by the 
balance between diffusion and advection in the induction equation. The maxi­
mum field strength B i s higher than the input field B by a factor of the order 

m o 
of the magnetic Reynolds number, and the profile of the rope is Gaussian. Such 

solutions have been described by Weiss (1966) and Clark and Johnson (1967). 

i i ) As Q i s increased a regime ensues where the imposed field remains compressed in 

a fluxrope but can exert a dynamical influence on the convective flow. Within 

the rope motion is minimal: at i t s edge, typically a few mesh points from the 

axis, there i s a shear layer and the velocity reaches a value comparable with 

that in the absence of the field. The dynamics are dominated by a balance 

between the to ta l thermal and magnetic torques; dissipation can be ohmic or 

viscous, and the maximum field can be successfully predicted by a power law of 

the form 

https://doi.org/10.1017/S0252921100112424 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100112424


191 

B „a / \ Y 

IT * ^ (-) ( 3 - 1 } 

B o Q6 V) • 
The numerical experiments yield average a = 8= 0.63 and y ~ 0.77; the power-law 

behaviour extends over typically two orders of magnitude. The greater ab i l i ty of a 

three-dimensional geometry to concentrate flux means i t i s far eas ier to chart th i s 

regime in the axisymmetric case than for two-dimensional r o l l s . I t i s also possible 

to advance physical arguments based on a boundary-layer structure (Galloway, 1976), 

and predict a law similar to (3.1) . The exact values of ex, 8 and Y depend on whether 

viscous or ohmic dissipation is dominant, and the formulae involve weakly varying 

logarithms, but agreement with the numerical experiments i s generally very good. 
An example of one of these dynamically limited solutions is shown in figure 3, 

which i s the case Q = 100, R = 20R , p = 1, p„ = 10, and a = 4/3. (Here R = 
c 3 c 

(27/4)ir'f) . The fluxrope is almost stagnant; at its edge there is a current 

sheet which generates a large localized amount of negative vorticity. Within the 

fluxrope horizontal temperature gradients cause a very weak countercell to develop; 

this has an advective effect on the field and causes the fluxrope to develop a 

maximum some distance away from the axis. The run of the fluxrope profile as Q 

increases is shown in figure 2. 

Q = l Q = 5 Q = 20 Q = 100 Q = 1000 

Fig. 2. Fluxrope profiles for R = 20R , p = 1, K/n =10, a = 4/3 

iii) The central fluxrope broadens as Q is further increased and eventually it 

occupies about a half of the radius of the cell. At this stage the rope begins to 

oscillate whilst the outside circulation remains steady, and there is a corres­

ponding variation in the heat transport. This form of solution has a natural 

explanation. The initially imposed field B is weak enough to allow steady con­

vection, which concentrates the flux into a rope of strength B and radius Ja. Flux 

m 
conservation suggests 6 ^ 4 8 , and th i s means that , considered in i so la t ion , the m o 
central rope is overstable to l inear theory. The frequency of the computed solution 

agrees moderately well with such a l inear prediction. When the senses of the two 
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a) magnetic lines of force 

b) streamlines 

c) isotherms 

d) vort ic i ty u> (axis on left) 

Fip. 3. A dynamically limited fluxrope 
solution. 
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circulations are opposite, upward moving plumes are adjacent and the heat transport 

i s a maximum. When the senses are the same, the cold downdraught of the countercell 

is next to the hot updraught of the main flow and la te ra l diffusion reduces the heat 

transport to a minimum. 

iv) Finally Q i s so strong that only finite-amplitude osci l la t ions are possible. 

These are confined mainly to the outer half of the radius, so that the solutions 

are quite different to the eigenfunctions of l inear theory. Periods are typically 

10% - 20% faster than the l inear values, presumably because the essent ial ly quad­

rat ic Lorentz term in (2.1) is badly underestimated in the l inear approximation. 

The nature of the solutions depends on the five dimensionless parameters defined 

ea r l i e r . However there are also occasions when the system adopts a configuration 

dependent on the i n i t i a l conditions, so that hysteresis occurs. This effect is 

encountered when the f ield i s fair ly strong. A solution with given (Q,R,p,KT/ri, a) 

can then be steady if i t is part of a branch with Q increasing, and osci l la tory i f 

part of a branch with Q decreasing - the system remembers what i t was doing for 

ea r l i e r values of Q. This effect can be quantified by using the Nusselt number N, 

averaged in time if necessary, as a measure of the amplitude. A graph showing the 

variation of N with Q as the l a t t e r is increased and decreased i s shown in figure 

4. For this example, Q = 10,300 marks the onset of overstabi l i ty and Q = 2535 the 

transi t ion from steady to osci l latory modes according to l inear theory. The sl ight 

increase in N as Q increases in the lower branch at Q = 4000 appears rea l . 

IOO KOOO 
•A >Q 
lo,ooo 

Fig. 4. Variation of N against log Q for R = 201?^ = 1, K/n = 10, a = 4/3. 
osci l latory solution - . - . - . - mixed steady-oscillatory solution 
steady solution. 
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I t i s i n t e r e s t i n g to compare these h y s t e r e s i s e f f e c t s with the re su l t s of 

Huppert (1976) on double-dif fusive convection, a l so described elsewhere in these 

proceedings. Broadly s imi lar re su l t s are obtained but the magnetic re su l t s are 

more regular and do not show the sudden jumps in N found in the s a l t case. Further­

more no s u b c r i t i c a l i n s t a b i l i t i e s have yet been found in the present study. 

Applications of t h i s work t o the production of intense so lar magnetic f i e l d s 

are discussed in Galloway, Proctor and Weiss (1976). The fluxrope so lut ions give 

f i e l d s l imited e i t h e r by the magnetic Reynolds number or by formula ( 3 . 1 ) ; in a 
2 2 Boussinesq f l u i d the equipart i t ion argument B ^ 4irypu i s quite i rre levant s ince max 

the pressure can adopt arb i t rar i l y high values . The numerical r e su l t s give f i e l d s 

up to s i x times greater than t h i s predic t ion . We conclude that in the so lar photo­

sphere the maximum f i e l d strength i s l imited by the gas pressure. 
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