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The practical use of the Rayleigh-Ritz
method in compressible flow

P. E. Lush and J. W. Stephenson

We show

(i) that the Rayleigh-Ritz method is a practical procedure

for obtaining approximations to the velocity potential

for compressible flows, and

(ii) how to calculate an estimate of the error in such

approximations.

1. Introduction

This paper is concerned with the practical use of the Rayleigh-Ritz

method. The particular application discussed is that of compressible flow,

but the procedures can be applied in any context where the Rayleigh-Ritz

method is appropriate.

In the hydrodynamical context [3], the Rayleigh-Ritz method gives

approximations to the velocity potential <)> by using the property that,

under prescribed boundary conditions upon 9<f>/3» , <f> makes stationary an

integral of the form

( f f{V$)dxdy (= X*[<j>], say) .

The stationary value of X*[<(i] is a maximum in the case of a subsonic

flow, that is | v<|>| < C < C* , where o* is the sonic speed.

The approximations sought are of the form
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n
<f> = ij) + I A.h. ,Tn To £ ^ i '

where hit h2, • •• are functions (of x, y) suitably chosen, and

A , A , . . . , A are constants to be determined so that -T*[<j> ] is

maximised. Thus, if I*[$> J is evaluated as an explicit function of

A , A , . . . , the numbers A. are obtained by solving the (algebraic)

equations 3I*/dA. = 0 , i = 1 n .
If

a
The function / contains a term T of the form [l-X(v<f>) ] , [3],

where K and a (= Y/(Y-l) = 3.1*6 . . . for air) are given constants. The
use of the value 3.^6 . . . for a entails approximating to

T (= (1-T) , say) by a polynomial in T , in order that J* may be
explicitly integrated. Even for the simplest problems (for example, flow
past a circular cylinder) this gives rise to an enormous amount of
algebra. For more complicated cylinders, or for more complicated
problems such as flow through a nozzle, the algebra required is
prohibitive. In this paper, we show how to circumvent this difficulty so
that we can quickly find Rayleigh-Ritz approximations (to the velocity
potential (j)).

In the case of subsonic flow, an upper bound to -T'U't'] can be

obtained by minimizing an integral J * ^ ] of the stream function ty ,

[2 ] , - the purpose of such an upper bound is that i t can be used to

estimate the error in the Rayleigh-Ritz approximations to <\> , [2] , [3].

I t is not practical to find this upper bound numerically by explicitly

minimizing J*[ty] ; however, we show how to find a fairly close estimate

of th is upper bound.

In [ / ] , Greenspan and Jain have attempted to find <j) by using the

integral i"*[«j>] - they do not exploit fully the stationary character of

J*[<j>] in the usual Rayleigh-Ritz manner, but use instead the ideas of

f in i te differences.

2. The variational principles for the aerofoil problem

It is shown in [3] that the aerofoil problem, that is the 'local1
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deflection of an otherwise uniform stream by a cylinder, can be represented

as a variational problem. For a non-circulatory, subsonic flow, the

velocity potential <j> maximizes

where the pressure is expressed as a function of <j> by use of Bernoulli's

equation. Here if is the (infinite) region occupied by the fluid, p ,

p^ are the pressure and density in the free stream, and (j> is the

velocity potential for the corresponding incompressible flow. At infinity

<j> -v Ux + Ofr'1) ,

where r = /(x2+i/2) and U is the free stream speed, and, on the

cylinder, 3<j>/3rc = 0 . For the adiabatic case, that is p = 4pY ,

Bernoulli's equation gives

p((j>) = pojl-(V<j>)
2/[2e^]J , c2 = dp/dp ,

, p. =

where the zero subscript refers to stagnation values.

Define

J*M = j I ipW-p^+pu{u-uJ +pv(v-vj\dxdy

where, to any if/ of class Ci , p is defined by Bernoulli's equation

with p = p(p) , and thence u, v by

The 'boundary' conditions on ip are that, at infinity,

and i|) = 0 on the cylinder. It is shown in [Z] that the minimum value of

tf'U'f'] (with respect to ty) is equal to the maximum value of !*[<(>] (with

respect to <f>).
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Finally, the purpose of the terms pro and $m in !*[<(>] is to

ensure that the infinite integral converges - the variational properties of

I*[<\>] would not be affected by replacing pm and (j)̂  by p(<j> ) and

<J> . As this proves to be convenient in the subsequent numerical work we

define

and likewise

= J J

= I I lpW-p(.Pj>0)
+Pu(u-uo)+pv(v-vo)\dxdy ,

where the zero suffix refers to the corresponding incompressible flow, ip

being conjugate to (j)

3. Outline of the method

It is shown in [3] that the integrand of ![<)>] is 0(r~ ) as

v •*• °° , so that, for a given set of values of A., A^, ..., A , J can be

evaluated numerically to any (practical) accuracy. Knowing J numerically

as a function of A , A , ..., A , we maximize J by finding its largest

value in the region of A , A , ..., A space that corresponds to

subsonic "velocities".

To do this, let P be a given point in A , A„, ..., A space, and

let Q be the quadric obtained from the Taylor expansion of J about

the point P , IIP 1 . If we call P the maximum of this quadric
o v

 CK 1

(found by solving 3§ /3J41 = 0, ...) , we fit another quadric Qx to I

at (Px, /(Pj)) and find its maximum, P 2 say. In this manner, a

sequence of points P , P , P , ..., P is constructed which, we expect,

will converge to the maximum of I .

To find the maximum of the quadric Q requires solving (for X)

https://doi.org/10.1017/S0004972700046293 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700046293


Use of the Rayleigh-Ritz method 89

a set of simultaneous equations of the form

V X " X J - - bm •
Here the vector X is the (known) coordinate of P , X is the

m m

coordinate of the maximum of Q , that is X is the coordinate of P .
m m+1

The vector b [dl/dA.) is the gradient of the surface J at P , and

p
B is the matrix of the second derivatives of J , that is 8 J/^A.'dA.
m ^ 3

evaluated at P . Since the second variation of J is positive definite
m

for |V(j)| 5 C < a* where a* is the sonic speed, [3], it follows in an

analogous manner to the argument in [2] that l[p ) > l[P ) , that is we
v m+1' *• m'

have a monotonlc increasing sequence bounded above (by e/t̂ ]) . Further,

since B and its minors are bounded from zero, it follows that if
m

b - • O , X +. - X -»• 0 and X converges to the point at which !"[<}>]

has its maximum value.

For a given set of values of /L , A , ... the values of J , dl/dA.,

2
8 IfdA.^A. were obtained by numerical integration. These integrals need

to be computed to a fairly high degree of accuracy, and since the precise

criteria for convergence of the sequence P , P , ... , is somewhat vague,

we need to be able to adjust quickly our integration process to cope with

any accuracy of integration that may be required. In these circumstances,

it is appropriate to treat the double integrals as repeated integrals -

each integration being effected by Gaussian quadrature. [4, p. 38.]

4. Details of the calculation of <(>

For illustrative purposes, consider the case of non-circulatory flow

past a circular cylinder which, without loss of generality, we may take to

be r = 1 . For this case, [3D,
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with

Here r = /(x2+y2) , 9 is the polar angle and K/(2S)c is the

(prescribed) free stream velocity. To compare our results with those in

[3], we choose V so that the free stream Mach number is 0.k , that is

V = /{0.l6/(2g+0.l6)} ,

and we compute (j>2, <f>4> <f>6 • Pu t t ing u = r~ and <j> = K/(2g)c $ ,

((() = f / (2g )c $ ) , J i s computed i n the form

/•I f-n/2

^o ^o

If we put $ = $Q + I

TTJr = 83YP I I ( l - l ^ ( V $ ) 2 l !^2(-V$.Vfl.)+I / 2(l-I / 2) V4> .VH.\u~3dud&

and 32J/3/1.3i4. then follows readily.

Our aim was to determine A\, . . . , 4g correct to h decimal places

[\A.\ < l ) . To do t h i s , the method of integration used needed to be

suff ic ient ly accurate to detect , with significance, changes in J due to

changes in the 5th decimal place of A\, . . . , A$ . Moreover, the

equations dl/dA. = 0 are i l l -condit ioned, [3 ] , so tha t , in certain

d i rec t ions , the surface l(Ai A§) i s very "f la t" near i t s maximum.

To be conservative, we estimated that changes in the 5th decimal place of
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the A. would lead to changes in the 12th decimal place of -T[<j>] . For

changes in the value of I[§] to give reliable information about the

surface, T[<J>] should be computed correct to about 17 decimal places.

To be consistent, the quadrature formula used should be accurate to

about 10 . The error in evaluating I f(x)dx by an n-pointL
Gaussian formula is

o , - 1 < C < 1 ,
(2«+l)[(2«)!]J

where P2n\x) is the 2«-th derivative of f(x) . For

f(x) = (l-a;)3' (which resembles the term p(((>) in ![<()]) ,

£(20) = 0.8 x 10 and so a 20-point Gaussian formula was used for each

integration. By exploiting the symmetries of the flow, the number of

points at which the integrands are evaluated is drastically reduced.

As a check upon this rough estimate of the accuracy of the numerical

integration, we computed the case of J[(J>i] with y = 2 and A\ = 0.23 •

In this case, p(<t>) can be expanded exactly in terms of V<f> and the

integral I[<i>] can be explicitly evaluated - its value was found correct

to 26 decimal places. The same integral was evaluated by numerical

integration - the discrepancy between the two determinations of J[(f>i]

was 3 x 10"1 T .

The computer that was used - an IBM 1620 - terminated each machine

operation by truncation rather than by rounding off. The accumulation of

error due to this cause amounted to about 5 figures, so we worked (in

floating point form) with 22 figures. (All numbers used in computing I ,

and I itself, are less than 1 .)

Since the total time on the (very slow) computer was quite small,

very little attempt was made to work Justifiably with either a lesser

number of figures, or a lesser number of points at which the integrands

were evaluated.
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5. Results

The values of A\, ..., A$ , -Z"[<t>n]
 f ° r the cases (j)2, 4^ > <f>6

 a r e

shown in the table - the numbers shown in brackets are the corresponding

values obtained in [3]. In each case, the initial point of the sequence

P , P , ... was the origin, and the values of A. shown in the table

correspond to P5 .

Ai A2 A3 AH A5 A&

<|>2 0.2188 -0.1216 0.0051921+6

efd, 0.21(11 -0.111*2 -0.05W -0.01*5** 0.00816398

<f>6 0.21*21 -0.1128 -0.0551 -0.0599 0.0023 0.0327 0.00821*812

(0.21*28) (-0.1127) (-0.0553) (-0.0591*) (0.0022) (0.0325)

The c r i t e r i a for convergence of the sequence P , P , P , . . . , P

was t ha t

( i ) the dis tance P ..P should be suff ic ient ly small;

( i i ) the slope of the surface of l[<f>] a t P should be

suf f i c ien t ly small ; and

( i i i ) the value of l(P ) should be greater than any other value of

I computed in the process.

~3For the case <f>6 , the distances P2P3, P3P4 , P4P5 are lx 10

1 x 10~ , 2 x 10~ , and the values of the slope of J at the points

P3> ph> P5 a r e 2 x 10" , 2 x io~ , 5 x I O " 1 ; thus the sequence

P , P , ... converges rapidly to the maximum of / .

The values of A. in the table are 'better' than those obtained in

[3], since the value I[<i>e] shown in the table is significantly greater

than the vali

0.00821*800 .

than the value of -Z"[<j>6] derived from the values of A. in [3], namely,

6. Calculation of the upper bound n

To any given approximation (j) , we can derive an 'exact' density
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p(<(>)= P , say, by using Bernoulli's equation. The V<j> and p so

determined do not describe exactly a fluid motion since they do not

satisfy the continuity equation, that is there is no function \i> for

n
which

n Tnwn 3* » P.n dy 3x •

However, we can find a ty that corresponds in some sense to a if by

taking a form

+ V a + ••• + S A
where ^ is the stream function for the incompressible flow,

Jl, gz, ••• are suitably chosen functions of (x, y) and B\, B2, ...

are constants to be determined by minimizing

(1) u ~ pn 3x + P Vcicdy .

We would expect that such a lii would give a J* \\b \ that i s close to

the minimum value of J*[B., . . . , B ] since J* = J*[(vty) 1 , and so, by

the property referred to above, J*[ty ] should be a reasonable good upper

bound for the sequence J*[(j>i], J * [ 4 | 2 ] J ••• •

From (jig , the following approximation to the stream function was

found by minimizing ( l ) :

(2) i|»6 = pooK/(26)co|fr - ^ sin6

+ I i -= -Y|(-0.llt22sine+0.0505sin3e-0.0023sin5e)

+ Mr - -— (O.0O13sin6+O.0O61»sin3e-O.0OltOsin56)i
"•r r ' '

y , say.

To determine P = P (P/P ) i-n Bernoulli's equation, and set(P/P
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p = (l - v) p to give
CO ^ y 0

26 c lY+l c ^2

(3) Tr[l-V2) (VV)2 + ^- = F~ ' ° - P/Po 5 1 *
*• 0 0

2 Y+l
Now X - X has a maximum M , say, in 0 5 X 5 1 , that occurs

at the sonic speed. For (3), IT(l-lT) (VV) is greater than M at six

of the points used in the numerical integration that are close to the

flanks of the cylinder, so that (3) does not define p(i|>g) at these

points. To overcome this, we assigned a value to | V^61 at r = 1 ,

6 = TT/2 that corresponded to the sonic speed, since this is the value of

Î 4>6| at this point. The values used for |Vif)6| at the 6 points were

those obtained by (non-linear) interpolation between the point r = 1 ,

6 = ?r/2 and the nearest points for which ^[l-V2] ( W ) 2 < M . ' If we

were to attempt to determine if) by minimizing J[\p] , the natural

starting point, namely Bx = B2 = ••• = 0 , corresponds to a value of

2 2 2 B 2
V [l-V ) ( W ) that is considerably greater than M , so that we are not

able to find the upper bound of I[(j)] by the obvious method.

Using the modified ifig , we obtained

t7[if)6] = .OO825790Po

so that

i 0.00001pQ .
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