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Ice defortnation at the confluence of two glaciers investigated 
with conceptual tnap-plane and flowline lllodels 
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ABSTRACT. Using analyti ca l a nd numerical tec hniques, a two-dimensiona l (2-D ) 
m ap-plane model a nd a 2-D fl owline model are utili zed to elucidate the horizonta l a nd 
verti cal ice defo rma ti o n a t the confluence of'tlVo g lac ie rs. For a perfectl y symmetrical con­
flu ence, th e junc ti o n point of the two tributa ri es can be modeled as a no-s lip/frec -s l i p 
tra nsition. A stro ngly loca li zed surface depress io n d e \'Clops a round the juncti on po int, 
accompanied by t \\'O broad ly eleva ted zones positi o ned close to th e m a rg ins of th e tribu­
ta ri es facing the juncti on point. The confluence cen te r line is subj ected to hori zonta l lo ng­
itudina l ex tension a nd a transve rse compress ion. Th e compress ion genera ll y excel'd s the 
concomita nt lo ng itudina l ex tensio n in magnitude. D epth-integra ted ve rti ca l stra in ra tes 
a long th e center line a rc pos iti\'e (ex tcnsion ), but the st ra in-rate \'a ri a ti o n wi th depth d e­
pends criticall y on the type of basa l bounda ry conditi o ns at the g lac ier bed . For a no-slip 
bo und ary conditi on , ve rtical stra in ra tes change fro m positin' a t the surface to nega ti\'e 
c lose to th e base, whereas for a free-slip bound ary conditi on (p erfec t sliding ) vc rti ca l 
st ra in rates a rc pos itive throug ho ut th e depth . These theoreti ca l results arc compa red 
w ith fi eld measurem ents from U nte raa rgletseher, Bernese Alps, Switzerl a nd . 

INTRODUCTION 

On the basis of a recent experimenta l stud), done o n the co n­
flu ence a rea of Ullle raargletscher, Bernese Alps, Switze r­
la nd, it has been suggested (G udmundsso n a nd others, 
1997) th a t th e di stincti ve cha rac ter of th e strain-ra te regime 
o f a g lacier confluence is rela ted to: (I) an increase in ice 
thickn ess in th e fl o\\' directi on fro m th e juncti on po int to­
wa rds the center o f th e confluence: (2) a n o\'Cra ll cha nge in 
the mea n fl o\\' directi on of the two t r ibuta ri es as thcy enter 
the confluence a rea; a nd (3) a gcner aJ increase in surface 
ve locit y a long the center linc fi'om th e juncti on po int to­

wa rds th e confluence ce lll er.lo ga in a somewha t be tter un­
de rstandi ng of the 11 011' cha racte ri st ics, and to test these 
ideas against numerica l and a na ly tical models, two ra ther 
simple two-dimensio na l (2-D) co nceptua l model s a rc int ro­
ducedtha t foc us o n th e first a nd the third mechani sm s li sted 
abO\·e. The first m odel is a numerical fl oll'line mod el invo l­
\' ing ba la nces O\e r a longitud ina l verti ca l sec ti on running 
from th e juncti o n po i nt towa rds the cen ter of th e confl uence. 
This model is Ll sedto understa nd th e effect of inc reased ice 
thickness in th e fl ow directi on on the ice-dcform a ti o na l pa t­
te rn with depth. In pa rticul a r, th e ve rtica l stra in-ra te \ 'a ri a­
ti on with depth fo r different se ts of basa l bo unda ry 
co nd itions is il1\·esti gated. The second model is a m a p-pl a ne 
m odel of th e surrace a rea of th e confluence. It is used to c1u­
c idate the hor izo nta l stra in-rate pa tte rn caused by a no-slip/ 
free -slip transitio n a t th e ma rg in . 

It is clea r tha t the fl ow regime o f a confluence a rea must 
in ge nera l be exp ec ted to nu)' stro ng ly in a ll th ree spa ti a l 
dimensions, a nd o nc might th e refo re expec t 2-D m od els to 
bc of limited he lp in understa nd ing such a complicatcd 
three-dimensiona l (3-D) fl ow pa tte rn . 1 will, however, a r­
g ue t ha t mos t o f th e fl ow cha racterist ics of a g lac ie r conflu-

ence can be understood within the fr am e wo rk of simple 2-D 
model s. This is a n impo n a J1l obser vati o n because, am o ng 
o the r things. se nsiti\'it y studies can be ca rri ed out so much 
more easily with 2-D m odel s. On the o th e r ha nd, for a n ex­
ac t compa ri son of field meas urement s w ith calc ul ati ons o f 
fl ow based on Gle n's fl ow law, a full y 3-D m odel will ev i­
dentl y be needed. This type of compa ri son ca n be fo und in 
G udmund sson (199'.J.a ). 

The di sc uss ion is limited to conflu c nces for \\'hich th e 
t\\·o t r ibuta ries a rc m or e o r less simil a r in size. The point o f 
the g lac ier margins where the margina l zon es of the two tri­
buta ri es cO Il\'erge is !'efc rred to as th e juncti on point. Th e 
margins of th e conllue ncc conta ining the junct ion po int 
a re call ed th e " inner" m a rgins of th c conflu ence. T he m a r­
g ina l surficia l detritus o r th e inner m a rg ins merges a t th e 
junc ti o n point to fo rm the surface debri s of th e medi a l m o r­
a ine. T he two ma rg ins o f th e tributar ies, which togethe r 
form the m a rgins of'th e coa lesced g lac ie r, arc rcfc rredto as 
th e "o ut e r" ma rgins o rthe confluence. 

Thi s paper is d i\·ided into t\\·o ma in pa rts tit led " l1 ow­
line m ode l" a nd "m ap-pl a ne model". T he di sc uss ion of the 
m ap-pl a ne mode l is di v ided iJ1lo two furth e r sections, whic h 
clea l with the ana lytica l a nd the nume rica l so lutions of thi s 
proble m . For the fi rs t pa rt , a nd for each o f the sec tions of t he 
second pa rt. the rcs ult s a rc gi\'en a nd di sc ussed sepa ra tel y. 

FIELD EQUATIONS 

For bo th th e fl o\\'lin e a nd th c map-pl a ne m odcls th e fi e ld 
eq ua ti o ns a rc 

l'i.i = 0, 

O'ij.1 + pI) = o. 
(1) 

(2) 

whe re V, a rc the \T loe it y com poncnt s, p th e ice densit y, f; 
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the components of the body force, and (J ij the components 
of the Cauchy stress tensor. In the numerical ca lculati ons, 
Glen's fl ow law is used: 

(3) 

where Eij are the strain rates. The deviatoric stresses a rc 

( 4) 

and (J~1' the second ilwa ri ant of th e de\'iatoric stress tensor, 
is de fin ed as 

(5) 

where 8ij is the Kronecker delta. The analytical m odels are 
onl y \'alid for a linear medium where n = 1. The notation is 
summari zed inTable I. 

PART I: FLOWLlNE MODEL 

Motivations and model definition 

wleasurements in borcholes drill ed at the confluence a rea of 
Unteraargletscher of the \'e rtica l d isplacements of magnetic 
rings over time re\'ealed surpri singly complicated \'aria­
ti ons in verLica l strain rates w ith depth (G ud m undsson and 
oLhers, 1997). The vertical stra in raLes a re p ositive (exten­
sion) at the surface, but st ron gly negati\'e (co lTl.pression) at 
the base. This type of \'e rLical stra in-rate va ri a ti on is con-

Table 1. List rifsymbols 

I (/riabte 

A 
A(k) 
B (!.) 
e(k) 
D(k) 
d 

n 
p 

P 
T 

\I,. Vz 
/I, 

.r. y, Z 

Zh 

n 
(\ 

,J 
O'j 
h 

D esrrijJlioll 

G len law pa ranwtc r 

I Illcgration funct ion 
rn tcgrat ion fUlln ion 
I lllcgration funCt ion 
I nlcgratioll fUIlCliol1 

G lac ier half-widt h 
~oll-cli 1l1ens iol1a l stra in rate 
Acceleration due to gra\" it y 
\ " .,\"Cnumber 
G len law exponcnt 
Non-d imensiona l pressu re 
Prcssure; ]J := - 1/ 3u" 
~on-clilllCn s io ll a l tinl C 

Timc 
i':on-dinu'llsional n ::loc iti cs 
Com ponents of \"Cloc it )' \ 'cctor 
Spa t ia l coord inatcs 
\ crt ica l position of g lac ier bed 
Surfacc slope 
Defi ned as (\ := eA-

D efi ned as ,j:= c- k 

Kroncckcr de lta 
Defined as h := ke- A­
C0111ponents o(" 'i l ra in- ra tf' te nsor 

Viscos ity 
Defi ned as i := kcA-
\ "a\"(' lcng th 
Spccili c density 
:\ol1-ci imcnsiollal stresses 
Second de,"iaLOric stress i 11 \ "£1 riam 
Components of stress te nsor 
Components of dev ia to ri c stress tensor 
D ri\' ing strcss: T := pgd sin Cl 

1'lIil 

Pa /1 S I 

m 

ill S 
I 

m 

Pa 

ill S 

III 

m 

Pa s 

III 

kg III 'I 

In the d isc uss ion of the analyt ical so lut ions or the ma p-pl ane problem fo r 
n = 1, all varia bles are dimcnsio nl ess. includ ing the \"a ri ables .1' . y, k, Il.r 

and L'!J' 
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siderabl y more complicated than the constant, or linea r, ver­
tical strain-rate depth profil e oft cn used in the glac iologica l 
literature (e.g. Pa terson, 199+), a nd it is, hence, ofi11lcres t to 
know what facto rs are responsibl e for thi s complicated 
stra in-rate profile. 

In the following, I will a rg ue that - at leas t if hasa l 
velocity is of seconda ry imporLance to ice creep - thi s type 
of ve rti cal stra in-rate vari ati on occ urs wheneve r the ice 
thickness increases in the lIo\\' direc tion. It is the Lhickness 
increase together w iLh a partic ula r se t of bounda ry condi­
ti ons which gives ri se to thc observed strain-rate variation. 
This type of vertica l strain-ra te pattern is therefore not lim­
iLed to a conflue nce a rea, but the long itudinal secti on a long 
the center line of a confluence is a region where it must be 
exp ec ted to be esp ec ia ll y pro nounced. 

To exemplify Lh e effect of a n increase in ice thickness in 
the fl ow d irection on the \'crtical stra in-rate vari a tion, a 
sinusoidal-shap ed bed-line is employed as a conve nient 
ideali zation of the bed geometry. The a na lysis of the fl ow is 
fac ilita ted by the fac t that ana ly tical solutions, which were 
d e rived for n = 1 a nd the limiting case ak « 1, where k is 
the wavenumbe r (Nye, 1969; K a mb, 1970; YIorl and , 1976; 
Gudmundsson, 1997a ), take a pa rticul a rly simple fo rm for 
t hi s type of bed-line geometry. 

For numerica l calcul ati ons of the fl ow for n ol I and a 
finite a, the genera l-purpose FE p rogram ~IARC was used. 
A desc ri pti on of the mesh ge nera tion, the testing of the FE 
program, and numerical error estim ates are given in Gud­
mundsson (1994a). Tlw fl ow was ca lculated for both no-slip 
a nd free-slip bo unda ry conditions. T hese two bo unda ry 
conditions represent two different limiting situations of no 
a nd p erfect basal sI iding, respectivel y. 

Results from flowline model 

Fo r a large numbe r of sinuso ida l bed-lines with different 
a mplitude-to-wa\"Clcng ths rati os, the fl o\\' field was cal­
cul ated for boLh no-slip and free-slip boundary conditions 
a nd for diflcrent va lues of n. For the current pu rpose it is 
not necessary to g ive a systematic oven 'iew of all the differ­
ent resulting fl ow fi elds. Only the genera l pattern of flow is 
o f interest here, a nd Lhe results will be illustrated by sh owing 
calculated vertical velociti es and ve rtical strain rates [o r onc 
p a rticul ar mode l. 

Figure la shows numericall y calcul ated vertica l veloc i­
ties for a free-slip fl ow, The values of the model pa rameters 
(ampli tude a and wavelength A of the bed profil e, m ean ice 
thickness h and surface slope (X ) a re g iven in the fi g ure cap­
ti on. The ori enta ti on of the coordinate system is sueh Lhat 
the x ax is is pa r a ll el, and the z ax is p erpendicul a r, to the 
m ean surface. The bed-line, as a fun cti on of x, denoted 
by Zb(X) and is g ive n by 

Zb(X) = asin kx, (6) 

vl·here a is the a mplitude and k the wa\·enumber. Only a 
p a rt of the FE m esh, which has a height and a width of ten 
times the waveleng th A, is shown. 

An analytica l solution of Lh e fl ow va lid to second o rder 
in ak, and [or n = 1 (Morl and 1976, G udmundsson 1997a), 
shows that maximum vertica l velociLies a re found a lthe bed 
a t the points o f m aximum slope, a nd maximum vertical 
strain rates a re situated at kz = 1 in the limit ak --+ O. The 
vertica l strain ra tes, Ezz, are there fo re positive throughout 
the glacier depth where the ice thickness increases in the 
fl ow direction, and everywhere negaLi\'e where the Lhickn ess 
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a e 
[m/a] [m/a] 

16.0 0.640 

12.8 0 .512 

9.60 0.384 

6.40 0.256 

3.20 

0.00 

-3.20 

-6.40 

-9.60 

-12.8 

-16.0 

b d 
[l/aJ [1/aJ 

2.10 0.1 

1.68 0.8 

1.26 0 .6 

0.84 0 .4 

0.42 0 .2 

0.00 0.0 

-0.42 -0.2 

-0.84 -0.4 

-1 .26 -0 .6 

-1 .68 -0.8 

-2.10 -1 .0 

Fig. I. ( a) alld ( c) Vertlcal l1elocitiesJorJree-sIiJ) and lIo-slil) bOlllldC/1~v conditions, respect iz'e(y. ( b) alld ( d) T'nt ieal straill rates 
JorJref -slil) an d Ilo -sll)) bOll lZdm)1 conditions. respective(JI. The 1I10del parameters are: CL = 2 Ill. A = 20111. h = 200 111 , 11 = 3. 
alld pg sin Cl. = 8 . .9.9577 x /0 :; bar 11/ I r floei ties are ill m a I r1 part qf the FE mesh is JiIOl( 'lI ill ( a). T he gelleralJ7ol1.' 
direction isJroll7 left to right. 

d c-c reases. The numericall y ca lcul a ted I'ertica l ycl oc it y fi eld 
( Fig. la ) exempl ifi es thi s behavior. Figure I b depicts vertica l 
stra in ra tcs fo r the samc model as Figure la, and it ca n be 
seen th at IEoo l has two max im a, which arc situ a ted some­
what abO\'C the bed where the bed-slope is la rgest. 

For the no-slip bo unda ry condition the res ulting yclocit y 
a nd stra in-ra te field s (Fig. le a nd d ) a rc quit e diffe re nt than 
fo r free-slip bounda ry conditi o ns (Fig. la and b). Th e ITrLi­
cal I'eloe iti es now reach their m a ximulll I'a lues no t a t the 
bed-line, as in Fig ure la, but som ewhat abO\ 'e the bed. The 
reason for thi s is quite simpl e. A s onc proceed s in the z 
directi on from the surface towa rds the Ice side of the peak 
o f the sinusoida l cun'C, the dip of the I'eloeit )' vec tors 
changes gradually a nd approaches the dip of the bed-line. 
This res ults in increasingly la rge ITrtical veloc iti es with 
depth. Because o f the no-slip bo unda ry conditi o n, vertica l 
I'elociti es (vJ must, however, be zero along the bed-line, so 
that Vo el 'entua ll y dec reases again as the bed-line is 
a pproac hed. The result is a zone o f strong l'Crtica l compres-

sion in the I'icinit y o rthe bed-line belo w a region ofpos iti' 'C 

ITrti ca l strain ra tes. \\' here the glac ier ge ts thinner in the 

now direct ion, the situa ti on ITI'Crses. Thus, it is the no-slip 

bounda ry conditi o n, toge ther with the , 'a rying glacier 

thickness, which fo rces a rel'ersal in the strain-ra te regime 

from ex tens ion/compress ion towa rd s compress ion/exten­

sion wit h increas ing depth. The exae t bed geome try is 

expec tecl to change o nl y the amplitude o rthe "cloc it )' I'<:l ri a­

ti o ns a nd their ex tent, but not the m a in characteristi cs o f 

the ve rtica l strain-ra te va ri a ti on. (This sta tcment is, ho w­

eye r, incorrec t fo r l 'C r y la rge I'a lues o r the a mplitude-to ­

waI'c1 ength rati o (G udlllundssoll , 1997 b).) ~o system a ti c 

st ud y was done on how the position o f the max imulll o f v : 

(Fig. le ) depends o n cha nges in roughness or material pro p­

erti es. A felV calcul a ti o ns with cl iffere nt va lues or n a nd ok, 

however, showed th a t with increas ing n a nd (( /': the max i­

mum 1ll 00'CS towa rds the bed. 
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Discussion 

The no-slip bo undary condition, together with increas ing 
ice thickness a long the flow di rection, gives rise to a vertical 
strain-rate pa ttern that is qua lita ti\"Cly the sam e as that 
measured on Unteraa rgletseher (Gudmundsson a nd others, 
1997). There, vertical strain rates (Eoo) were positive at the 
surface, inc reased somewhat with depth , and then changed 
from positi\ '(" va lues to negative ones close to the bed. 
Because the actual fl ow ficld is expected to vary in a ll three 
spati a l directions, there will in evitably be some devi ations 
from the pla ne-strain-rate situation, causing some addi­
ti ona l compl ications that cannot be full y add ressed with this 
simple conccptual 2-D model. For a quantita tive compari­
son a full 3-D modcl is needed. Still, this simple 2-D model 
gives a plausible explanation of the measured sign reversa l 
of Eo: at a depth of about 220 m. It also cla rifies the effect 
that changes in ice thicknesses have on ve rtica l stra in-rate 
va ri ati ons, which is helpful in identifying the causes of un­
expec ted fl ow perturbations seen in more complicated 
modcl s. The results also sugges t that during the m easure­
ment period (second half of September 1991) the bed eoncli­
ti ons were closer to no-slip tha n free-slip in spite of the fact 
tha t obser vations of tempora l velocity \'a ri a tions demon­
strate tha t some sliding took place. 

PART II: MAP-PLANE MODEL 

Motivation and model definition 

"Measurements of the drforma tion of surface ice at the 
glacier confluence of Kaskawul sh Glacier, Yukon Territory, 
Canada (Brecher, 1969; AnderLon, 1970), a nd Ullleraar­
gletscher, Bernese Alps, Switzerland (Gudmundsson and 
other , 1997), have shown the center lines of these glaciers to 
uc subj ected to a longitudina l extension and a tra nS\'e rse 
compression. In the following, I will argue th a t thi s defor­
mati ona l pa llern can be considercd to be a conscquence of 
the abrupt cha nge in bounda r y conditions a t the junction 
point, and tha t the effect of this change in bo undary condi­
ti ons on the fl ow fi eld and the surface topography can be 
understood within the framework of a relatively simplc 2-D 
map-plane model. 

Margin a l ice entering a confluence along its inner mar­
gins experi ences an accelera tion as it passes the junction 
point. There is a lso a sudden cha nge in bounda r y conditions 
at this point. Along thc margin, boundar y conditions a re of 
the no-slip type. to r a symmetrical confluence, no shea r will 
act on the center line and, if wc further assume infinite 
glacier thickness, onc could theoretica ll y put a perfectly 
lubricated verti cal plane along the center I i ne without af­
fecting the veloc ity or the stress fi elds. The "bo undary" con­
ditions along the cenLer line a rc thus of the free-slip type. 
The junctio n point of the sli ced a rea can be considered to 
mark the tra nsition from a no-slip to a free-slip boundary 
condition. 

In the modcl, I assume tha t the confluence is perkctly 
symmetrica l a nd infinitely thi ck. The assumption of infinite 
thi ckness restri cts the applicabi I it y of the results to those sec­
ti ons of a pa r ticular confluence where the ice predominanrly 
experi ences resistance from rhe margins rath er tha n from 
the deeper-l ying secti ons of the bed. The angle be tween the 
two identica l tributari es is se t to zero. There is therefore no 
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prescribed cO I1\ 'C rgence of fl owlines. Thickness cha nges a re 
ignored and plane stra in conditions ass umed. 

Previous work 

Flow ac ros a no-slip/free-slip transition has been studied 
th t"oretica lly by Hutter and Olunloyo (1980, 1981) a nd Ba rci­
Ion a nd MacAyea l (1993). Huller and Olunloyo found the 
norm al and shea r stresses to be sing ular ac ross the tra ns­
ition point. Barcilo n and ~IaeAyeal confirmed a nd cor­
rec ted prev ious '-es ults. They found singularities in shea r 
stress and pressure a t the point of transition. The sing ula rit y 
in pressure represented an inconsistency with the ass ump­
tions made, causing first-order pressure to exceed the zer­
oth-order pressure. They therefore concluded that the 
problem remains open and unsolved. Consequentl y, this 
probl em must (a t leas t for the time being) be so h-cd nu­
merically, which is done below for some specific cases. How­
e\'er, before proceeding to the di sc uss ion of the numerical 
solution, the properti es of a closely rela ted problem, which 
can be soh-cd ana ly ticall y, will be di sc ussed. 

Sirnplifications which lead to an analytically solvable 
problem 

Pa rt of the difficu I ty in soh-ing the no-sI ip/free-sl ip trans­
itio n problem 1 ies in the fact that a long a sec tion of the m ar­
gins the \'elocities a re prescribed (i. e. se t to zero), but on the 
rem aining section the shear stresses a rc fixed. If only 
\ 'elocity vari ations a long the interface were to be prescribed, 
the a nalytical solution of the co rresponding problem would 
be straightforward . 

The velocity \ 'a ri ati on along a confluence ce nter line 
wi 11 to some ex tent be determined by fac tors not incorpo­
r a ted in the 2-D map-plane model, such as surface inclina­
tion a nd bedrock geometry. Hence, even an exact solution of 
the no-slip/free-slip problem would be only pa rtia ll y a pplic­
a ble to rh e physica l problem conside red. From a n observa­
tional point it is o f some value to be able to ca lcul a te the 
\ 'clocity fi eld of the confluence for a g iven \'clocity \'aria tion 
a long the center line, whcre the genera l shape of the pre­
scribed \'elocity va ri ation is based on fi eld measurem ents. 
This problem, where the \'clocity a long the center line is a n 
input and not a n o utput, has thc g rcat ad\'antage O\'er the 
no-slip/free-slip tra nsition probl em of being, at least for a 
linea r \'iscous fluid , exactly solvable. 

The geometrica l shape and the bo undary conditions of 
Lhis simplifieclmodcl a rc shown in Fig ure 2. The a na ly tical 
solution is give n below. 

Fig. 2. An infinite strip of highly viscous material. The two 
sets of bounda1J1 conditions /l sed in the text are shown. The 
thick lines represent the glacier boundmy, and the dashed line 
the £'enler line if a conce/Jtlla / corifluence. Only the lower half 
ofthepelJectly symmetrical conjluence is shown.] denotes the 
junction /Joint. The origin of Ihe coonlinale sptem is on the 
lower boundary direct!)1 below tizejunction point. 
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ANALYTICAL SOLUTION OF THE SIMPLIFIED MAP­
PLANE MODEL 

Rheological assumptions and field equations 

Equati ons (I ) (3) a rc non-dimensiona li zed by sca ling the 
velociti es Vi, the stresses O"ij, a nd th e time t with "natural" 
qua llliti es of the model. For non-dimensiona l variabl es 
upper-case le tters a re gener a lly used. 

Because the width of the cha nn el in the downstream 
direct ion o f th e conOuence is 2d, d is th e na tura l leng th 
sca le. The a na lytica l solutions fo r the \'eloc it y a nd [he shear 
stress of a n infinitely deep ch a nnel of uniform width 2d a re 

Ty 
T/"!J= - d ' (7) 

_ 2AT"d ( _I Idl//+1) 
V.1" - 1 Y , 

n+ l 
(8) 

where T := pgd sin (1;, a nd a is the surface slo pe. The stresses 
a rc scaled with T . A scaling fac to r [o r t can be defin ed as the 
time it ta kes [or the strain at the wa ll to reach the \'alue 
unit y. H e nce, the foll owing sca lings a re used: 

Xi = dX i . O"ij = TL.ij . P = TP. and t = (AT")-l T. 

(9) 

The non-dimensiona l \-c loc ity V; is defin ed by 

x·;jX i Ad // V 
Vi = t i T V; = ,T i 1 

(10) 

a nd th e no n-di mensional strain ra tes Eij a re g iven by 

T. . 
€i) = t E ij = AT"Eij. (11 ) 

The max imum \'a lue of V, is 2 (n + 1) - 1. In two dimen­
sions, th e non-dimensiona li zed field eC]u a ti o ns a rc then 

(12) 

(13) 

(14) 

a nd G len's Oow law ca n be written as 

E' .. - " I (11 - ' )/ 2" , 
I) - un ui.J ' (15) 

For 11 = 1 the constitutiye eC]u a ti on is Eij = L.;) = 
L.'.J + P Dij, which if substituted into th e mom entum equ a­
ti on a nd the equa ti on of continuit ), leads to 

a1l\ a1i} · 
oX + 8Y = O. (16) 

t (02V\ 82V\') oP 
2 OX2 + 8y2 = oX - 1 , (17) 

1( 02 11i ' 821i}.) oP 
2 0X 2 + 8Y 2 a1" 

(18) 

Solution technique for 11 = 1 

For 11 = 1, Equati ons (16)-(18) can be soh-cd fo r a n infinite 
strip with presc ribed \-c loc ities a long th e bo unda ri es. Only 
fi eld pel'turba ti ons (i. e. a nom a lous fi elds) resulting [rom a 
presc ribed \ -c loc it y anomaly at the bound a ri es a rc consid­
ered here, a nd th e pa rt of the Oow th a t is direcd y gra\'ity­
dri ve n i, ig no red, beca use it will simpl y add linearl y to th e 
perturba ted veloc it y di stributio n. Lower-case letters will 
no\\' be used , a nd it is to be understood tha t a ll \ 'ari ables 
a rc dimensionless. 

Fo urier tra nsfo rmati on of the field equ a tions with 

res pec t to X lead s to 

[)2 VJ.(I.:. y) 2 ( 
21I.:p(k. y) + a? - k V.I' 1.:. y) = o. 

y-
(19) 

- 2 ap(k, y) a
2
vy(k. y) _ 1.2 ( 1. ) - 0 

8 + "'? n; V'I n; . Y - . y uy- . 
(20) 

-I I.:V.( 1.: y) + 8v!J( I.:, y) = 0 
.1' Dy 1 

(21) 

whe re the Fouri e r tra nsform is de fi n ed as 

+:x: 

f (k) = .J f (x)c ,k
.1' cl.I'. (22) 

-:xc 

a nd L is th e imag in a ry uni t. With the help of Equ a ti o ns (19) 
a nd (21), p(l.:. y) can be expressed as a function of vy(k. y), 
a nd th at expression substituted into Equa ti on (20), resulting 
in o nc homogeneo us linea r diffe renti a l equation of fo urth 
o rder [o r V y(k, y ): 

D'vu(l,; , y) _ 2k202Vy(k. y) + k i ,(k ) = 0 (23) ay" ay2 1 y . Y . 

This differenti a l equation can eas il y be soh'Cd. The solution 
IS 

v!J( k, y) = [A( k) + B(I.:)/.:y] eky + [C( k) + D(k) ky] e- kll
. 

(2-1) 

where th e integra ti on functi ons A (k), B (I.: ), C( I.: ) a nd D (/': ) 
a re to be detenni ned through th e bo unda ry condili o ns. The 
so lutions fo r vy( k, y), p(l.: , y) a nd the stresses can a lso be 
d e te rmined in terms of the integra ti o n ["uncti ons. 

The bounda r y conditi ons a rc 

(1,(10.0) = vy(l.:. 0) = uy(k. l ) = 0, (25) 

a nd 

v,(I.:.l ) = - Iu/(k), (26) 

where -LV./(k) is the FOLlri er tra nsform of V./" (:r, 1), which 
is the appli ed ve loc ity perturba ti o n a lo ng the center line. 

Solving th e res ulting system o f equa ti ons lead s to 

( ~~~j ) = v./(k) (& ! f; 2 2{; ) 
C(k) (&-J)2- 4i 8 -Dti . 
D(I.:) -& + P + 2i 

(27) 

\\·he re th e following abbrc\'ialio ns h m'C bcen used: 0. := cA-, 
i3 := c- h', i := lock, a nd g := kc- k The solution procedure 

is expla ined in m orc deta il in G udmund sson (1994a). The 
so lutions for the velocity and stra in-ra te perturba ti ons do 
no t depend on the \'alue of the (linear ) yiscosit y. 

Beca use of the linea rity of the diffe renti a l equ a tions, th e 
sum of the solutio ns corresponding to two differe lll center­
line veloc ity \'aria tions can be supe rimposed to g i\'C th e 
so luti on 0 [" th e combined \'C loc it y \·a ri a ti on. To understa nd 
the genera l pro perti es of the solutio ns, it will therefo re suf­
fi ce to consider the effec t of some pa r t icul a rl y simple typ e of' 
\ 'Clocit y perturba tio n. A ha rm onic \ 'Clocit y \'a ria ti on is th e 
m ost logical choice, as it produces a no ma lous ve locit y field s 
o f the same fo rm a nd frequency. 

Results derived from analytical solutions 

The res ults can be understood m os t easil y by co nsidering 
the \'Cloc it)' a nd the press ure field in (k . ,I)) space. to r a n 
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illustrative example of the velocity a nd pressure fi elds in 
(x , y) space see G udmu ndsson (1994a ). 

Longitudinal velocities 
Figure 3a shows the square root of the power sp ec trum of 
the longitudinal velocity vx(k, y), for 0 :::; k :::; 47f a nd for 
vA k, 1) = 1. No te that the bounda ry conditions fo rce 
v.,(k. y) to be equal to unity along the y = 1 bounda r y, and 
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Fig. 3. Square-root power s/Jectrum cif the anomalous longitu­
dinal velocity vr(k, y) (a), the transversal velocity vy(k , y) 
( b), and the /mssure distribution p(k, y) ( e). 
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zero for y = O. The change in relative phase shift of the long­
itudinal velocity fi eld with respect to a prescribed ha rmonic 
veloc ity yari ati on along the y = 0 bounda ry is ind icated 
through the sign of the labels and the style of the contou r 
lines in th e fi gure. Positiye values and solid lines indicate 
that fo r some par ticula r value of x , vAx, y) points in the 
same d irection as v.,.(x, 1), and negative va lues and das hed 
lines tha t the ice is fl owi ng in the opposite di rection to th e 
app lied center-line velocity pertu rba ti on. It can be seen 
from the figure that th e anomalous velocities in troduce a 
flow r ecirculation which is superimposed on the general 
flow field. T hi s recircul ation is found for all values of k. 
T h e dividing line in (k , y) space, which m a rks the sepa ration 
from down-glac ier fl ow to up-glacier fl ow as one proceed s 
from the center line (y = 1) towards the outer bounda ry of 
the confluence (y = 0), is draw n as a thi ck solid line. 

The transverse ex tent of the reci rcul a ti on zone depends 
strongly on k. It is la rgest for k = 0, andthc di viding lin e is 
in this limit situated at y = 2/3, as can b e found by calcul at­
ing the limit of v.r( k, y) as k..-., O. Fo r at least two-thirds of 
the g lacier cross-sec tion, the di rection of the anomalous 
velocity fl ow is then opposite to the d irection of the ma in 
flow. This will reduce the maximum velocity of the flow up­
stream of the junction p oint and shift it towards the center 
line. For la rge-waveleng th velocity components thi s reduc­
tion is about 30% of the amplitude of the center-line 
velocity perturbation, but it decreases w ith increasing k. 
For k ---+ +00 the sep a ra ti on line approaches asymptoticall y 
y = 1. 

y,°ansveTse velocilies 
The squa re root of the p ower spectrum of the anomalous 
tran sverse velocity can be seen in Fig ure 3b. The transverse 
velocity is 90° out of phase with the longitudinal ve locity. 
H ence, in the (k, y) sp ace the m ax imum amplitude of 
vy(k, y) is obtained a long a line which corresponds to the 
minimum of vx(k, y). This line, which was earlier referred 
to as the separation line, is drawn in Fig ure 3 b as a thick 
solid cun·e. The m ax imum of the transyerse velocities is 
always obtained within one-third of the glacier width 
because the separati on line is at y ~ 2/3 fo r a ll values of k. 

\IVi th increasing k the amplitude of v y( k, y) increases, 
while the transve rse extent decreases. H ence, the max imum 
of Vy (k, y) moves towards y = I , a nd becomes more 
local ized , causing la rger veloc ity g radients. Because 
limy~l 8vy(k.y)/8y = k, a ll strain ra tes go linearly to 
infinity with k. In the high-frequency limit, a ll strain rates 
a re infi nite and localized at y = 1. This comes as no sur­
prise, as in thi s limit velocity gradients are effec tively forced 
to become infinite by t he boundar y conditions. Although 
these singularities resem ble somewha t those resulting from 
the theoretical treatment of the no-slip/free-slip problem by 
HuLLer and Olunloyo (1980, 1981), no compa ri son can be 
m ade, because the two problems are funda menta lly differ­
ent. In the treatment of Hutter and Olunloyo the singula r­
ities a re predicted , whereas here the singul a riti es are in 
essence prescribed. 

Transverse veloci t y p erturbations can be a substanti a l 
fracti on of the center-line \·eloc ity perturbation, and they 
will accordingly cause a ma rked convergence of the now­
lin es, resul ting in a transve rse compression close to the 
cente r line and extension elose to y = O. It is important to 

reali ze that this conve rgence takes place although the two 
a rm.s of the confluence run para ll el to each other. 
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Pressure distribution 
T he press ure d ist r ibution is of interest b ecause lines o f cons­

ta nt pressure w ill correspond, to so m e ex tent, to conto ur 
lines on the g lacier surface. Figure 3c g i\'es th e pressure as 

a function of k a nd y. There is a p ressure d rop a lo ng the 
cem er line for those sec tions whe re the appli ed ycloc ity 

increases in the fl ow direction. " ' here th e \ 'elocit y decr eases, 

the situa tion reye rses. The amplitude of this surface d epres­
s ion is la rgest whe re tlIe \'c1 oc it y inc reases fas test, which 

ge ne ra ll y is close to, or a t, the j u nct ion p o int. 

The pressure d rop depe nds st rong ly on k. It can be 

show n tha t p( k. 1)/p(k. 0) - 00 as /,; ---> 00, representing 

a n infinite press ure drop. A simila r press ure drop near the 
tra n siti on from no-slip to free-slip h as bee n predicted o n 

theore tica l grounds by Ba rcil on a nd M acAyca l (1993, lig. 
6). The 10ng-wa\ 'C' lcngth li m it is: p(k.1)/p(I.;, 0) ---> 1 as 

k ---> 0, in which case the pressure d rop is a lmost constant 

ac ross the widl h ofth e g lacier. The sp a ti a l ex tel1l o f th e sur­

face depression is q u ite I imited for m od er ate to hi gh k val ues 

(Fig. 3c). A sha rp ly d efin ed surface d epression of thi s typ e 
can eas il y be see n on U nteraa rgletsc he r as well as on numer­

o us o ther confluences. 

Discussion 

Ba li se a nd R ay m o nd (1985) inyes ti gated the transfe r o f 

basa l vclocity perturba ti ons to th e surface for a linea r m ed­
ium . Their approach bea rs strong simi la riti es to th e soluti o n 

a pproach desc ribed a bO\'C' . They too fo und th e a nom a lou s 

ve loc it y to rec ircul a te, but, contra r y to wh at is obscryed 
hnc, onl y for a ce rt a in range of k \·alues. Only short wa \ 'C' ­

le ng th s, less tha n a b o ut 5.2 times th e m ean ice thickness, 

lead to recircul a ti o n. Thi s difTc rence is caused by th e diffe r­

ent bound a ry conditi o ns at y = O. Ba lise and R ay m ond 
(1985) used a free-surface bound a ry condi tion a ll owing the 

surface to reac t in such a way as to compensa te fo r the m ass 

tra nsfe r ca used by the \ 'elocit y pe rturbation (a ltho ug h the 
surface was not a llowed to e\'o lve with time), Because o f 

the no-slip bound a r y conditi ons a t y = 0 applied here, th e re 

is no free surface, a nd intern a l fl ow must se t up a rec irc ul a­

ti on to counterac t the m ass transfe r a t y = 1 a nd to en sure 
m ass co nserva ti o n. 

Th e linea r so lutio n of th e m ap-pl a ne problem re\ 'C'aled 
th a t a long itudi na l ex tension a nd a concomita nt tra n sve rse 

compress ion is a direc t res ult of the cha nge in bo undary 

conditi ons a t the j unc ti on point. A converge nce of the two 
tributa ri es is not need ed to produce thi s type of stra in-ra te 
regime. 

from the sha p e o f the pressure di stributi on it ca n b e con­
c1udcdthat if th e cent (T-l i nC\'C loc i t y inc reases with ,r ( \Vh ich 
i . genera ll y the case fo r a connuence a rea ), the surface (, Ieva­
ti on is higher a round y = 0 tha n a ro und y = 1. The a mpli­

tu clc a nd spati a l extent o f thi s surface depression de p ends 
prim a ril y on th e m ag nitude of th e ve loc it y gradi ents a lo ng 

the cent er line. No te tha t the down ward slope from the o ute r 
bo unda ri es of th e conflucnce to\\'a rd s the junction point is in 

fact needed to dri ve the tra nsverse fl ow seen in Fig ure 3 b. 
Superimposed o n the genera l slope of the g lacier, thi s a no m­

a lo us surface cha nge causes the conto ur lin es to tilt some­

wha t toward th e confluence. Tilting o f thi s type can be seen 
on Unteraa rg letsehe r. Anden on (1970) observed a simil a r 

conve rgi ng offl owli nes just below the confl uence of the north 

a nd th e centra l a rm o f K as kawul sh Glacier and, appa rentl y 

co rrel a ted, changes in surface slope. 

NUMERICAL SOLUTION OF THE MAP-PLANE 
MODEL 

Geometrical assumptions, boundary conditions 

A number of interesting conclusions a bo ut the ge nera l sur­

face fl ow p attern of a confl uence could b e d rawn from the 

a na ly tical so lution valid fo r n = 1. Tt is the re fore of some im­
porta nce to sce to wha t ex tentlhese findin gs remain qua lita ­

ti\ 'Cly co rrect for a non-linea r materi a l b eha \'ior and fo r a 
no-slipJfj-ee-sli p transition bounda ry conditi on, in which 

case the \ 'elocit y a long th e center line is a n output o f th e 
co rresp o nding model a nd not simply ass umed, Thi s 

problem must be soh -cd numerically, a nd fo r that purpose 

the FE program fv1A R C w as utili zed. 
The coo rdinate system used is the sam e as tha t of 

Figure 2. The 10\l'e r le ft a nd up per right co rn ers of th e m od el 

have the coo rdinates (-5 .0) a nd (5, 1), res p ec tively. Al o ng 
the low er bound a ry (y = 0 ), a nd a long the upper bound a r y 

upstream of the junctio n p o int, a ll \'eloc iti es a rc set to ze ro. 

The junc ti on point is a t (.1'. y) = (0 . 1). Along the cente r 
line, th e ice is a llowed to m o\'C fj 'ecl y in the l' directio n. 

Across the righth and bo undar y (Fig. 2), a ll \ 'C lociti es a re 

se t equa l to the \'eloc iti es o f the corresp o nding nodes a lon g 

the lcfth a nd bo unda ry. H e nce, the mode l is p e riodic, with a 

period o f IQ a nd width I. The main adva ntage of using a 
peri odi c bo unda ry conditi o n is th at no ass umptions a bo ut 

the \'el ocit y profile o r the stresses a lo ng th e trans\'er se 
boundari es need to be m a de, Note tha t beca use th e uppe r 

right corner of the m od e l is in effect the same point as th e 

uppe r left corn er, th e re arc actua ll y two juncti on points 

\I'ithin the model, lying 5 uni ts apa rt. 
The leng th of'th e nu m e ri cal model must b e la rge enoug h 

for a full y del'c loped Po ise uille fl ow to be es tabli sh ed 

be t wee n its two j unc ti o n points, The d e\ 'Clopment o f 

lamin a r fl oll' in th e ent ra nce of a duct bea rs so me simil a rit y 
to th e idea li zed co nflu e nce. La minaI' entry-leng th solutio n s 

ca n b e fo und in th e lite ra ture fo r circul a r a nd non-circul a r 

ducts a nd pa ra ll el pl a tes. Sha h and Londo n (1978) g ive th e 

followi ng ex pression fo r the entrance leng th: 

0 .6 
XI ;::::; + 0.056 R c, 

~ 1 + Q,035 R c 

\'alid within ±2% fo r m a ny duct sha pes, where Re is th e 
Rey nolds number, The e ntra nce leng th is defined as the di s­
tance from th e entra nce a t which th e cente r-line \ 'C loc it y 

agrees to lI'ithin 99% w ith tha t of th e full y devcl oped Po i­
sc uille fl ow. For creeping fl ow, R c;::::; 0 so th at X L;::::; 0 .6. 

The dista nce of 5, from o nc junction p o int to the nex t, ca n 
there fore be co nsidered sufTi cient. 

The use of peri odi c bo unda ry conditi o ns a ffec ts the 
magnitude of the \'C loc iti es a bove a nd bel ow the juncti o n 
point. Fo r a g i\'Cn driving stress, doublin g the channel w idth 

leads to a n increase of the \'o lumetric flu x by a facto r o f 
2//+2 . H e nce, fo r a full y d eve loped Poise uill e fl ow th e \'o lu­

metri c flu x of the cha nnel in th e down-fl ow di recti on of th e 
junct io n po int is more tha ll twi r e the combined nu x of the 

t\l'O tributa ri es of width d. The flux ente ring th e confluence 

is in thi s sense too sm a ll , a nd \'c1 ocitics d ownstream from 

the junc ti o n poil1l a rc corres pondin gly sm a ll er, and up­

stream la rger, th an fo r a full y de\ 'C loped fl o ·w. A rea l glac ie r 
wo uld r eac t to thi s imba la nce in flu xes by lovve ring th e cli-i\'­

ing stress b elow the junc ti o n point until a b a la nce of flu xes 

in a nd o ut o f the co nflue nce a rea is reached. Tn thi s conce p­

tu a l model , no corres p o nding changes in surface geometr y, 
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which is fi xed, can develop. As a conseque nce, the velocity is 
determined in part by the ra tio of the leng ths of the two sec­
tions above a nd below the juncti on point, vvhieh for the 
model calculated was set equa l to 1. Thi will , in turn, influ­
ence the m agnitude of the veloc ity gradients over the con­
flu ence a rea. In what follows it will be ass urned that the 
a rea over which the glac ier reac ts to \"C locity g radients does 
not depend on their magnitude, a lthough th e conclusions do 
not depcnd critically on thi s assumption. This a ssumption is 
a reasonable one for creeping fl ow - the entra nce length 
for creeping laminar fl ow in a duct does, fOI- example, not 
depend on the inflow \'elocit y - but is not correc t if accel­
erati on terms arc important (which is not the case). 

Three m odels, with equidistant rectangula r meshes but 
different g rid size were used , onc with grid size 0.1, i. e. 10 
elements over the width of the model and h aving a tota l 
number of 1000 elements, a no ther with g rid size 0.05, and 
a third with g rid sizc 0.02.1 ha\ 'ing a total of 16 000 elemcnt . 
To tes t the correctness of the ealeulati ons, a ch annel fl ow 
was modeled with velocities a t the upper and lower bound­
a ri e se t to zero. For n = 1 a nd n = 3, m ax imum sca led 
veloc ities were 1/ 3.99 and 1/32.16, respec tively, whereas 
the co rresponding analytical va lues are 1/4 a nd 1/ 32, re­
spec tivel y. Both caleulated numbers refer to the FE mesh 
with a g rid size of 0.05. R esults obtained with the 0.05 and 
0.025 grid- size meshes diffe red by less than 0.2%. For the 
fin a l calcul a tions discussed below, the 0.025 m esh was used. 

Solution procedure 

The element used was a linear four-nod e quadril atera l 
plane-stra in element, and th e incompressibility of the fl ow 
was enforced with the consta nt dil atati on m e thod. This ele­
ment does no t lock in the incompressibilit y limit. It cannot 
represent a singular beha\'io r, and any singul a rity of the 
underlying problem is sm eared out in the numerical 
solution over a region compa rable in size to th e spatial di­
mensions of the elements. Successive mesh refin ement ca n 
therefore be used to detect a sing ul arit y. As di scussed below, 
the numerica l resuits indeed suggest that longitudinal and 
transverse strain rates become singular a t the juncti on 
point, because a strong va ri a tion in calcul a ted quantiti es, 
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)( 0.6 
> 

0.4 

0.2 

0.0 
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such as stra in ra tes and veloc iti es, was detected tha t became 
more localized a nd la rger with each successive level of mes h 
refinement. On the basis of the above discussion, this singu­
la rit y can be understood to be caused by the high-frequency 
components introduced by the infinitcly high velocity gra­
di ents at the junc tion point. 

Results from n u merical calcul ations of th e no-s lip/ 
free-slip proble m 

The longitudina l velocity (v.r) a long thc center line for 
n = 1 and n = 3, as a functi on of the distance in the down­
stream direc tion from the junction point, can be seen in 
Figure 4a. The ve locities were no rma lized by the m aximum 
of the velocity along the center line. 

The longitudinal gradient of the \'clocity at the junction 
point (denoted b y aJ in the fig ure ) is very large. Two obse r­
vations suggest tha t the ac tua l asymptotic slope of the curve 
a t thejunction point is not acc urately represented in the fig­
ure, and should be infinitc: (I) the- slope increased with each 
succcssive mesh refinement, a nd (2) thc slope of the cal­
culated cunT in Figure 4a cha nged abruptly at th e second 
nodal point from the junction, the extrapola tion of the 
curve through the other noda l points towards the junction 
suggesting a n even large r slope than tha t shown in 
Figure 4a. Except in the immedi a te vicinity of the junction 
point, calculated va lues obtained with the 0.05 a nd 0.025 
g rid-size meshes differed by less th a I11.2% . An infinite- slope 
mea ns that the longitudinal stra in rates (E.n · ) , and because 
o r thc incompress ibility conditio n a lso the transver se stra in 
rates ( Eyy ), become- singular a t the juncti on point. 

The \'elocity g radients increase with n, as can be secn in 
Figure { a. For n = 1 and 17, = 3, 90% of the m ax imum 
center-line "elocity is reached a t x = 0.78 and x = 0. 30, re­
spectively. This is a posteriori justificati on of using a di s­
ta nce of 5 between the two no-slip/free-slip tra nsitions 
within the ITlOdel. 

Figure 4b depicts thc long itudinal and transycrse 
vc locitics along a trans\'erse pro fil e that traverses the chan­
nel at the height of the junction point. Velocities werc nor­
m ali zed by the m axima of th e longitudina l center-line 
velociti cs. The locati on orthe junction point on the x axi s is 

1.0 +n=1 b 
on=3 

0.8 

>-- 0.6 ·0 
0 
a; 
> 0.4 

0.2 

0.0 
0.0 0.2 0.4 0.6 0.8 1.0 

transverse distance J 

Fig. 4. ( a) LongiludinaL veLocilies ( v.r) aLong lhe center line asJunctions rifthe longitudinal dislanceJro m lhejl/netion jJoint ( J ). 
( b) Longitudinal and lransversal veLocilies aLong a transverse prrifiLe. The velocilies are nonnaLi::.ed b)lthe maximum longitudinaL 
veLocities at the cenler Line. Symbols represenl caLcuLated vaLlI es. L ines are based on Linear interpoLations. 
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indicatcd in the fi g ure by J. T he m axim a of the \'eloc ities a re 
sh ifted somewha t towards the ju nctio n point with respec t to 

the geometric ce nter of the chann el. This shift is la rger [or 
TI = 3 than for n = 1, and more pronounced for the t l-ans­
\ 'e rse (Vy ) than for the longitudina l \ 'elocities (v.,. ). The m ax­
imum of the tra nS\TrSe \'elocity fo r n = 3 could, in fact, not 
be localized precisel y, due [Q the finite spati al dimcnsions of 
thc FE mesh. H ence, the region o[positi\'e transve rse stra in 
ra tes is strongly loca li zed about the junction point. The 
same obsen 'ati ons as made in connec tion with Figure 4a 
suggest that the slopes o[ all cunTS asymptoticall y approach 
infin ity atthe junction point, and it must be concluded that 
the finite slopes dep icted res ult from numerical errors. 
Trans\'Crse veloe iti e are about 18% o[ the max imum long­
itudinal \'elociti es, leading to a ma rked cOI1\'Crgence ofO o\\,­
lines. This is in general agreement with the findings 
obta ined from the a na lytica l so lutions di scussed above. 

As examples fo r calcu lated velocity field s, the longitudi­
na l velocities O\'e r the confluence a rea are shown in Figure 
Sa a nd b for n = 1 a nd n = 3, respec tively. Only a pa rt of 
the FE model is depicted. The lower left corner of the pan 
of the model sec ti on shown has the coordinates (-1,0). and 
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the upper right corner the coordina tes (2.1 ). The junctio n 
point is, as said before, si tu ated at (0, 1). Th e corresponding 
transverse velocities a r c shown in Figure Sc and d. Light­
gray to nes represent high \·cloe ities. C alc ulated velocities 
were normalized with the max imum o f the longitudina l 
\'Cloc it ies a long the center line. The gene ra l now direction 
is from le ft to ri ght. 

The m ax ima orthe tra nS\'erse \'e loc ities (Fig. Se a nd d ) 
move towa rds thc junction point, and th e spati al ex tent o f 
the regi ons oftrans\ 'erse compression become smaller with 
increasing n. For n = 3, the velocity m ax imum is in fac t 
found on ly two nodes away from], which is at the \'erge of 
the spatia l resolution of th e mesh. Furthe r m esh refinements 
might m ove the maxi mum closer to J a nd increase its m ag­
nitude. 

Accuracy of t he numerical solut io n 

The shape fun cti on o[thc elements used fo r the calcula tio ns 
does no t account for sing ul a riti es, and the re \I'ill ille\'ita bly 
be errors introduced by thi s inappropri a te choice of sh ape 
func tion. Thcsc crrors a re, howc\'er, no t expected to p ropa-

longitudinal 

longitudinal 

transversal [n=3] 

0.240 

0.216 

0.192 

0.168 

0.144 

0.120 

transversal 0.096 

0.072 

0.048 

0.024 

0.000 

Fig. 5. , \~lIneri({l11y calculaled veLociliesJor a 1l0 -sli/JI[ree-slijJ lrallsilioll al] Jar n = I ( a alld c) alld 11 = 3 ( b and d). General 
.flow direction isJ rom lift 10 righl. 

54·S 
https://doi.org/10.3189/S0022143000035140 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000035140


J ournal qfGlaeiology 

gate very fa r, inasmuch as even for the regio n in the im­
mediate neighborhood of the point of singula rity the 
ba lance equa tions arc, due to the integral na tul-e of the FE 
method, fu lfill ed in an average sense (Bathe, 1996). Still , it 
must be concluded that a prop er numerica l treatment of this 
classic glaciologica l problem is p ossible onl y with the use of 
singula r elements. 

Inability to represent the singularity of the underlying 
solutions ma kes it difficult to estimate the nume ri cal errors 
involved. Based on results obta ined through successive mes h 
refin ement, a nd comparison with analytical solutions, it can 
be conc! uded that o\'erall errors in veloci ti es a re less than 
about 1%. Errors in field s tha t depend on velocity g radients 
can be significantly larger. 

Discussion 

The genera l picture of th e ice-deform ational pattern along 
the surface of a confluence a rea, which emerged from the 
analysis o f the analytical solution described a bove, is sup­
ported by the numerical ca lcula tions. The numerical res ults 
also strongly suggest that stra in rates and stresses become 
singu la r, a nd that the slope of the 10ngiLUdinal velocity 
profi le a long the center line is infinite at the jul1ction point 
(Fig. 4a ). Ana lysis of the prop erti es of the a na ly tica l solu­
tions showed that thi s sing ul a rity is, at least for n = 1, asso­
ciated with the infinitely hig h-frequency components of the 
\'elocity va ria tion along the center line. Tt is therefore poss i­
ble tha t if the no-slip/free-slip transition were to be slightly 
smoothed out, the singul a rity would disappear. 

Veloc ity g radients increase g reatly with n , a nd the size 
of the region a ffectrd hy Ilw n o-sli p/h ee-sli p transition de­
creases at the same time. It fo llows that observa tions on ice 
deformation on confluence a r eas arc well suited for obtain­
ing inform a tion on the rheological behavior of glacier ice, 
not onl y because the glac ier must adjust itself to a com­
plctely new surface geometry, but also because the sudden 
change in bo undary conditio ns at the juncti on point gi\"Cs 
rise to a m a rked region of high rates of ice deform ati on. 
The shape a nd size of this region depends stro ngly on the 
\'alues of para meters of the constitutive law. 

Longitudinal \'elociti es d ec rease as the ice enters the 
confluence a rea, and then inc rease again (Fig. 5a and b). A 
similar dec reasc and a subsequent increase in surface 
velocities is e\'idelll from m easurements of the annual sur­
face velociti es of the conflue nce area of Unteraargletscher 
(Gudmundsson and others, 1997, fig. 6). 

SUMMARY AND CONCLUSION 

A map-pla ne model \Vas used to elucidate the stra in-rate 
pattern at the surface of a g lacier caused by the change in 
bounda ry conditions at the junction point. In addit ion, the 
effect of the apparent ice-thickening along the center line, 
from the junction point to the center of the connuence, on 
the vertica l strain-rate va ri a ti on was ill\ 'estigated by calcu­
lating numericall y now oYel- a sinusoidal bed , using both 
no-slip and free-slip bound a ry conditions. Th e results were 
compared to fi eld measurem ents for the confluence area of 
Unteraargletscher. 

The principal conclusions a re illustrated in Figure 6 and 
may be li sted as follows: 

The center line is subj ected to a transverse compression 
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Fig. 6 Summmy qf Ihe results obtained wilh lite help qf lite 
majJ-/Jlane model. J indicales the I)osilion of the j unelion 
fJoinl. The area wilh an inscribed plus sign is an eLevaled zone, 
and Ihe one with an inscribed minus sigil a ZOlle qf local sllr­
.face depression. 

and a longitudinal extension, even when the a ngle 
between the two tributa ri es is equa l to zero. 

Along the center line, where the ice thickness inc reases in 
downstream direc tion, depth-i nteg rated vertical strain 
rates are positive. As a consequence the hori zonta l trans­
verse compression will generally exceed the concomitant 
extension in m agnitude. 

For free-slip boundary conditions, the verti ca l strain 
rates are incr easingly positi\ 'e with depth until a max i­
mum is reached. With further depth the stra in rates 
become sma ll er but remain positi\"C. 

For no-slip bounda ry conditions the \'ertica l stra in rates 
change from p ositive (ex tension ) in the upper pan to 

negative (compression) in the lower part. The stra in­
rate vari ation is, thus, in thi s case rather compl icated, 
but corresponds in qualita tive terms to the measured 
strain-rate va ri ation on Unteraa rglctscher. This agree­
ment is found despite the fact that some basal sliding 
took place du ri ng the period over which stra i n rates 
were measured on Unteraargletscher. 

A loca l surface depression form s in the vicinity of the 
juncti on point, a nd two super-el evated zones on the mar­
ginal sides of the tributaries faci ng the junction point. A 
co rresponding di splacement of contour lines can be seen 
on Unteraargletscher and on numerous other g laciers. 
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