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OPTIMAL TEST INTERVAL FOR
A MONOTONE SAFETY SYSTEM

TERIJE AVEN,* University of Stavanger

Abstract

We consider a safety system represented by a monotone (coherent) structure function
of n components. The state of the components and the system is only revealed through
inspection, which is carried out at intervals of length 7'. If the inspection shows that the
system is in a critical state or has failed, it is overhauled and all components are restored to
a good-as-new condition. Costs are associated with tests, system downtime, and repairs.
The problem is to find an optimal 7" minimizing the expected long-run cost per unit of
time. The purpose of this paper is to present a formal set-up for this problem and to show
how an optimal 7' can be determined. A special case where the components have three
states is given particular attention. It corresponds to a ‘delay time type system’, where
the presence of a fault in a component does not lead to an immediate failure—there will
be a ‘delay time’ between the occurrence of the fault and the failure of the component.
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1. Introduction

Multicomponent systems can be represented in various ways. One general formulation is to
use the theory of monotone systems; see, e.g. Aven and Jensen (1999). A monotone system is
a multicomponent system which has the natural property that the system cannot deteriorate by
improving the performance of a component. Our main concern in this paper is safety systems
having some degree of redundancy, i.e. the deterioration and failure of one component does
not necessarily lead to the failure of the system. A simple example is a binary parallel system,
which is functioning if at least one component is functioning. Another example is a system
where the component first jumps to a partly defective state before it fails. There will be a time
lapse between the occurrence of the fault and the failure of the component—a ‘delay time’. This
idea is the fundamental concept of the delay time models, which has been thoroughly discussed
in the literature. See the reviews by Baker and Christer (1994), Christer and Redmond (1992),
and Christer (1999).

The delay time models are used as a framework for determining monitoring strategies for
detecting system defects and failures. The state of the system is revealed through inspection.
The basic delay time model was introduced for analyzing inspection policies for systems
regularly inspected each T time units (see Christer (1982)). If an inspection is carried out
during the delay time period, the defect is identified and removed. In most of the models, the
objective of the delay time analysis is to determine the optimal inspection interval, that is, the
inspection interval that optimizes the (expected) long-run average costs or downtimes.
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The framework of the present work incorporates the delay time model concept, as it allows
for analysis of systems comprising components having an arbitrary finite number of states,
in particular three, as required by the standard delay time model: perfect functioning, partly
defective state (delay time), and failure state. The system is inspected every T units of time. If
the system is found to be in a critical state or has failed, a complete overhaul (replacement) of the
system and its components is performed. The system is in a critical state if further deterioration
of a component (component i jumps from state j to state j — 1) induces system failure. As
the system is a safety system in standby mode, the state of the system and its components is
revealed only by testing. The aim of the testing and overhaul is to avoid the system failing and
staying in the failure state for a long period. However, this goal has to be balanced against the
costs of inspections and overhauls. Too frequent inspections would not be cost optimal.

There exist several papers treating replacement problems related to a monotone system. See
Aven and Jensen (1999) and the references therein. In most of the models presented, the state
of the system is known and the system is replaced once it has failed. Testing as in the present
paper has concentrated on one-unit systems. There is an extensive literature on preventive
replacement models. See, e.g. Jensen (1996), Valdez-Flores and Feldman (1989), Nakagawa
(2005), Wang and Pham (2006), and Wang (2002).

The problem analyzed in this paper is described in Section 2. In Section 3 we establish
formulae for the long-run expected average cost per unit of time, as a function of 7. Examples,
including the delay-type model, are presented to illustrate the analysis. In Section 4 we provide
some final remarks.

2. Model and problem definition

We consider a safety system comprising n components, numbered consecutively from 1
to n. The state of component i at time ¢, ¢ > 0, is denoted by X;(¢), i = 1,2, ..., n, where
X;(t) can be in one out of M; + 1 states, 0, 1, ..., M;. The paths X;(-) are assumed to be
right continuous. The states represent different levels of performance, from the worst, 0, to the
best, M;. Attime ¢t = 0, all components are in the best state, i.e. X;(0) = M;, i =1,2,...,n.
The random duration time in state M; is denoted by Uy, . The component then jumps to state
M; —1 for arandom time U;y, —1), and so on until the component reaches the absorbing state 0.
All sojourn times are positive random variables. The probability distribution of U;; is denoted
by F;;. The distributions F;; are assumed to be absolutely continuous, with finite means. The
density and ‘jump rate’ of F;;(¢) are denoted by f;;(¢) and r;;(¢), respectively,i =1,2,...,n
and j =1,2,..., M;. The jump rate r;;(¢) is defined as

o
lhlJI,%EP(Uij <t+h| Uij > 1).

Hence, r;j(t)h (where h is a small positive number) is approximately equal to the condi-
tional probability that component i makes a jump to state j — 1 in the interval (¢, + k],
given that the component has stayed in state j during the interval [0, ]. The sojourn times
Uim;, Uimj—1y, ..., Ui, i =1,2,..., n, are assumed to be independent. The distribution of
the vector of all the U;;s, U, is denoted by Fy .

We denote by G (¢, x) the distribution of the vector of component states X (1) = (X (¢),
Xo(t), ..., X,()),1e.

G, x) =P(X1(t) =x1, Xo(t) =x2,..., X;,(t) = xp).
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Here x = (x1, x2, ..., x,). The state of the system at time ¢ is denoted by ®(¢) and is a function
of the states of the components, i.e.

Q1) = ¢(X(1)),

where ¢ is the structure function of the system. We assume that ® and ¢ are binary, equal to 1
if the system is functioning and O otherwise. The system is a monotone system, i.e. its structure
function ¢ is nondecreasing in each argument, and

$(0,0,...,0)=0 and ¢(My, Ma, ..., My,) = 1.

Since at time r = 0 all components are in the best state, ®(0) = 1. The components deteriorate
and at time t the system fails, i.e.

T =inf{r > 0: (X (1)) = O}.

The deterioration of the components and the system failure is revealed through inspections. It
is assumed that the system is inspected every T units of time. If the system is found to be in the
failure state, a complete overhaul is carried out, meaning that all components are repaired to a
good-as-new condition. Furthermore, a preventive policy is introduced: if the system is found
to be in a critical state, a complete overhaul is also conducted. The system is said to be in a
critical state if the system is functioning and there exists at least one i such that the system fails
if component i jumps to the state X;(#) — 1. Let t. be the time that the system first becomes
critical. Then

. =inf{t > 0: (X)) =1,0p((X;() — 1);, X(¢)) = 0 for at least one i},

where ¢ (-;, x) = ¢(x1, ..., Xi—1, ", Xi41, ..., X). We assume that t, > O, i.e. the system is
not critical at time 0.

The distribution of 7. is denoted by F . The times t and 7. are functions of the duration
times U;;. Let g and g be defined as

t=¢gWU) and 7= g (U).

The inspections and overhauls are assumed to take a negligible time.
To further characterize the critical states, we introduce the concept of a critical path vector
for the system at level 1.

Definition 1. A state vector x is a critical path vector for the system at level 1 if and only if
¢(x) =1and ¢((x; — 1);, x) = O for at least one i.

From this definition we introduce a maximal critical path vector.

Definition 2. A critical path vector x is a maximal critical path vector for the system at level 1
if it cannot be increased without losing its status as a critical path vector.

Note that these concepts are different to the commonly defined path vectors and minimal
path vectors in a monotone system (see, e.g. Aven and Jensen (1999, p. 34)).

Based on the maximal critical minimal path vectors we introduce a new structure function,
¢c(x), which is equal to 1 if and only if there exists no maximal critical path vector x; such
that the state x is below or equal to xg, i.e.

gex) = [ [(1 = 1(x < x0),
k
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where k runs through all maximal critical path vectors for the system at level 1 and 1(-) is the
indicator function, which is equal to 1 if the argument is true and O otherwise. We see that the
system ¢ fails as soon as a system state becomes critical. As an example, consider a binary
parallel system. Then it is seen that the maximal critical path vectors are (1,0) and (0,1), and
dc(x) = x1x2, as, if one component fails, the system state becomes critical.

A counting process N is introduced which jumps to 1 at the time of the system failure, i.e.

N@)=1(t <1t).
Let V;; () be the virtual age of component i in state j at time #. Then the intensity A(¢) of N is
given by

M,

M) =Y (Vi) 1Xi () = X)L = $((j — i, X)),

i=1 j=1

noting that the rate is r;;(V;;(¢)) at time ¢ for component i to cause system failure by jumping
from state j to state j — 1. A formal proof can be given following the approach of Aven and
Jensen (1999, p. 65). By introducing ¢;; (x) = 1(x; = j)¢(x)(1—¢((j —1);, x)), the intensity
A(t) can be expressed as

n M,

M) =YD (Vi ()i (X (1))

i=1 j=1

Analogously, we define a counting process N, for the process ¢.. This counting process jumps
to 1 at the time the system becomes critical, i.e.

Ne(@) =1(te. < 1).

The intensity A.(¢) of N is given by

n M;
Ac(t) = ZZVij(Vij(t)) 1(X; (1) = )P (X (@) (1 — ¢pc((j — Di, X(1))).

i=1 j=1
Similarly to ¢;;, we define ¢;jc(x) = 1(x; = j)Pc(x)(1 — ¢c((j — 1);, x)), and, hence, the
intensity A.(#) can be expressed as

M,

() =YY rij(Vij(0)ije (X (0)).

i=1 j=1

In the analysis below we will frequently make use of the following result. If N is a counting
process with intensity A(¢) then

E/ D) dN (1) :E/ DA () dt (1)
0 0

for all processes D(t) whose values at time ¢ are known just before time ¢. This result follows
from general counting process theory; see, e.g. Aven and Jensen (1999, p. 55). In the general
formulation, the requirement is that the process D(¢) is a predictable process adapted to a
filtration (¥;).
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The following cost structure is assumed. The cost of a complete overhaul is ¢, whereas the
cost of each inspection is ¢;. If the system is not functioning, a cost c is incurred per unit of
time. All costs are positive numbers.

The problem is to find an optimal 7" minimizing the long-run expected cost per unit of time.

3. Optimization

For a fixed test interval length 7', 0 < T < o0, the system is overhauled at time 7T, where
T is the time of the first inspection following a critical state, i.e.

-r((5) )

where [x]; equals the integer part of x. This inspection represents a renewal for the cost and
time processes, and using Ross (1970, Theorem 3.16), it follows that the long-run (expected)
cost per unit time, BT, can be written as

_ECT
 Efl’
where E 77 expresses the expected length of the first renewal cycle (the time until renewal)
and E CT expresses the expected cost associated with this cycle. It is seen that E 77 < oo and
ECT < oo, observing that Et? <3, BU;; + T,andECT < Tc+c, +C;(E<T/T +1).

J
Theorem 1, below, establishes an explicit formula for E 77 and E €T, and, hence, for BT .

BT 2)

Theorem 1. Under the model assumptions of Section 2, with t = g(U) and t. = g.(U), we

have
o0
ErTzTZ(k—i-l)/ dFy () )
k=0 u: kT <ge(w)<(k+1)T
o0
ECTZZ/ ertk+ 1) 4+cp+cl(gm) < (k+1DT)
ko YU kT <gc(@)=<(k+DT

x{k+ 1T — gw)}1dFy ). 4)
Proof. To establish (3), we write

" = 1*T <7 < (k+ DT)(k+ DT.
k=0

Then taking expectations we obtain

Etl = EZl(kT < g(U) < (k+ DTk + DT
k=0

oo
=T) (k+1) dFy (),
k=0 u: kT<gc.(u)<(k+1)T

which proves (3). To establish (4), we use a similar approach, writing the cost C” as a function
of 7. and t:

CT =3 "1kT <1 < (k+ DDesk+ 1) +cp+el(t < (k+ DD {(k+ DT —1}], (5)
k=0
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noting that the system is down a period (k + 1)T — t if the system enters a critical state in
the interval (kT, (k + 1)T'] and the system fails before the inspection at time (k + 1)7. Then
taking expectations we obtain (4).

In the following theorem we establish more explicit formulae for Et” and E CT by using
counting process theory (see (1)). Then we do not need the distribution of Fy(u) but the
distribution of X (¢), G(¢, x). We consider two special cases.

Case 1. The system is a binary system with binary components,i.e. M; = 1 fori = 1,2, ..., n.
Case 2. Therates r;; are independent of 7, i.e. the sojourn times are all exponentially distributed.
Theorem 2. Let

t
H,-j(t,x)zf V,'j(S)G(S,x)dS.
0

For cases 1 and 2, we then have

ZT(k+ 1>ZZZ¢l,c(x>[H,,<(k+ DT, x) — Hj(kT.x)l,  (6)

i=1j=1 x

where ¢jjc(x) = 1(x; = j)pc(x)(1 — ¢c((j — 1)i, x)). Furthermore, if Gs(t, x | x") denotes
the conditional distribution of X (t) given X (s) = x’ (t > s), we have

Z[cl(k+1)+cp ZZZ¢,,c<x)[H,,(<k+1>T x) — Hij(kT, x)]

i=1 j=1 x

+ Z D b (xGKT, x')

k=0 x’

k+1)T
SN / c(tk+ DT = 0 (OGer (e, x | ¥ de. ()
i=1j=1 x
Proof. To establish (6), we write
00 00 *k+1)T
=Y kT <1 < (k+1)T)(k+1)T=Z(k+1)T/ dN.(1).

k=0 k=0 kT

Then taking expectations, using (1), and noting that we can write r;; (V;; (¢)) = r;;(t), we obtain

k+DT
E<” —EZ(k—l—l)T/ dN. (1)
k=0 kT
(k+1)T

_TZ(k+1)/ E (1) dt

k+D)T 1 Mi

7 Z(k SR D9 MHCLTINE TN

i=1 j=I
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k+1D)T

= TZ(k—l— I)ZZZ‘W(")/ rij(DG(t, x) dt

i=1j=1 x

= TZ(k+ 1>ZEZ¢UC(x>[H,,<(k+ DT, x) — Hyj (kT x)],

i=1j=1 x

which proves (6). To establish (7), we rewrite (5) to obtain

=Y MKkT < 7 < (k+ DD)lesk+ 1) + ¢, (8)
k=0
+ Zl(kT <. <(k+DT)clx < k+ DD {k+ DT — 7). 9)
k=0

Similarly to the above analysis for E 77, it is seen that term (8) equals

00 n M
Y lerk+1) +¢pl Y ije()Hij ((k + DT, x) — Hij (KT, x)].

k=0 i=1 j=I

Hence, it remains to establish the desired expression for the downtime costs. Term (9) can be

expressed as
(k+1)T

Zcpc(X(kT)) / e+ DT — AN (@),

as ¢.(X(¢)) is 1 as long as ¢ < 7.. Then again taking expectations and using (1), we find that
this expected cost term equals

(k+1)T

Equc(X(kT)) [ et —navo

(k+1)T

=E Zqﬁc(X(kT)) / c((k+ DT — )A(r) dt

(k+1)T n_ M
=E quc(X(kT)) / c(k+DT =0y ¢ (XO)rij (1) dt

i=1 j=1

quc(x )G (KT, x >Z Z > ijx)

i=1 j=1 x

k+1)T
X / c((k+ DT — 0)rij(1)Grr(t, x | x")dr.
kT

Equation (7) follows, and the theorem is proved.

We seek an optimal Ty minimizing BT given by (2) and the expressions for EC” and E 7
in Theorems 1 and 2. Such a minimum always exists if we include the ‘perform no testing
and overhaul’ policy T = oo as B is a continuous function and lim7_,o BT = co. We have
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B> = lim7_, o BT = c. The expected average long-run cost per unit of time when there is
no testing and overhaul equals c¢. If we perform very frequent testing, the long-run expected
average cost will be very high due to a large number of inspections.

To find Top, it is convenient to search for T's minimizing the functions

BT@)=EcT —SE<".

If Ts minimizes BT(S) and BTs (8) = 0, then T5 minimizes BT ie. Ty is optimal, and § =
BT = info<r<o00 BT . This result is well known from the literature; see Aven and Bergman
(1986).

3.1. Special case: a parallel system of two components

Assume that ¢p(x) = 1 — (1 — x1)(1 — xp), i.e. the system is a parallel system comprising
two components. The time that the system first becomes critical, 7., can then be expressed as

7. = min{Uy1, Uz},

noting that if a component fails, the system is functioning if and only if the other component
is functioning. Furthermore, the time to system failure, 7, equals the maximum component
lifetime, i.e.

t = max{Ui1, Ux1}.

It follows that

Et" =T (k+ DI[F ((k+ DT) = Fr (kT)]
k=0

= (k+ DIF1(kT)F (kT) — F1i((k + DT) Far ((k + DT,
k=0

where F = 1 — F. By similar arguments, first considering the costs ¢; and ¢, and then the
cost ¢, conditioning on U1 = u1 and Uy = uy, we obtain
o0
CT=E) 1T <1 < (k+ DDlcstk+ 1) +cp+cl(r < (k+ DD{(k+ DT — 7]

k=0

=EZl(kT <t < (k+DD)lertk+ 1)+ cpl
k=0

+EZI(kT <t =k+DDlcl(r < k+ DD){k+ DT —1}]
k=0

[Fi1(kT)Fa1 (kT) — Fii((k + DT) Fa1 ((k + DT)]les (k 4 1) + ¢,]

K

>\.
Il
S

+ Z/w /00 1(kT < minf{uy, uz} < (k+ DT)[c V(max{u, up} < (k + 1)T)
k=070 70

x {(k + DT —max{uy, u}}1dFo1(uy) dFip(u2).
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The last term due to the system downtime can be simplified to

kDT
Z/ Atk + DT —u1}[For(ur) — For(kT))dFyp(ur)
o kT

X ,*k+DT
+ ka cltk + DT — uz}[Fi1(u2) — Fii(kT)]dFa1 (u2).
k=0 VKT

These results are presented in Proposition 1, below.

Proposition 1. For a parallel system of two binary components, the expected renewal cycle
and the expected associated costs are given by

Etl =) (k+ DIFukT)Fu(kT) — Fii((k + DT)Far ((k + DT)],
k=0
CT = [F(kT)Fy(kT) — Fii((k + DT) Far ((k + DD)ler(k + 1) + ¢]
k=0

X ,*k+DT
+Z/” cftk+ DT — un}[Fai (1) — Far (kT)1dFy1 (ur)
k=0

O pk+DT
+y /T Atk + DT — uz}[Fri(uz) — Fii(kT)1dFa (u2).
k=0

An optimal T can then be determined.
Similar expressions can be easily derived based on Theorem 2.

3.2. Special case: the delay time model with three components

We consider a system comprising n = 3 components, with M; = 2, i.e. each component has
three states. State 2 is a perfect functioning state, whereas state 1 is a ‘partly defective’ state,
as a result of a ‘fault’. There will be a time lapse between the occurrence of the fault and the
failure of the component—a ‘delay time’. To simplify the mathematical analysis, we assume
that all sojourn times U;; are exponentially distributed. The constant rates are denoted by r;;.
Components 1 and 2 are assumed to have the same rates. The rates for different arrival states
are assumed to be different, i.e. rjp # rj; fori =1, 2, 3.

The state of the system is given by the structure function

d(x) =101 +x2 > D 1(x3 > 1).

Hence, the system is functioning if either component 1 or 2 is in state 1 or better, and component
3isin state 1 or better. We may think of the system as a parallel system comprising components
1 and 2, in series with component 3, with each component having a delay time before failure
occurs.

The maximal critical path vectors for level 1 are (0,1,2), (1,0,2), and (2,2,1), and this defines
¢c(x) and ¢;jc(x). We see that ¢c(x) = 1 forx = (1,1,2) and x > (1,1, 2), as well as for
x=(0,2,2)and x = (2,0, 2).
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For two distribution functions F; and F», let F| % () = f(; Fi (t — 5)dF,(s). Then the
distribution G (¢, x) can be expressed as

3
G(t,(2,2,2)) = Fia(t) Faa(1) Fa (1) = CXP{—f Zriz},
i=1

G(t,(1,2,2)) = [Fi1 * Fio(t)1Fx(t) F3 (1)

3
= rl—z(exp{—rnt} —exp{—ri12t}) exp{—t Zriz},

ri2 —ri i
G(t, (1,1,2)) = [Fi1 * Fia()1[F21 * Foa(t)]1F3(1)

ri2
= —————(exp{—r11t} — exp{—ri2t})
T2 — i

;
X L(exp{—mt} — exp{—rt}) exp{—tr3z},
2 — i
G(1,(0,2,2)) = Fip * Fi11(t) Foo (1) F32(2)
r12

———[exp{—ri1t} — eXp{—Vlzl}]}
ri2 — 11

= {1 —exp{—riat} —

3
X exp{—tZr,-z}.
i=2

From these expressions, compact formulae can be derived for H;; (¢, x) = r;; fot G(s, x)ds.

Similar equations can be established for G (¢, x | x), the conditional distribution of X (¢)
given X (s) = x’. We need to compute the conditional distribution of P(X;(¢) = j» | X;(s) =
ji) for jo < ji, j1 =1,2,i = 1,2. We see that P(X;(¢) = 2 | X;(s) = 2) = :iz(t —5),
P(X;(t) =1 Xi(s) =2) = F11 * Fio(t —5),and P(X; () = 1 | X;(s) = 1) = F;1(t — ).
Furthermore, P(X; () = 0| X;(s) = 1) = Fj1(t —s) and P(X;(t) = 0| X;(s) = 2) =
F12 * Fj1(t — 5). From these formulae we see for example that

Gs(1,(2,2,2) | (2,2,2)) = Fia(t —5)Fxa(t — s) Fao(t — )

3
:exp{—(l —s)zriz},
i=1
Gy(t, (1,2,2) | (2,2,2)) = [Fi1 * Fia(t — $)1Fn(t — s)Fx(t — 5)

= 12 (exp{—r11(t — $)}— exp{—ria(t — 5)})
ri2 —ri

3
X exp{—(t — S)ZV,’Q}.
i=2

In this way, all terms in E 77 and E C7 can be derived and an optimal 7' determined.

3.2.1. Numerical example. We assume that the failure rates are as follows: rip = rpp = 0.5,
ri1 = o1 = 1.0, and r3p = %, r3] = % Hence, the expected times to failure for the three
components are 2+ 1 = 3,2+ 1 = 3, and 3 + 2 = 5, respectively. The following costs are
assumed: ¢ = 100, ¢; = 1, and ¢, =5, i.e, the cost of an overhaul is five times the inspection
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FIGURE 1: The BT function for the base case example with ¢ = 100.
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25
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T

FiGURE 2: The BT function for ¢ = 1000.

cost and the unit downtime cost is 100 times the inspection cost. Then we can compute the
BT function and determine an optimal inspection time. Figure 1 shows the BT function as a
function of 7', computed using MAPLE® 10. By inspection, an optimal value is obtained for
T =0.43.

A number of sensitivity analyses should be performed to see the effect of changes in the
input data. Figure 2 shows an example where the unit downtime cost is increased by a factor 10,
from 100 to 1000, to reflect the serious safety risk caused by downtime. The optimal inspection
interval is then reduced to 0.18.
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4. Final remarks

The analytical optimization of BT needs to be carried out using numerical methods. For
the numerical example considered in the previous section, the optimization criterion is of the
standard form seen for many maintenance models (nonincreasing up to a minimum value and
then nondecreasing). In general, this is however not the case for the model studied in this paper.
Examples can be constructed where the optimization function has several local minimum values,
in line with the examples for a one-component system in Aven and Castro (2009).

The model can be extended in many ways, for example, by allowing a more general cost
structure. As an example, we may distinguish between the cost of an overhaul when the system
is in a critical state and when it has failed. The calculations of E C7 in (5) then need to be
modified, by considering a cost term ¢, + c;, 1(t < (k+ 1)T), where c;, is the additional
overhaul cost if the system has failed compared to being in a critical state. This analysis is
analogous to that carried out for E C” in Section 3. The next step would be to allow the overhaul
cost to depend on the state vector. The analysis would then become more complicated, but still
within the framework and approach presented.

The analysis is based on independent components. If such independence cannot be justified,
the theory and results in this paper do not apply. Attempts may be made to explicitly model
the dependencies, but the arbitrariness in such modeling would typically be large. It is difficult
to provide sufficient support for one particular such dependency model. In some cases it is
possible to separate out the dependencies (common cause failures) and add a component in
series with the rest of the system to reflect the common cause. Then we would be back to the
framework considered in this paper.
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