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1. Introduction

We shall concern ourselves with the class of continuous, four-parameter, one-sided
probability distributions which can be characterized by the probability density function
(pdf) class

P)rr
0,x<c. v ' ;

It depends on the four parameters: shift ceR, scale b>0, initial shape p< l , and
terminal shape /?>0. For p^O, the definition of f(x) can be completed by setting
f(c) = p/br(p-1)>0 if p = 0, and /(c) = 0 if p<0. For 0<p< 1, f(x) remains undefined
at x = c; f(x) | + oo as xjc.

Apparently, the distribution class (1.1) has been introduced by Amoroso [1]. It is
closely related to the class of generalized Feller differential equations, Lehnigk [10],
which are of Fokker-Planck type. Through this connection with analysis the distri-
bution class (1.1) can be traced back in some of its special cases to the heat equation
(p = 0, /J = 2, Fourier, Gauss) and to the Kepinski and Feller equations (p<l,/?=l),
Lehnigk [9]. The function theoretical properties of the characteristic function associated
with the pdf class (1.1) have been discussed by Lehnigk [11].

From a purely statistical point of view the distribution class (1.1), which has been
designated a generalized Gamma distribution by various authors, has received consi-
derable attention in more recent publications, Stacy [14], Stacy and Mihram [15], Parr
and Webster [12], Harter [5], and Essenwanger [3], some of which concentrate on the
maximum-likelihood estimation problem. In the present paper we shall pick up this
problem once more in an attempt to make this estimation technique more easily
accessible to the statistical analyst.

Although serious efforts have been made, (Parr and Webster [12], Harter [5],
Essenwanger [3], also Harter and Moore [6] for the special cases of Gamma
(p< 1,0=1) and Weibull ( p= l - / ?< l ) distributions) to formalize and standardize
the maximum-likelihood approach to the population parameter estimation problem
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272 SIEGFRIED H. LEHNIGK

associated with the class (1.1) it seems that its actual implementation has been rather
limited. In fact, the distribution class (1.1) has not been used as extensively in everyday
statistical practice as it should have been. The main reason for this state of affairs is
most likely to be attributed to computational intensity and possibly to convergence
problems associated with the solution of the resulting system of transcendental
equations as they appear in the literature.

It is our objective to demonstrate that the maximum-likelihood method for the
estimation of the parameters c, b, p, and /? of the distribution class (1.1) can actually be
handled in a computationally economical and interactive fashion on a PC. As a matter
of fact, we shall show in Section 2 that it is only necessary to solve a system of two
equations, gift, c) = 0, h((l, c) — 0, if the shift parameter c is considered as unknown, and to
solve only one equation, g(P) = 0, if c is known (Section 4).

If there exists a solution of the system g(/?,c) = 0, h(ft,c) = O (c unknown), or of the
single equation #(/?) = 0 (c known) which are estimates /? (and c) for the terminal shape
parameter /? (and for the shift parameter c), then estimates S and p for the scale
parameter b and for the initial shape parameter p can easily be determined from simple
auxiliary formulas.

In the present paper we shall restrict ourselves to the discussion of general aspects of
the likelihood function approach. In Section 2 we shall derive the appropriate equations.
In Section 3 we shall discuss the properties of the functions g(P, c) and h(P, c). The case
that the shift parameter c is known will briefly be summarized in Section 4. Some major
special cases will be mentioned in Section 5. Another paper to be published elsewhere
will be devoted to the implementation of the likelihood function technique, to the
computational approach to the solution of the equations g(/?, c) = 0, h(f},c) = O, or simply
g{P) = 0 if c is known, and to the presentation of empirical examples.

2. The maximum-likelihood equations

Let P be a parameter vector. Relative to a shift parameter c contained in P and
located on a coordinate axis of x, let Xv-c (v = l,...,N) represent i.i.d. random sample
values of a random variable X which is assumed to be distributed according to the
density function /(x; P). The likelihood function is then defined as

KP)=f\f(Xv-c;P)

(see, e.g., Roussas [13, Section 12.5], and Law and Kelton [7, Section 5.4]). For the
distributions characterized by the pdf class (1.1) this likelihood function takes the
particular form

with P = (c,b,pJ).
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Let the set of the sample values of the Xv's contain m^N (m^2) distinct elements
xv, x, < x2 < ... < xm. Then xv occurs with absolute (integral valued) frequency

f[ (Xv-c)= f[ (x.-c)'« = f[ exp(/ai)log(xl)-c)))
l 1 1

f (*0-c)' = £ fjxo-cf = £ fmap(piog(xv-c)).
v= 1 0=1 o= 1

(We have used here the general definition b"=exp(alogb), log designating the principal
value.) Clearly, without loss of generality, we may assume that the absolute frequencies
fal and fam of Xj and xm, respectively, are positive. This implies that the shift parameter c
is restricted to c<x t . If the shift parameter is known it suffices to assume that, in
addition to fam, there is at least one other positive frequency fak with 1 ^ k < m. Setting
log(xv—c) = pv we obtain from (2.1)

The objective of the likelihood function approach is to determine those values of the
parameters c, b, p, and /?, subject to the conditions c<xl Jfe>0,p<l,)S>0 (if such a set
exists), which maximizes the function L(P). It is more convenient in our situation to use
the equivalent function R(P) = log L(P). Therefore, taking logarithms in (2.2), we obtain

„«" . . (2.3)
0 = 1

It is useful at this point to change from absolute frequencies fav to relative frequencies
v^N-if^O with X"=i/o=1> a n d / i > 0 , / m > 0 . We introduce the abbreviations

B = B(p,c) = N~l £ / „ « " . = X fv*»; (2-4a)
D = 1 U = l

X /a DpB= X /BPU. (2.4b)
0 = 1 0 = 1

Then (2.3) can be rewritten in the form

pC-b-"fl. (2.5)

A necessary condition for R(P) to take a maximum in the interior of the open
parameter domain &:c<xu b>0, p < l , j?>0, is that the four simultaneous equations
dR/dc = O, dR/db = O, dR/dp = O, and dR/dP = O be satisfied. Under the assumption that

https://doi.org/10.1017/S0013091500003400 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500003400


274 SIEGFRIED H. LEHNIGK

all four parameters are unknown these equations are of the form

» (2.6)

(2.7)

(2.8)

b-fiD = 0, (2.9)

with

D = D(p,c)= t f,P.e>\E = E[c)= £ /B«T'.,F = F(/J,c) = £ /.e^"1*., (2.10)
v=1 u = 1 u = l

and i/̂ y) being the psi function, ij/(y) = d\ogT(y)/dy (see, for example, Gradshteyn and
Ryzhik [4, formula 8.360]).

Before we proceed we observe the following facts concerning the coefficients B, C, D,
E, and F in the equations (2.6),...,(2.9), which will be of importance later. B(/},c) is a
positive function of /Je(0, +oo) and ce( — oo,xl);B(l,c) = Y£=i /„(*„ — c) is the sample
mean relative to the point x = c; and, for every c<x1,B(/S,c)-»£|Jl

=1/l,= l as /JJ.O. Since
pB = log(xB-c)<pBI = log(xm —c)(t?=l,...,m-l) it follows that

C= £ / ^ < p m £ /u = pm. (2.11)
» = 1 v= 1

Furthermore,

as

F(p,c)=-p-l-^-L>0,F(l,c)= lJv=l,F(p,c)-*E(c) as 0JO.

We now return to the equations (2.6),..., (2.9). Our first essential observation is that
equation (2.6) can be satisfied only if p<0. In other words, if all four parameters are
considered unknown the distribution pdf must be of hump-shaped type (p<0), i.e.,
f(x, P)|0, xjc. Whether or not this is the case must be ascertained from the given data.

If there is clear indication that the pdf should not go to zero as x[c, i.e., if f(x, P) has
to approach either a finite limit or + oo as xjc, then the initial shape parameter p must
be in the interval 0 ^ p < l . (In this situation the distribution is either of purely
exponential type (p = 0) or of J-shaped type (0<p<l).) If 0 ^ p < l , the left-hand side of
equation (2.6) is positive which means that the function R{P) does not take a maximum
in the interior of the open parameter domain ^ : c < x , , b>0, p>0 (if p=0) or
^>:c<x1, b>0, P>O,O<p<l, otherwise. Let x0 be the infimum of the set of all possible
observations xv Then (2.5) shows that
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sup N~1R(P)= supN-1R(P) = log)S-logr((l-p)^-1)-(l-p)logfe

-p inf Qc)-b-> inf B(P,c)

with infC(c) = C(x0), infB(/?,c) = B(/?,x0). Therefore, if 0 ^ p < l , the maximum-likelihood
estimate c for the shift parameter c is given by c = x0. Then, with c known (as in any
case of a known shift parameter), one can return to (2.5) in which now only b, /?, and p
(if p#0) are left as parameters. Consequently, the equation dR/dc = 0 becomes super-
fluous, i.e., (2.6) becomes vacuous, and one is left with the equations (2.7), (2.8), and
(2.9). The special case of a known shift parameter will be discussed in Section 4.

Our next observation is that by means of equation (2.7) the scale parameter b can be
eliminated from the other three. Indeed, equation (2.7) immediately leads to

6'=(l-p)-1/JB. (2.12)

Then, upon substitution, we obtain from (2.6)

p£ + ( l -p)B"1 F=0, (2.13)

and from (2.8) and (2.9), after simplifying multiplications by appropriate factors,

^C = 0, (2.14)

1/?-/?B-1D = 0. (2-15)

Finally, we observe the obvious but essential fact that the initial shape parameter p
can be expressed in terms of the shift and terminal shape parameters c and /?.
Subtraction of (2.14) from (2.15) leads to

(\-p)-^ = AB-' (2.16)

with

A = A(0, c) = p(D -BC) = p£ fviPv ~ Q e»., (2.17)
v=l

B, C, and D as given in (2.4) and (2.10), respectively. If / l#0, (2.16) can also be written
in the forms

l-p = PA~lB or p=\-PA-lB. (2.18)

Using these identities in (2.13) we obtain
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or, after multiplying by fi~lA,

h(P,c) = (p-lA-B)E + F = O. (2.19a)

If we observe (2.17) we can also write

h(P,c) = (D-BC-B)E + F = O. (2.19b)

Next, using (2.16) in (2.14), we arrive at a second equation,

pC = 0. (2.20)

If the simultaneous equations (2.19) and (2.20) have a solution (/?,c) which is an
estimate of the parameters /? and c we return to the formula (2.18) to obtain an estimate
p for the initial shape parameter p,

p=\-$A-\lc)B$,c) = \-B{$,c)tD(lc)-B{$,c)C{c)Y\ (2.21)

provided /4(^,c)#0. We note that p is uniquely determined for every fixed vector (fi,c).
Finally, with /?, c, and p specified, we obtain a unique estimate 8 for the scale parameter
b from (2.12),

- 1 ]} , (2.22a)

which, by means of (2.18), can also be written in the form

(2.22b)

3. Properties of the functions g(p, c) and h(P, c)

We have seen in the previous section that the derivation of the equations g(/?, c) = 0
and /J(/?,C) = 0 given in (2.19) and (2.20) requires the assumption that A = A(P,c)^0.
Therefore, let us start our discussion by showing that A given in (2.17) is always positive
for /J>0 and c<xt.

Setting pv — C = OLV we can express D — BC as

v= 1

(see (2.4) and (2.10)). As jSJ.0 this shows that, for any fixed c<xu

(3.1)

D-BC^ £ /„«„= £ fvPv-C £ /B = 0,/U0, (3.2)
V= 1 1 ) = 1 V= 1

since £™= i /„= 1. We consider now the derivative

-?-(D-BC) = Cecl> £ fv0L
Op v=\
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As /?|0, the first term approaches C£™=1 /I)a1) = 0 according to (3.2), and the second term
approaches X™=i/fa»- Since all xv are distinct it follows that all pv = log (xv — c) are
distinct (u= l,...,m). Therefore, at most one of the numbers al) = pI) —C can be zero.
Furthermore, since, by assumption, the elements /x and fm of the set {/„} are different
from zero, at least one of the products /jOtf and fm<xj, is different from zero. This implies
Z™= i fv^-l > 0- Consequently, we arrive at

^(D-BC)^ £ /X>0,jS10 («0 = p . - Q . (3.3)

This together with the limit relation (3.2) implies that the function D(P,c)-B(j?,c)C(c)>0
for any fixed c<xt at least for sufficiently small values of /?>0. Therefore, according
to (2.17), A{fi,c)>0 for any c<xt and /?>0 sufficiently small.

We can now establish the fact that A(P,c)>0 for any c<xx and for every /?>0.
According to (2.11) we have pm — C>0. Therefore, there exists an integer n, l ^n^m,
such that <xv = pv — C>0 for v^n and ao^0 for v<n. If n^2, at least one of these <xv's
is strictly negative. We break up the sum at the right-hand side of (3.1) as follows,

The second sum is a positive strictly monotonically increasing function of /?. In the
terms of the first sum the factors <xv e"^ ̂  0 are certainly not decreasing. They are strictly
monotonically increasing if a,,<0. Therefore, the first sum is not decreasing. Conseq-
uently, since D-BC>0 for sufficiently small values of /?>0, it is always positive. This
implies that A{p,c) = P[D{P,c)-B(P,c)C{c)~]>0 for any fixed c<xx and for every P>0.
As 0|O, A{P,c)lO according to (3.2).

We can now discuss the properties of the functions g{P, c) and h(p, c). We shall start
with the function

g(P, c) = *{A - l(p, c)B(P, c)) + log A(P, c) - pC(c). (3.4)

It is the most important one in the sense that it is the only one to be considered in the
special case that the shift parameter c is known (Section 4).

According to its definition (2.4a) we have B(P,c)>0 for any c<xt and for every P>0.
Furthermore, we have seen that B(P,c)-*l as jSJ,O. Since, as we just saw, A(P, c)>0 and
A(P,c)lO as /?J,0, it follows that the argument A~iB of the psi function in (3.4) is positive
and approaches + oo as 0|O. For large values of its argument the psi function has the
asymptotic representation t/'()')~log}>,}>T + oo (see, e.g., Gradshteyn and Ryzhik [4,
formula 8.362.2]). Therefore ip(A~iB)~\og,B — log A. Consequently, according to (3.4),
g{P,c)~\ogB(P,c)-pC(c) as piO for any fixed c<xu i.e., g(ftc)->0 as j?|0.

Next we look at the derivative dg/dp,

g' = A-2[AA'+(AB'-A'BW(A-lB)-A2C\ (3.5)

where the prime signifies differentiation with respect to p. From (2.7) we obtain

A' = (D-BQ + p(D' -DC)
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so that

AA' = 0(D - BC)2 + P2(D - BC)(D' - DC)

since B' = D as indicated right after (2.11). Furthermore,

AB'=p{D-BC)D,

A'B = {D- BC)B + /?(£' - DQB.

The function \]/{y) is stricly monotonically increasing. Therefore, its derivative has the
asymptotic representation i/t'(y)~ dlogy/dy=y~1 as yi + oo, i.e., i/f'(A~lB)~AB~l =
P(D — BC)B~l as /JJ.O. Substituting this asymptotic relation and the expressions for AA',
AB', and A'B into the right-hand side of (3.5) we arrive, after appropriate cancellations,
at

This shows that, for any c<xu g'(P,c)>0 if /?>0 is sufficiently small and that,
according to (3.2) and since B-»l, g'(P,c)iO as 0JO. Since g(/?,c)->0 as 0|O, it follows
that g(P,c)>0 for P>0 sufficiently small and for any c<xt.

Finally, we investigate the behaviour of g(P,c) as /?j + oo. For this purpose we want
to express A(p,c) and A~l(P,c)B(P,c) in more convenient forms. Using the definitions of
A and B as given in (2.17) and (2.4a), respectively, together with the definitions of C(c)
and D(P,c) in (2.4b) and (2.10), we can write

v=l

£ fve-*-->#

v=l

Since pm — pv>0 for v= l,...,m— 1, the identities for A and A~lB provide us with the
asymptotic representations

A(p, c)

From the first one we deduce

log A(P, c)~\ogp+pmp + log fJLpm - C).

https://doi.org/10.1017/S0013091500003400 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500003400


MAXIMUM-LIKELIHOOD ESTIMATION 279

The second one shows that, as p"f+ 00, the argument of \j/(A~lB) approaches zero. Since
i]/(y)~ —y — y~l,yl0, y = —(/'(I) being Euler's constant (see e.g., Gradshteyn and Ryzhik
[4, formulas 8.362.1 and 8.367.1]), we see that ilf(A~lB)~ - y - (p m -C) /3 ,0T + oo.
Consequently, according to (3.4),

which implies the important fact that gift, c) > 0 if ft > 0 is sufficiently large. The ultimate
and initial positivity of g[P,c) means that, for any fixed c < x l 5 the equation gift, c) = 0 has
an even number of positive roots.

If (P*,c*) is a point such that g(P*,c*) = 0 and if the conditions of the implicit
function theorem (see, e.g., Courant [2, vol. 1, p. 482]) are satisfied at Q?*,c*), then the
equation g(P,c)=0 defines implicitly a single-valued, differentiable function /? = y(c) in
some neighbourhood of /?* such that y(c*) = fi*.

We turn now to the discussion of the function (2.19),

Hfi, c) = [D(/?, c) - B(P, c)C(c) - B(P, c)-]E(c) + F(j?, c). (3.6)

It is easy to see that, for fixed c<xu /i(/?,c)->0 as /?J,0 as a consequence of the limit
relations D-BC-*Q, B->\, and F->£ (see (3.2) and the remarks made on B and F in
Section 2).

For the derivative dh/dfi we have

the primes signifying differentiation with respect to p\ According to the limit relations
established earlier, (D-.BC)'->Xu=i fv(Pv~Q2, B' = D->C = £™=1 fvpv. Furthermore F' =
IZ=if«PvJf~1)p—>T2-ifj>ve~''' as PIO. Therefore, with E=ZT_1/I le~p« we obtain

h'(P,c)J £ UPv-Q2- Z /.P.I t f.e~'-+ t Lpve-\pl0. (3.7)
|_ 0=1 0=1 J 0=1 0=1

This expression for the limit can also be written in the form

m

(3.8)
0 = 1

with

K + pv= Y. fnPl~[ Z ffPn) ~ Z f»Pn + Pv ( v = l , . . . , m ) . (3.9)

To evaluate the limit (3.8) it is necessary to take the shift parameter c into account. If we
let cfx,, then pu = log(x1)-c)J.log(xi;—xt)> — oo(t; = 2,...,m), and p , =log(x, — c ) | - o o .
We now investigate the factors (3.9) which appear in (3.8). Since p , <pv{v = 2,...,m)
it is sufficient to look only at K + py. All terms in (3.9) which do not depend on pj
approach finite constant values as c^xl. Therefore, we have
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K + Pi=fiPi—fipl—(bounded terms)p1 — (bounded terms)

= /i(l—/i)Pi— (bounded terms)pj — (bounded terms).

This shows that K + pv>K + pi] + 00 as c'\x1(v = 2,...,m). Thus, all terms in (3.8) are
positive if x,—c>0 is sufficiently small. Consequently, according to (3.7), h'(f},c)
approaches a positive limit as /?J,0 if X j - o O is sufficiently small. This together with
the limit relation /i(/?,c)->0 as /?|0 implies that h{f},c)>0 for sufficiently small /?>0 and
sufficiently small x ^ o O .

If we let c | - c o , then pB = log(xB—c)f + oo and pjpm]\ (v= l,...,m). Therefore,

K+PV=PI z d%) -pii z fM -Pm E f,ejL+Pm£^o
\PJ =l Pm) lt=l Pm Pm

(v=l,...,m) as cj —00. Consequently, according to (3.8) and (3.7), /j'->0 as /?j,0.
Unfortunately, because of the complexity of the terms which appear in (3.7), nothing can
be said in general about the limit in (3.7) for c away from —00 and not close to x,. We
may add, however, that, from a phenomenological point of view, the difference xx—c
cannot be arbitrarily large for the class of distributions characterized by the pdf class
(1.1).

We investigate next the behaviour of h(P,c) as /?T + °°- Using the definitions of the
functions B, D, and F as given in (2.4a) and (2.10) in (3.6) we can write

Therefore, we obtain the asymptotic representation

Since £ = ^ = 1 / r e "^> / m e""™>0 , we have -E<-fme~"-. Therefore, -
- / m e~ p " + e""». = e"p-<l-/m)>0. Furthermore, since pm-C>0, it follows that the
asymptotic comparison function M of h is positive. In other words, h(0,c)>O for c<xt

if /? is sufficiently large. This result together with the fact that /i(/?,c)>0 for x , - c > 0
sufficiently small if ft > 0 is sufficiently small leads us to conclude that, for fixed c such
that Xj—c>0 is sufficiently small, the equation /i(/9,c) = 0 has an even number of positive
roots.

If the shift parameter c is away from —00 and not close to xL we cannot say
anything about the number of roots of the equation /i(/?,c) = 0 except that this number is
odd if h(p, c) < 0 for small values of /? > 0. In any case, if (/?*, c*) is a point such that
h(f}*,c*) = O and if the conditions of the implicit function theorem are satisfied at
(P*,c*), then h(P,c) = O defines implicitly a single-valued, differentiable function P = z(c)
in some neighbourhood of P* such that z(c*) = P*.

As a result of these considerations we may finally conclude that, if p < 0 and if there
exists a number c<xl such that z(c) = y(c) = 0 (y(c) being the function implicitly defined
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by g{P, c) = 0), the numbers fi and c are estimates for the terminal shape and shift
parameters /? and c, respectively. The estimates p and S for the initial shape and scale
parameters p and b can then quickly be calculated from the formulas (2.21) and (2.22).
It is important to observe, however, that the estimate vector P = {c,$,p,ft) need not be
unique so that, if there is more than one such vector, it may be necessary to verify
which one actually maximizes the logarithmic likelihood function R(P) given in (2.5).

It is clear from the structure of the functions g(P, c) and h(P, c) that it is not easy to
ascertain whether or not the equations g—0, h=0, can have more than one solution.
However, it seems that, if different solutions (f}v, cv) exist, they can be ordered such that
fiv<$o+i>Cu<£v+i> a nd t n a t the pair ( ^ . c j maximizes R(P) together with the
corresponding values p and 6 obtained from (2.21) and (2.22). This topic will be
discussed elsewhere.

4. The case of a known shift parameter

Frequently, the shift parameter of a distribution can be determined from physical or
equivalent evidence. It is also known if 0 g p < 1 as mentioned earlier. Without loss of
generality, we may assume in such a situation that c=0. In these circumstances the
logarithmic likelihood function (2.5) reduces to a function of the (in general) three
unknown parameters b, p, and /?. Consequently, equation (2.6), i.e., dR/dc=0, becomes
vacuous so that we are left with equations (2.7), (2.8), and (2.9) or (2.12), (2.14), and
(2.15), respectively. In different notations they appear, for example, in Parr and Webster
[12] and Essenwanger [3, p. 117]. The same reasoning as applied in Section 2 now
leads us to the equation

It is the only equation that must actually be solved. It agrees with (2.20) for c=0, the
coefficients A and B now being functions of P only, A = A(P), B = B{P). They are
determined in (2.17) and (2.4a), respectively, for c = 0, i.e., with pB = logxB. The coefficient
C in g(P) is now a constant.

If /? is an estimate of the terminal shape parameter /? (i.e., a solution of g(P) = 0, in
which case there are at least two), the corresponding estimates p and 8 for the initial
shape and scale parameters are then determined by the formulas

and

which correspond to (2.21) and (2.22). It is our experience that the smallest positive root
$ of g{P) = 0 provides the maximum for R(P).

5. Special cases

For particular values of the two shape parameters the class of probability distri-
butions characterized by the pdf class (1.1) contains a number of special cases well-
known in statistics and statistical physics. The major ones are: (one-sided) Gauss
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(p = 0,p = 2), Weibull ( p = l - 0 < l ) , exponential (p= l - / ? = 0), Rayleigh (p= 1 — y9= — 1),
Gamma (p< 1,0=1), chi-square (p=(2-v)/2< 1,0=1), Maxwell (p = - 2 , 0 = 2;x = t>ro,
b=(2kT/m)1/2t0), and Wien (p = - 3 , 0 = 1 ; X = 2KCCOO-2CO,b = 2ncu>0-

2kT%-1). These
special cases of (1.1) have been recognized earlier, for example in Stacy and Mihram [15],
Lehnigk [8], and Lehnigk [9].

The frequent practice of hypothesizing a particular distribution from among the class
(1.1) is equivalent to assigning particular values to at least one of the two shape
parameters or to establishing a particular relationship between them with the objective
to single out one of the above mentioned special cases in an attempt to reduce the
number of unknown parameters. Our experience has shown, however, that the equations
g(P, c) = 0 and fc(0,c) = O for the four-parameter-unknown case, or just the equation
g(P) = 0 for the three-parameter-unknown case, can easily be solved so that there is really
no need to hypothesize a special distribution. (As mentioned in the introduction this
claim will be substantiated in a separate publication.)

The reduced maximum-likelihood equations for the special cases are well known. The
reader is referred to the literature, e.g., Law and Kelton [7, Chap. 5.2.2], and
Essenwanger [3, Chap. 2.11.2] for the three-parameter Weibull distribution.

For applications in the area of statistical physics it may be of interest to consider the
details for the Maxwell distribution for which p= — 2,0 = 2,b>O,c<x1. (2.5) becomes

Therefore,

dR/db=-3b~l+2b'3B = 0.

The resulting equations are then b2 = 2B/3 and 2BE-3F = 0, B = B(2,c), E = E(c),
F = F{2,c). If c = 0 we are left with 62 = 2B(2,0)/3.
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