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Abstract

In this paper we present a new proof of the equivalence of the analytic and the geometric characterization
of the class of functions convex in the negative or positive direction of the imaginary axis.
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1. Introduction

Let C = CU {oo}, let O = [z e C : |z| < 1} denote the open disk in the plane, and
let T = 3D. For each k > 0, let

denote the disk in 0 called an oricycle, such that the boundary circle 3Ot is tangent
at z = 1 to the unit circle T. The Julia Lemma ([4]; see also [1, page 56]) which is
recalled below is the basis for our considerations.

LEMMA 1.1 (Julia). Let co be an analytic function in 0 with \co(z)\ < I, for z € O.
Assume that there exists a sequence (zn)> n 6 N, of points in D such that lim,,-,.,*, zn=l>
hm,,^^ co (zn) = 1 and

(1.1) hm = a < oo.
n^oo 1 - |zn |
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Then

| l - ^ ( z ) | 2 ^ |1 -z\2

<Ctr - j r , Z G D,
l | | 2l - \co(z)\2

and hence, for every k > 0, (^(Q*) C Oa t

REMARK 1.1. Since
. 1 - M0)|
- l + M0)|'

for every function &> analytic in D) with \co(z)\ < 1 for z € D, the constant a defined
in (1.1) is positive (see [1, page 43]).

2. Convexity in the negative direction of the imaginary axis

2.1. For w € C and 0 6 [0, 2n), let /[IU, 0] = {w + tem : / € [0, +oo)}. For
A . f l c C and w € C, let

A ± B = ( u ± v e C : M € A A D € B ) , A + w = A + {u;}.

2.2. Let us start with the following definition.

DEFINITION 2.1. A domain Q, C C, £2 ^ C, is called convex in the negative
direction of the imaginary axis if and only if the half-line l[w, 3TT/2] is contained in
C \ £1 for every w e C\£2. The set of all such domains will be denoted by 2?~.

Obviously, Q e 2?~ if and only if the half-line l[w, n/2] is contained in Q for
every w 6 Q.

DEFINITION 2.2. Let W ' denote the class of all analytic and univalent functions
/ in D such that/ (D) is in 2f~. Functions in the class c€'f will be called convex in
the negative direction of the imaginary axis.

2.3. Now we introduce, for an arbitrary domain in 2f~, a special selected null-
chain (Cn).

Construction of a prime end for the domain convex in the negative direction of
the imaginary axis

Let us recall that a crosscut C of a domain G C C is an open Jordan arc in G such
that C = C U {a, b], where a, b e dG. Let 52 € 2?~ be an arbitrary domain.
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1. Assume first that Q is neither a vertical strip nor a half-plane with the boundary
straight line parallel to the imaginary axis. Then there exists w0 e dQ such that
the vertical half-line l[w0, n/2] \ {w0} starting from w0 is contained in £2. For each
t € (0, oo), let us denote C(t) = {w e C : \w-wo\ = t}. It is clear that £2 n C(t) ^ 0
for every t e (0, oo). By Proposition 2.13 in [6, page 28], for each t e (0, oo) there
are countably many crosscuts Ck(t) c C(t), k e N, of £2 each of which is an arc of
the circle C(t). By Qo(t) C £2 we denote the component of £2 \ C(t) containing the
half-line l[w0 + it, n/2] \ {w0 + it] and by Q(t) e U*<=N C*(f) w e denote the crosscut
containing the point w0 + it. So Q(t) C 3J2O(O- Let now (tn), n € N, be a strictly
increasing sequence of points in (0, oo) such that lim^oo tn = oo and let (Q(tn)) be
the corresponding sequence of crosscuts of £2. It is easy to observe that

(1) Q(O n Q(tn+l) = 0 for every n € N.
(2) £20('n+i) C £2o(fn) for every « e N.
(3) diam* Q(tn) —>• 0 as n - • oo, where diam* fi means the spherical diameter of

the set B c C .

Therefore (Cn) = (£?(/„)) forms a null chain of £2 (see [6, page 29]). Notice also that
the null chain (Q) is independent of the choice of the sequence (fn).

The equivalence class of the null chain (Cn) defines the prime end denoted by
Poo (£2). We can also show that infinity is a unique principal point of the prime end

2. (a) Let £2 be a vertical strip of width d > 0. Let w0 € 3 £2 be an arbitrary
point. For each t € (d, oo), set C(t) = {w € C : \w — wo\ = t}. It is clear that
£2 fl C(t) ^ 0 for every t G {d, oo). Observe that £2 (t) is a sum of two disjoint circular
arcs, denoted by Q+(t) and Q~(t). Let Q+(t) be the circular arc which lies above
Q~(t). Precisely, Q+(t) cuts the boundary straight lines of £2 at two points wi(t) and
w2(t), and together with two half-lines l[wi(t), n/2] and I[w2(t), n/2] is a boundary
of a domain denoted by £2+(0- Moreover, £2+(f) c £2 and Q+(t) D Int C(f) = 0.

Let now (?„), n e N, be a strictly increasing sequence of points in (d, oo) such that
lim^oo tn = oo, and let (Q+(tn)) be the corresponding sequence of crosscuts of Q. It
is easy to observe that the conditions (l)-(3) listed in Part 1 of this construction are
fulfilled. Therefore (C+) = (Q+0n)) forms a null chain of Q. The null chain (C+) is
independent of the choice of the sequence (tn).

The equivalence class of the null chain (C+) defines the prime end denoted by
). We can also say that infinity is a unique principal point of the prime end

In a similar way the sequence (Q (tn)) is a null chain which represents the second
prime end p^(£2), different than p^(J2).

For the next considerations, the prime end /?J,(£2) will be denoted by p^iQ).
(b) Let now £2 be a half-plane with the boundary straight line parallel to the

imaginary axis. Let w0 6 3£2 be an arbitrary point. For each t e (0, oo), let
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C(t) = {w € C : \w - wQ\ = t}. It is clear that Q(t) = ft D C(t) is a half-circle for
every t > 0. Repeating considerations similar to those above we see that the sequence
(Cn) = (Q(tn)), for an arbitrary strictly-increasing sequence (tn), n e N, of points in
(0, oo) such that limn_oo tn = oo, forms a null chain of ft which represents a prime
end denoted by poo(ft).

In this way we construct for every domain ft in 2?~, in a unique way, a prime end

Let / be a conformal mapping D onto ft, this is, le t / € # y . By the prime end
theorem there exists a bijective mapping / of the unit circle T onto the set of all prime
ends of ft ([6, page 30]). Hence there is a unique ^ e T such that p<x(£}) = f (£<»).
We can also show that infinity is a unique principal point of the prime end /

3. An analytic characterization of the class of function convex in the negative
direction of the imaginary axis

3.1. In the proof of the main theorem, which analytically characterizes the class
tfV, we will need the following lemma.

LEMMA 3.1. Let (an), n € N, be a sequence such that an > 0, n e N, and

(3.1) lim(ala2---an) = 0.
n-»oo

Then there exists a convergent subsequence («„,), k € N, of the sequence («„).
Moreover 0 < lim*-^ ant = a < 1.

PROOF. Suppose that only finitely many elements of the sequence (an) lie in the
interval (0, 1], Then an > 1 for sufficiently large n, which contradicts (3.1). This
means that infinitely many elements of the sequence (an) lie in the interval (0, 1].
Taking a convergent subsequence (ant), k 6 N, of the sequence {an) completes the
proof. •

3.2. Now we will prove the theorem which says that every function / in the class
^ y , with Poo(f(®)) = / ( I ) , preserves convexity in the negative direction of the
imaginary axis on every oricycle Ot.

THEOREM 3.1. Let f be an analytic and univalent function in D. Then f e
= / ( l ) , if and only if f (Qk) e 2f~ for every k > 0.

PROOF. 1. Assume that / e ^ ^ ~ and ̂  = 1 corresponds to the prime end
Pooif (O)). For each t € (0, oo), let us define the function

(o,(z)=f'l(f(z) + it), zeB.
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Since / (D) is a domain convex in the negative direction of the imaginary axis,
/ (z) + it € / (D>) for every t e (0, oo) and z e O. Hence, from the univalence of/,
it follows that the function co, is well defined for each t e (0, oo).

For every domain £2 € 2f~, we select two points w0 G 9 £2 and u^ e £2, in the
following way. If £2 is not a vertical strip or a half-plane with the boundary straight
line parallel to the imaginary axis, then there exists w0 in 9 £2 such that the half-line
l[w0, n/2] \ [w0] lies in £2. Let wi e £2 be an arbitrary point lying on this half-line.

In the case when £2 is a vertical strip or a half-plane with the boundary straight line
parallel to the imaginary axis, let Wi e £2 be an arbitrary point and w0 e 9£2 be such
that Im W\ = Im w0.

Assume now that for the domain / (D>) the points w0 and W\ are chosen as above.
Of course l[w\, n/2] lies in /(D>). Let us fix t e (0, oo) and let us consider the
sequence (wn) = (w\ + itn) of points in l[wi, n/2] and the corresponding sequence
(z«) = (f~\wn)) of points in D, where tn = (n - \)t, n € N.

With the same notation as in the construction of a prime end for the domain in
the class 2f~, let C(tn) = [w e C : \w - wo\ = \wn - wo\] and let Q(tn) C C(tn),
for n € N, denote the crosscut of / (ID) containing the point wn. From the method
of choosing w0 and u^ we see that the conditions (l)-(3) are satisfied and (Q(tn))
is a null-chain representing the prime end />«>(/ (ID))). By the prime end theorem
(f~l(Q(tn))) is a null-chain in ID that separates the origin from f̂  — 1 for large
n. Since zn = f'\wn) e f~l(Q(tn)) and diana/"1 (£(*„)) -»• 0 for n -*• oo, we
conclude that limn-,00 zn = 1. Observe that co,(zn) =f~l(wn + «0 = z«+i- Let now

an = — —— , n 6 N.
l - | z » l

Hence
l-\C0,(Zn)\ l

for all n e N. Consequently,

- N l - l z a l 1-lzJ l -
vi ^ v( i a i (YT

By Lemma 3.1 there exists a convergent subsequence (anj , it e N, of the sequence
(an) such that 0 < lim^oo ant = a(t) < 1. Hence we conclude that there exists a
convergent subsequence (znj) of the sequence (zn) such that
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for every fixed t € (0, oo). In fact, in view of Remark 1.1, a(t) > 0 for every
t e (0, oo).

In this way, for each t e (0, oo), the function co, satisfies the assumptions of the
Julia Lemma. Hence, and by the fact that a(t) < 1 for every t e (0, oo), we have

(3.2) co,(Ok) c OoWt C Ok

for every k > 0.
Fixing now k > 0 we see from (3.2) that / ~' (/ (Ot) + it) C Ot, s o / (Ot) + it C

/ (Ot) for every t e (0, oo). Therefore, / (Ok) € 3f~ for every k > 0.
2. Let us now assume that / (Qt) e 2?~ for every k > 0. Since oo € 3/ (O*)

for every fc > 0 and/(D) = U*>o/(°*)' °° e 9/(D) and/(D) is convex in the
negative direction of the imaginary axis. Observe also that there exists a prime end
Poo(/ (O)) which corresponds to some point ^x e T. We need to show that £„, = 1.
To this end, let k > 0 be fixed and suppose that £» ^ 1. Let (Q(tn)), n € N, be an
arbitrary sequence of crosscuts of / (D) which represents the prime end />oo(/(O))
corresponding in a unique way to a point £«, € T, that is, (£?(';•)) is a null-chain of
/ (D>). By the prime end theorem (f ~l(Q(tn))) is a null-chain that separate in D the
points 0 from £*, for large n. Since £» ^ 1 and diam/-'(£('„)) -» 0 for « -> oo
we see that

(3.3) /-1«2('J)no* = 0

for large n.
On the other hand, / ( O t ) is in 2?', which implies that Q(tn) n / ( O t ) ^ 0 for

large « e N. This contradicts (3.3) and shows that £„, = 1 and p^if (D)) = / ( I ) .
The proof of the theorem is finished. •

Using Theorem 3.1 we are able to find an analytic characterization of functions in
the class

THEOREM 3.2. / / / € <«fr~ andpoo(f(D))=f(l), then

(3.4) Im{( l - z ) 2

PROOF. Let/ e tfy and p0O(/"(D)) = / ( l ) . By Theorem 3.1 the domain/ (Ot)
for every k > 0, is in the class -2*". This means geometrically that the function

(3.5) YkBz-+Ref(z)

is monotonic on the analytic arc yk = 3Ot \ {1} for every k > 0. We will use the
following parametrization of Yk

(3.6) yt : z = z(0) = ^ - p « e (0, 2TT).
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Hence in place of (3.5) we consider the function

(3.7) (O,2w)3 0-».Re/(z(0)).

We have

k2 , Mv2 4*sin2(0/2) / k

(0, 2n).

In view of the fact that the arc yk is positively oriented, the same is true of the arc
) , since / is a conformal mapping. Hence

(3.8) 4 Re/ <z<e» = Re

for 0 e (0, 2n), so (3.4) holds. •

Now we will prove the converse theorem.

THEOREM 3.3. Iff is an analytic function in D and

(3.9) I m { ( l - z ) 7 ' ( z ) } > 0 , zeB,

thenf € <#r- andPoo(f (D)) = / ( I ) .

PROOF. Let/ be analytic in D and satisfy (3.9).
1. If there exists a point zo € D such that the equality in (3.9) holds, then by

the maximum principle for harmonic functions the equality in (3.9) holds in the
whole disk D. This implies that there exists a real number a e R \ {0} so that
(1 - z)2f'(z) = a,zeB. This is satisfied only for the function

where b € C. In this case we conclude at once that /n(D>) is a half-plane with a
straight line as the boundary parallel to the imaginary axis. Hence f0 € tfy and,
as is immediately apparent, Poc(fo(®>)) = /o(l)- Observe also that in this case the
function defined in (3.7) is constant on every arc yk, k > 0, that is, every disk Ok
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is mapped onto the half-plane with a boundary straight line parallel to the imaginary
axis.

2. Assume now that in (3.9) strong inequality holds. Since / satisfying (3.9) is
close-to-convex with respect to the convex function

h(z) = -f^-, z e D,
1 -z

f is univalent in D ([5]).
Let us now consider again the function (3.7) defined on the analytic arcs yk :

dOk \ {1} for each k > 0, parametrized by (3.6). Repeating again the calculations
(3.8) we see that the condition (3.9) implies

^ R e / ( z ( 0 ) ) > O , 0e(O,27r).

This means that every positively oriented arc yk which is mapped by the function
/ satisfying (3.9) onto the positively oriented arc f (yk), k > 0, is the boundary of
the domain / (Ok) convex in the direction of the negative imaginary half-axis. By
Theorem 3.1, / € W' and p^if (D>)) = / ( I ) which completes the proof of the
theorem. •

The following theorems are immediate consequences of Theorem 3.2 and Theo-
rem 3.3 by applying them to the function / (z) = g(e~'Mz), z € O, where g e

and/

THEOREM 3.4. / / / e ^-f' andpoo{f{JS)') =f(ei>1), / i e i , then

(3.10) Im {eiM(l - e-^zff'iz)) > 0, ze®.

THEOREM 3.5. Iff is an analytic function in 0 and (3.10) is true for \x e R, tfie/i
/ 6 tfr~ andpoo(f(D))=f(el»).

4. Convexity in the positive direction of the imaginary axis

The results presented in Section 3 can be applied at once to the functions called
convex in the positive direction of the imaginary axis.

DEFINITION 4.1. A domain Q c C, Q £ C, will be called convex in the positive
direction of the imaginary axis if and only if the half-line l[w, n/2] is contained in
C \ £2 for every w e C \ Q or equivalently if the half-line l[w, 3n/2] is contained in
Q for every w e Q. The set of all such domains will be denoted by 2f+.
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DEFINITION 4.2. Let C&V+ denote the class of all analytic and univalent functions
/ in D such that/ (D) is in 2f+. Functions in the class ^y+ will be called convex in
the positive direction of the imaginary axis.

We can repeat exactly the construction as in Section 2 and find the prime end p M (Q)
for every Q e 2?+.

Finally, in view of at Theorem 3.1, Theorem 3.4 and Theorem 3.5 we can formulate
the following theorems.

THEOREM 4.1. Letf be an analytic and univalent function in D. Then f e
if (D)) = / ( I ) , if and only iff (Ok) € 2T+for every k > 0.

THEOREM 4.2. / / / e <tfy+ andpx(f (0)) = / (e'M), /x e K, then

(4.1) Im {e'M(l - «r"*z)2/'(z)} < 0, z € D.

THEOREM 4.3. Iff is an analytic function in D> and (4.1) is true for JX € R, then
f e W andPoo(f (D)) = / V " ) .

5. Remarks

The class of functions convex in the direction of the imaginary axis, denoted by
^y, was introduced by Robertson [7]. A function / , analytic and univalent in D,
belongs to ^y if and only if the domain / (D) is convex in the direction of the
imaginary axis, that is, [w\, w2] C / ( D ) for every W\ and w2 in / ( P ) such that
Re wx = Re w2. Robertson proposed an analytic condition to characterize the class
Itfy and proved it under some additional assumptions on functions in 'tf'V connected
with the regularity on the unit circle. In the papers [3] and [8] it was shown that the
Robertson condition is correct for the whole class *€y.

In fact, the classes c€y+ and ̂ y~ are the subclasses of the class ¥?y distinguished
by Hengartner and Schober [3], where also the analytic conditions (3.4) and (4.1) with
li = 0 were demonstrated.

We use the name convex in the negative or positive direction of the imaginary axis
following Ciozda [2], where she studied the so-called class Lo of functions convex in
the direction of the negative real half-axis. To be precise, a function / analytic and
univalent in P is convex in the direction of the negative real half-axis if and only if
for every w e / (D>) the half-line l[w, 0] is contained in / (P).
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