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ABSTRACT. Using analytical and numerical techniques, a two-dimensional (2-1))
map-plane model and a 2-D flowline model are utilized to elucidate the horizontal and
vertical ice deformation at the confluence of two glaciers. For a perfectly symmetrical con-
fluence, the junction point of the two tributaries can be modeled as a no-slip/free-slip
transition. A strongly localized surface depression develops around the junction point,
accompanied by two broadly elevated zones positioned close to the margins of the tribu-
taries facing the junction point. The confluence center line is subjected to horizontal long-
itudinal extension and a transverse compression. The compression generally exceeds the
concomitant longitudinal extension in magnitude. Depth-integrated vertical strain rates
along the center line are positive (extension), but the strain-rate variation with depth de-
pends eritically on the type of basal boundary conditions at the glacier bed. For a no-slip
boundary condition, vertical strain rates change from positive at the surface to negative
close to the base, whereas for a free-slip boundary condition (perfect sliding) vertical
strain rates are positive throughout the depth. These theoretical results are compared

with field measurements from Unteraargletscher, Bernese Alps, Switzerland.

INTRODUCTION

Om the basis of'a recent experimental study done on the con-
fluence area of Unteraargletscher, Bernese Alps. Switzer-
land, it has been suggested (Gudmundsson and others,
1997) that the distinctive character of the strain-rate regime
of a glacier confluence is related to: (1) an increase in ice
thickness in the flow direction from the junction point to-
wards the center of the confluence; (2) an overall change in
the mean flow direction of the two tributaries as they enter
the confluence arca; and (3) a general increase in surface
velocity along the center line from the junction point to-
wards the confluence center. 'To gain a somewhat better un-
derstanding of the flow characteristies, and to test these
ideas against numerical and analytical models, two rather
simple two-dimensional (2-D) conceptual models are intro-
duced that focus on the first and the third mechanisms listed
above. The first model is a numerical flowline model invol-
ving balances over a longitudinal vertical section running
from the junction point towards the center of the confluence.
This model is used to understand the effect of increased ice
thickness in the flow dircction on the ice-deformational pat-
tern with depth. In particular, the vertical strain-rate varia-
tion with depth for different sets of basal boundary
conditions is investigated. The second model is a map-planc
model of the surface arca of the confluence. It is used to elu-
cidate the horizontal strain-rate pattern caused by a no-slip/
[ree-slip transition at the margin,

It is clear that the flow regime ol a confluence area must
in general be expected to vary strongly in all three spatial
dimensions, and one might therefore expect 2-D modecls to
be of limited help in understanding such a complicated
three-dimensional (3-D) flow pattern. 1 will, however, ar-
gue that most of the flow characteristics of a glacier conflu-
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ence can be understood within the framework of simple 2-1D
models. This is an important observation because, among
other things, sensitivity studies can be carried out so much
more casily with 2-I models. On the other hand, [or an ex-
act comparison of field measurements with calculations of
flow based on Glens flow law. a fully 3-1D model will evi-
dently be needed. This type of comparison can be found in
Gudmundsson (1994a).

The discussion is limited to confluences for which the
two tributaries are more or less similar in size. The point of
the glacier margins where the marginal zones of the two tri-
butaries converge is referred o as the junction point. The
margins of the confluence containing the junction point
are called the
ginal surficial detritus of the inner margins merges at the

‘inner” margins ol the confluence. The mar-

Junction point to form the surface debris of the medial mor-
aine. The two margins of the tributaries, which together
form the margins of the coalesced glacier, are referred o as
the “outer” margins of the confluence,

This paper is divided into two main parts titled “flow-
line model™ and “map-plane model”. The discussion of the
map-plane model is divided into two further sections, which
deal with the analytical and the numerical solutions of this
problem. For the first part, and for cach of the sections of the
second part, the results are given and discussed separately.

FIELD EQUATIONS

For hoth the flowline and the map-plane models the field
equations are

Vii = ) (1)
g+ pfj =0, (2)
where v; are the velocity components, p the ice density, f;
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the components of the body force, and o;; the components
of the Cauchy stress tensor. In the numerical calculations,
Glen’s flow law is used:
5 t (n—1)/2 ¥
Gi=Aoy Oijs (3)
where €;; are the strain rates. The deviatoric stresses are
1
- géf_jm-n-- (4)

and @y, the second invariant of the deviatoric stress tensor,

I e g
O3 = O

is defined as
i Y= ! [=4
Tnr = 3%:3% (5)
where &;; is the Kronecker delta. The analytical models are
only valid for a lincar medium where 2 = 1. The notation is
summarized inTable 1.

PART I: FLOWLINE MODEL

Motivations and model definition

Measurements in horeholes drilled at the confluence area of
Unteraargletscher of the vertical displacements of magnetic
rings over time revealed surprisingly complicated varia-
tions in vertical strain rates with depth (Gudmundsson and
others, 1997). The vertical strain rates are positive (exten-
sion) at the surface, but strongly negative (compression) at
the hase. This type of vertical strain-rate variation is con-

Table 1. List of symbols

TVariable Deseription Unit
A Glen law parameter Pa™s'
A(k) Integration function
B(k) Integration function
(k) Integration function
D(k) Integration function
d Glacier half~width m
E,, Non-dimensional strain rate
q Acceleration due to gravity ms
ke Wavenumber m !
n Glen law exponent
P Non-dimensional pressure
p Pressure; p := —1/3a;; Pa
T Non-dimensional time
t Time s
Vx, Vz Non-dimensional velocities
v; Components of velocity vector ms '
T8 & Spatial coordinates m
2h Vertical position of glacier bed m
I Surface slope
& Defined as a = et
a Defined as 7 := e *
bij Kronecker delta
O Defined as 6 1= ke ™"
& Components of strain-rate tensor 5
n Viscosity Pas
4 Defined as 5 := ke®
A Wavelength m
P Specilic density kgm 3
i Non-dimensional stresses
oy Second deviatorie stress invariant Pa’
aij Components of stress tensor Pa

i Components of deviatoric stress tensor Pa
i3 Driving stress: 7 1= pgd sin o Pa

In the discussion of the analyti
n = 1, all variables are dimensionless, including the variables x, y, k, v,
and v,

-al solutions of the map-plane problem for

s
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siderably more complicated than the constant, or linear, ver-
tical strain-rate depth profile often used in the glaciological
literature (c.g. Paterson, 1994), and it is, hence, of interest to
know what factors are responsible for this complicated
strain-rate profile,

In the following, I will argue that —at least il basal
velocity is of secondary importance to ice creep— this type
of vertical strain-rate variation occurs whenever the ice
thickness increases in the flow direction. It is the thickness
increase together with a particular set of boundary condi-
tions which gives rise to the observed strain-rate variation.
This type of vertical strain-rate pattern is therefore not lim-
ited to a confluence area, but the longitudinal section along
the center line of a confluence is a region where it must be
expected Lo be especially pronounced.

To exemplify the effect of an increase in ice thickness in
the flow direction on the vertical strain-rate variation, a
sinusoidal-shaped bed-line is employed as a convenient
idealization of the bed geometry. The analysis of the flow is
facilitated by the fact that analytical solutions, which were
derived for n = 1 and the limiting case ak < 1, where kis
the wavenumber (Nye, 1969; Kamb, 1970; Morland, 1976;
Gudmundsson, 1997a), take a particularly simple form for
this type of bed-line geometry.

For numerical calculations of the flow for n # 1 and a
finite a, the general-purpose FE program MARC was used.
A description of the mesh generation, the testing of the FE
program, and numerical error estimates are given in Gud-
mundsson (1994a). The flow was calculated for hoth no-slip
and freesslip boundary conditions. These two boundary
conditions represent two different limiting situations of no
and perfect basal sliding, respectively.

Results from flowline model

For a large number of sinusoidal bed-lines with different
amplitude-to-wavelengths ratios, the flow field was cal-
culated for both no-slip and free-slip boundary conditions
and for different values of n. For the current purpose it is
not necessary to give a systematic overview of all the differ-
ent resulting flow fields. Only the general pattern of flow is
of interest here, and the results will be illustrated by showing
calculated vertical velocities and vertical strain rates for one
particular model.

Figure la shows numerically calculated vertical veloci-
ties for a free-slip flow. The values of the model parameters
(amplitude @ and wavelength A of the bed profile, mean ice
thickness b and surface slope a) are given in the figure cap-
tion. The orientation of the coordinate system is such that
the z axis is parallel, and the z axis perpendicular, to the
mean surface. The bed-line, as a function of x, i1s denoted
by zi(x) and is given by

zp(x) = asin kz, (6)
where @ is the amplitude and & the wavenumber. Only a
part of the FE mesh, which has a height and a width of ten
times the wavelength A, is shown.

An analytical solution of the flow valid to second order
in ak, and for n = 1 (Morland 1976, Gudmundsson 1997a),
shows that maximum vertical velocities are found at the bed
at the points of maximum slope, and maximum vertical
strain rates are situated at kz = 1 in the limit ak — 0. The
vertical strain rates, ¢.., are therefore positive throughout
the glacier depth where the ice thickness increases in the
flow direction, and everywhere negative where the thickness
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Fig. 1. (a) and (¢ ) Vertical velocities for free-slip and no-slip boundary conditions, respectively. (b)) and (d) Vertical strain rates
Jor free-slip and no-stip boundary conditions, respectively. The model parameters are: a = 2m. X = 20m, h = 200m,n = 3.
and pgsin e = 899577 x 10~ barm . Velocities are inma *. A part of the FE mesh is shown in (a). The general flow
divection is from lefl to right.

decreases. The numerically calculated vertical velocity field
(Fig. la) exemplities this behavior. Figure b depicts vertical
strain rates for the same model as Figure la, and it can be
scen that [é..| has two maxima, which are situated some-
what above the bed where the bed-slope is largest.

For the no-slip boundary condition the resulting velocity
and strain-rate fields (Fig. Ic and d) are quite different than
for free-slip boundary conditions (Iig. Ia and b). The verti-
cal velocities now reach their maximum values not at the
bed-line, as in Figure la, but somewhat above the bed. The
reason for this is quite simple. As one proceeds in the z
direction from the surface towards the lee side of the peak
of the sinusoidal curve, the dip of the velocity vectors
changes gradually and approaches the dip of the bed-linc.
This results in inereasingly large vertical velocities with
depth. Because of the no-slip boundary condition, vertical
velocities (v.) must, however, be zero along the bed-line, so
that v. eventually decreases again as the bed-line is
approached. The result is a zone of strong vertical compres-

https://doi.org/10.3189/50022143000035140 Published online by Cambridge University Press

sion in the vicinity of the bed-line below a region of positive
vertical strain rates. Where the glacier gets thinner in the
flow direction, the situation reverses. Thus, it is the no-slip
boundary condition, together with the varying elacicr
thickness, which forces a reversal in the strain-rate regime
from extension/compression towards compression/exten-
sion with increasing depth. The exact bed geometry is
expected to change only the amplitude of the velocity varia-
tions and their extent, but not the main characteristics of
the vertcal strain-rate variation. (This statement is, how-
ever, incorrect for very large values of the amplitude-to-
wavelength ratio (Gudmundsson, 1997h)) No systematic
study was done on how the position of the maximum of v,
(Fig. le) depends on changes in roughness or material prop-
erties. A few calculations with different values of n and ak,
however, showed that with increasing n and ak the maxi-

mum moves towards the bed.
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Discussion

The no-slip boundary condition, together with increasing
ice thickness along the flow direction, gives rise to a vertical
strain-rate pattern that is qualitatively the same as that
measured on Unteraargletscher (Gudmundsson and others,
1997). There, vertical strain rates (€..) were positive at the
surface, increased somewhat with depth, and then changed
from positive values to negative ones close to the bed.
Because the actual flow field is expected to vary in all three
spatial directions, there will inevitably be some deviations
from the plane-strain-rate situation, causing some addi-
tional complications that cannot be fully addressed with this
simple conceptual 2-D model. For a quantitative compari-
son a full 3-D model is needed. Still, this simple 2-ID model
gives a plausible explanation of the measured sign reversal
of ¢,. at a depth of about 220 m. It also clarifies the effect
that changes in ice thicknesses have on vertical strain-rate
variations, which is helpful in identifying the causes of un-
expected flow perturbations seen in more complicated
models. The results also suggest that during the measure-
ment period (second half of September 1991) the bed condi-
tions were closer to no-slip than free-slip in spite of the fact
that observations of temporal velocity variations demon-
strate that some sliding took place.

PART II: MAP-PLANE MODEL

Motivation and model definition

Measurements ol the deformation of surface ice at the
glacier confluence of Kaskawulsh Glacier, Yukon 'lerritory,
Canada (Brecher, 1969; Anderton, 1970), and Unteraar-
gletscher, Bernese Alps, Switzerland (Gudmundsson and
others, 1997), have shown the center lines of these glaciers to
be subjected to a longitudinal extension and a transverse
compression, In the following, I will argue that this defor-
mational pattern can be considered to be a consequence of
the abrupt change in boundary conditions at the junction
point, and that the effect of this change in boundary condi-
tions on the flow field and the surface topography can be
understood within the ramework of a relatively simple 2-D
map-plane modecl.

Marginal ice entering a confluence along its inner mar-
gins experiences an acceleration as it passes the junction
point. There is also a sudden change in boundary conditions
at this point. Along the margin, boundary conditions ave of
the no-slip type. For a symmetrical confluence, no shear will
act on the center line and, if we further assume infinite
glacier thickness, one could theoretically put a perfectly
lubricated vertical plane along the center line without af-
fecting the velocity or the stress fields. The “boundary™ con-
ditions along the center line are thus of the free-slip type.
The junction point of the sliced area can be considered to
mark the transition from a no-slip to a free-slip boundary
condition,

In the model, [ assume that the confluence is perfectly
symmetrical and infinitely thick. The assumption of infinite
thickness restricts the applicability of the results to those sec-
tions of a particular confluence where the ice predominantly
experiences resistance from the margins rather than from
the deeper-lying sections of the bed. The angle between the
two identical tributaries is set to zero. There is therefore no
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prescribed convergence of flowlines. Thickness changes are
ignored and plane strain conditions assumed.

Previous work

Flow across a no-slip/free-slip transition has been studied
theoretically by Hutter and Olunloyo (1980, 1981) and Barci-
lon and MacAyeal (1993). Hutter and Olunloyo found the
normal and shear stresses to be singular across the trans-
ition point. Barcilon and MacAyeal confirmed and cor-
rected previous results. They found singularities in shear
stress and pressure at the point of transition. The singularity
in pressure represented an inconsistency with the assump-
tions made, causing first-order pressure to exceed the zer-
oth-order pressure. They therefore concluded that the
problem remains open and unsolved. Consequently, this
problem must (at least for the time being) be solved nu-
merically, which is done below for some specific cases. How-
ever, hefore proceeding to the discussion of the numerical
solution, the properties of a closely related problem, which
can be solved analytically, will be discussed.

Simplifications which lead to an analytically solvable
problem

Part of the difficulty in solving the no-slip/free-slip trans-
ition problem lies in the fact that along a section of the mar-
gins the velocities are prescribed (i.e. set to zero), but on the
remaining section the shear stresses are fixed. If only
velocity variations along the interface were to be prescribed,
the analytical solution of the corresponding problem would
be straightforward.

The velocity variation along a confluence center line
will to some extent be determined by factors not incorpo-
rated in the 2-D map-plane model, such as surface inclina-
tion and bedrock geometry. Hence, even an exact solution of
the no-slip/free-slip problem would be only partially applic-
able to the physical problem considered. From an observa-
tional point it is of some value to be able to calculate the
velocity field of the confluence for a given velocity variation
along the center line, where the general shape of the pre-
scribed velocity variation is based on field measurements.
This problem, where the velocity along the center line is an
input and not an output, has the great advantage over the
no-slip/free-slip transition problem of being, at least for a
linear viscous fluid, exactly solvable.

The geometrical shape and the boundary conditions of
this simplified model are shown in Figure 2. The analytical
solution is given below.

Vx=Vy=0 J M=V VpaluVyald Sasd
I —_—
VL [
¥
X Vy=Vy=0

Fig. 2. An infinite strip of highly viscous material. The two
sets of boundary conditions used in the text are shown. The
thick lines represent the glacier boundary, and the dashed line
the center line of a conceptual confluence. Only the lower half
of the perfectly symmetrical confluence is shown. J denotes the
junction point. The origin of the coordinate system is on the
lower boundary divectly below the junction point.
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ANALYTICAL SOLUTION OF THE SIMPLIFIED MAP-
PLANE MODEL

Rheological assumptions and field equations

Equations (1)-(3) are non-dimensionalized by scaling the
velocities vj, the stresses o5, and the time ¢ with “natural”
quantities of the model. For non-dimensional variables
upper-case letters are generally used.

Because the width of the channel in the downstream
direction of the confluence is 2d, d is the natural length

scale. The analytical solutions for the velocity and the shear

stress of an infinitely deep channel of uniform width 2d are

_ T

T.l'_t; - d 3 (7}
_247d i

o= S (1= lyfd"™). ®)

where 7 := pgdsin o, and o is the surface slope. The stresses

are scaled with 7. A scaling factor for f can be defined as the

time it takes for the strain at the wall to reach the value

unity. Hence, the following scalings are used:

I = (I.X,'. Tj; = TE,‘_,‘. = TP, and
(9)

The non-dimensional velocity V; is defined by

@i X
(= Vi= AdT"V;, 10
!/T G i (10)
and the non-dimensional strain rates E,-J- are given by
A :
& =7 By = AT'Ej;. (11)

P . . - 1 .
I'he maximum value of Vy is 2(n+ 1) °. In two dimen-
sions, the non-dimensionalized field equations are then

(?)L‘(\ ?)? =0, 12)
?;:\ ?;" = -1, (13)
( — Fé : x5
X T oV - (14)
and Glen’s flow law can be written as
By =", (15)

For n=1 the constitutive equation is FEj; =X} =
i+ Po;;. which if substituted into the momentum equa-
tion and the equation of continuity leads to

Vy OV

aX oy h {1
(Vs Vi) _ 0P .
2( ax: Tave ) Tax b HE
(PW () W\ P -
\3xz T av2) " oy

Solution technique for n = 1

For n = 1, Equations (16)—(18) can be solved for an infinite
strip with preseribed velocities along the boundaries. Only
ficld perturbations (i.e. anomalous fields) resulting [rom a
prescribed velocity anomaly at the boundaries are consid-
ered here, and the part of the flow that is directly gravity-
driven is ignored, because it will simply add linearly to the
perturbated velocity distribution. Lower-case letters will
now be used, and it is to be understood that all variables
are dimensionless.
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= {4 0

Fourier transformation of
respect to x leads to

the field equations with

r’)'“’m-(h'- )

2kp(k, y) + —Pu(ky) =0, (19)

dplk, y) ()'l'u(k‘ ! ) 2 -
9 ; — K UylR, = U, 2
Ay f)u- o ?"'(A ,i'j) . ( .

vy, (k. y)

—thv, (k. =), 21
(i) + =2 (21)
where the Fourier transform is defined as
00
Flik)= / flz)e de, (22)
‘X

and ¢ is the imaginary unit. With the help of Equations (19)
and (21), p(k, y) can be expressed as a function of v, (k, y),
and that expression substituted into Equation (20), resulting
in one homogencous linear differential equation of fourth
order for v, (k. y):
T T ) 52 T
'y (k. y) — r)k,z() i”(i-.y)
oyt oy?
This differential equation can easily be solved. The solution

15

vy(k,y) =

+ kv (ky)=0.  (23)

[A(K) + B(k)ky] €™ + [C(R) + D(k)ky] e ™

(24)
where the integration functions A(k), B(k), C(k) and D(k)

are to be determined through the boundary conditions. The
solutions for v, (k. y), p(k.y) and the stresses can also be
determined in terms of the integration functions.

The boundary conditions are

vl 0) = 2 (k,0) = w, (&, 1) =0, (25)
and
el 1) = —nS(k), (26)
where —ww,“(k) is the Fourier transform of v, (x, 1), which
is the applied velocity perturbation along the center line.

Solving the resulting system of equations leads to

A(k) G-
B(A) _ T'*_.'!'.(,M a-f-2 | (27)
C(k) (& — B)" — 456 —6+4

D(k) —a+A+2%

where the folio\\ mq abbrevi mu(m\ have been used: & = e,

3:=c* %:= kek, and & := ke *. The solution procedure
18 Cxplam(d in more detail in Gudmundsson (1994a). The
solutions for the velocity and strain-rate perturbations do
not depend on the value of the (linear) viscosity.

Because of the linearity of the differential equations, the
sum of the solutions corresponding to two different center-
line velocity variations can be superimposed to give the
solution of the combined velocity variaton. 1o understand
the general properties of the solutions, it will therefore sul-
fice to consider the effect of some particularly simple type of
veloeity perturbation. A harmonic velocity variation is the
most logical choice, as it produces anomalous velocity fields
of the same form and frequency.

Results derived from analytical solutions

The results can be understood most easily by considering
the velocity and the pressure field in (K, y) space. For an
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illustrative example of the velocity and pressure fields in
(2, y) space see Gudmundsson (1994a).

Longitudinal velocities

Figure 3a shows the square root of the power spectrum of

the longitudinal velocity v,.(k,y), for 0 < k < 47 and for
vy(k,1) =1. Note that the boundary conditions force
v, (k. y) 1o be equal to unity along the y = 1 boundary, and

i A

06} — 01" =T ]
I P ]
i S / 4
0.4}~ ~ | 4 ]
: i v ]
g ; 7 JY) .
0.2 i i 1
S -~ S o
[ = 4

0.0 b —l el | 1 Il 1
0.0 2.0 4.0 6.0 8.0 10.0 12.0

| b
Dto 1 1 e e e SR RS ey S Moy L VR Ut (o ! G ]
0.0 2.0 40 6.0 80 100 120
k
1.0
0.8
0.6
0.4
0.2 -
1
C A
0.0 N, AP R SR S SO S
20 4.0 6.0 80 100 120
k
Fig. 5. Square-rool power spectrum of the anomalous longitu-

dinal velocity v, (k. y) (a), the transversal velocity v, (k, y)
(b), and the pressure distribution p(k, y) (¢ ).
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zero for y = (. The change in relative phase shift of the long-
itudinal velocity field with respect to a preseribed harmonic
velocity variation along the y = 0 boundary is indicated
through the sign of the labels and the style of the contour
lines in the figure. Positive values and solid lines indicate
that for some particular value of @, v,(x,y) points in the
same direction as v, (x, 1), and negative values and dashed
lines that the ice is flowing in the opposite direction to the
applied center-line velocity perturbation. It can be seen
from the figure that the anomalous velocities introduce a
flow recirculation which is superimposed on the general
flow field. This recirculation is found for all values of A.
The dividing line in (%, y) space,which marks the separation
from down-glacier flow to up-glacier flow as one proceeds
from the center line (y = 1) towards the outer boundary of
the confluence (y = 0), is drawn as a thick solid line.

The transverse extent of the recirculation zone depends
strongly on k. It is largest for k = 0, and the dividing line is
in this limit situated at y = 2/3, as can be found by calculat-
ing the limit of v, (k, y) as k — 0. For at least two-thirds of
the glacier cross-section, the direction of the anomalous
velocity flow is then opposite to the direction of the main
flow. This will reduce the maximum velocity of the flow up-
stream of the junction point and shift it towards the center
line. For large-wavelength velocity components this reduc-
tion is about 30% of the amplitude of the center-line
velocity perturbation, but it decreases with increasing k.
For k& — +oc the separation line approaches asymptotically
=1

Transverse velocities

The square root of the power spectrum of the anomalous
transverse velocity can be seen in Figure 3b. The transverse
velocity is 90° out of phase with the longitudinal velocity.
Hence, in the (k,y) space the maximum amplitude of
vy (k. y) is obtained along a line which corresponds to the
minimum of v, (k, y). This line, which was earlier referred
to as the separation line, is drawn in Figure 3b as a thick
solid curve. The maximum of the transverse velocities is
always obtained within one-third of the glacier width
because the separation line isat y > 2/3 for all values of k.

With increasing k& the amplitude of v, (k,y) increases,
while the transverse extent decreases. Hence, the maximum
of v,(k,y) moves towards y=1, and becomes more
localized, causing larger velocity gradients. Because
lim,_; dv,(k.y)/Qy = k, all strain rates go linearly to
infinity with k. In the high-frequency limit, all strain rates
are infinite and localized at y = 1. This comes as no sur-
prise, as in this limit velocity gradients are effectively forced
to become infinite by the boundary conditions. Although
these singularities resemble somewhat those resulting [rom
the theoretical treatment of the no-slip/free-slip problem by
Hutter and Olunloyo (1980, 1981), no comparison can be
made, because the two problems are fundamentally differ-
ent. In the treatment of Hutter and Olunloyo the singular-
ities are predicted, whereas here the singularities are in
essence prescribed.

Transverse velocity perturbations can be a substantial
fraction of the center-line velocity perturbation, and they
will accordingly cause a marked convergence of the flow-
lines, resulting in a transverse compression close to the
center line and extension close to y = 0. It is important to
realize that this convergence takes place although the two
arms of the confluence run parallel to each other.
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Pressure distribution

The pressure distribution is of interest because lines of cons-
tant pressure will correspond, to some extent, to contour
lines on the glacier surface. Figure 3¢ gives the pressure as
a function of & and . There is a pressure drop along the
center line for those sections where the applied velocity
increases in the flow direction. Where the velocity decreases,
the situation reverses. The amplitude of this surface depres-
s fastest, which
generally is close to, or at, the junction point.

sion is largest where the velocity increa

The pressure drop depends strongly on k. It can be
shown that p(k.1)/p(k,0) — 0o as k — o0, representing
an infinite pressure drop. A similar pressure drop near the
transition from no-slip to free-slip has been predicted on
theoretical grounds by Barcilon and MacAyeal (1993, fig,
6). The long-wavelength limit is: p(k,1)/p(k.0) — 1 as
F: — 0, in which case the pressure drop is almost constant
across the width of the glacier. The spatial extent of the sur-
face depression is quite limited for moderate to high & values
(Fig. 3¢). A sharply defined surface depression of this type
can easily be seen on Unteraargletscher as well as on numer-
ous other confluences.

Discussion

Balise and Raymond (1985) investigated the transfer of
basal velocity perturbations to the surface for a linear med-
ium. Their approach bears strong similarities to the solution
approach described above. They too found the anomalous
velocity to recirculate, but, contrary to what is observed
here, only for a certain range of k values. Only short wave-
lengths, less than about 5.2 tmes the mean ice thickness,
lead to recirculation. This difference is caused by the differ-
ent boundary conditions at y = (.. Balise and Raymond
(1985) used a free-surface boundary condition allowing the
surface to react in such a way as to compensate for the mass
transfer caused by the velocity perturbation (although the
surface was not allowed to evolve with time). Because of
the no-slip boundary conditions at y = 0 applied here, there
is no free surface, and internal flow must set up a recircula-
tion to counteract the mass transfer at y = 1 and to ensure
mass conservation.

The linear solution of the map-plane problem revealed
that a longitudinal extension and a concomitant transverse
compression is a direct result of the change in boundary
conditions at the junction point. A convergence of the two
tributaries is not needed to produce this type of strain-rate
regime,

I'rom the shape of the pressure distribution it can be con-
cluded that if the center-line velocity increases with @ (which
is generally the case for a confluence arca), the surface eleva-
tion is higher around y = (0 than around y = 1. The ampli-
tude and spatial extent of this surface depression depends
primarily on the magnitude of the velocity gradients along
the center line. Note that the downward slope from the outer
boundarics of the confluence towards the junction point is in
fact needed to drive the transverse flow seen in Figure 3h.
Superimposed on the general slope of the glacier, this anom-
alous surface change causes the contour lines to tilt some-
what toward the confluence. Tilting of this type can be seen
on Unteraargletscher. Anderton (1970) observed a similar
converging of flowlines just below the confluence of the north
and the central arm of Kaskawulsh Glacier and, apparently
correlated, changes in surface slope.
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NUMERICAL SOLUTION OF THE MAP-PLANE
MODEL

Geometrical assumptions, boundary conditions

A number of interesting conclusions about the general sur-
face flow pattern of a confluence could be drawn from the
analytical solutionvalid for n = 1. Ttis therefore of some 1m-
portance to sce to what extent these findings remain qualita-
tively correct for a non-linear material behavior and for a
no-slip/free-slip transition boundary condition, in which
case the velocity along the center line is an output of the
corresponding model and not simply assumed, This
problem must be solved numerically, and for that purpose
the FE program MARC was utilized.

The coordinate system used is the same as that of
Figure 2. The lower left and upper right corners of the model
have the coordinates (=5.0) and (5. 1), respectively. Along
the lower boundary (y = 0), and along the upper boundary
upstream of the junction point, all velocities are set 1o zero.
The junction poeint is at (z.y) = (0,1). Along the center
line, the ice is allowed to move freely in the @ direction.
Across the righthand boundary (Fig. 2), all velocities are
set equal to the velocities of the corresponding nodes along
the lefthand boundary. Hence, the model is periodic, with a
period of 10 and width 1. The main advantage of using a
periodic boundary condition is that no assumptions about
the velocity profile or the stresses along the transverse
boundaries need to be made. Note that because the upper
right corner of the model is in effect the same point as the
upper left corner, there are actually two junction points
within the model, lying 5 units apart.

The length of the numerical model must be large enough
for a fully developed Poisenille flow to be established
between its two junction points. The development of
laminar flow in the entrance of a duct bears some similarity
to the idealized confluence. Laminar entry-length solutions
can be found in the literature for circular and non-circular
ducts and parallel plates. Shah and London (1978) give the
following expression for the entrance length:

0.6
sy

1+ 0.035Rke
valid within +£2% for many duct shapes, where Re is the
Reynolds number. The entrance length is defined as the dis-

X, +0.056 Re,

tance from the entrance at which the center-line velocity
agrees to within 99% with that of the fully developed Poi-
scuille flow. For ereeping flow, Re = 0 so that X, = 0.6.
The distance of 5, from one junction point to the next, can
therefore be considered sullicient.

The use of periodic boundary conditions affects the
magnitude of the velocities above and below the junction
point. I'or a given driving stress, doubling the channel width
leads to an increase of the volumetric flux by a factor of
272 Hence, for a fully developed Poiscuille low the volu-
metric flux of the channel in the down-flow direction of the

junction point is more than twice the combined flux of the

two tributaries of width d. The flux entering the confluence
is in this sense too small, and velocities downstream from
the junction point are correspondingly smaller, and up-
stream larger, than for a fully developed flow. A real glacier
would react to this imbalance in fluxes by lowering the driv-
ing stress below the junction point until a balance of fluxes
in and out of the confluence area is reached. In this concep-
tual model, no corresponding changes in surface geometry,
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which is fixed, can develop. As a consequence, the velocity is
determined in part by the ratio of the lengths of the two sec-
tions above and below the junction peint, which for the
model calculated was set equal to 1. This will, in turn, influ-
ence the magnitude of the velocity gradients over the con-
fluence area. In what follows it will be assumed that the
area over which the glacier reacts to velocity gradients does
not depend on their magnitude, although the conclusions do
not depend critically on this assumption. This assumption is
a reasonable one for creeping flow — the entrance length
for creeping laminar flow in a duct does, for example, not
depend on the inflow velocity — but is not correct if accel-
eration terms are important (which is not the case).

Three models, with equidistant rectangular meshes but
different grid size were used, one with grid size 0.1, i.e. 10
clements over the width of the model and having a total
number of 1000 elements, another with grid size 0.05, and
a third with grid size 0.025 having a total of 16 000 elements.
To test the correctness of the calculations, a channel flow
was modeled with velocities at the upper and lower hound-
aries set to zero. For n =1 and n =3, maximum scaled
velocities were 1/3.99 and 1/32.16, respectively, whereas
the corresponding analytical values are 1/4 and 1/32, re-
spectively. Both calculated numbers refer to the FE mesh
with a grid size of 0.05. Results obtained with the 0.05 and
0.025 grid-size meshes differed by less than 0.2%. For the
final calculations discussed below, the 0.025 mesh was used.

Solution procedure

The element used was a linear four-node quadrilateral
plane-strain element, and the incompressibility of the flow
was enforced with the constant dilatation method. This ele-
ment does not lock in the incompressibility limit. It cannot
represent a singular behavior, and any singularity of the
underlying problem is smeared out in the numerical
solution over a region comparable in size to the spatial di-
mensions of the elements. Successive mesh refinement can
therefore be used to detect a singularity. As discussed below,
the numerical results indeed suggest that longitudinal and
transverse strain rates become singular at the junction
point, because a strong variation in calculated quantities,

05 1.0
J longitudinal distance

such as strain rates and velocities, was detected that became
more localized and larger with each successive level of mesh
refinement. On the basis of the above discussion, this singu-
larity can be understood to be caused by the high-frequency
components introduced by the infinitely high velocity gra-
dients at the junction point.

Results from numerical calculations of the no-slip/
free-slip problem

The longitudinal velocity (v,) along the center line for

n =1 and n = 3, as a function of the distance in the down-
stream direction from the junction point, can be seen in
Figure 4a. The velocities were normalized by the maximum
of the velocity along the center line.

The longitudinal gradient of the velocity at the junction
point (denoted by a ] in the figure) is very large. Two obser-
vations suggest that the actual asymptotic slope of the curve
at the junction point is not accurately represented in the fig-
ure, and should be infinite: (1) the slope increased with each
successive mesh refinement, and (2) the slope of the cal-
culated curve in Figure 4a changed abruptly at the second
nodal point from the junction, the extrapolation of the
curve through the other nodal points towards the junction
suggesting an even larger slope than that shown in
Figure 4a. Except in the immediate vicinity of the junction
point, calculated values obtained with the 005 and 0025
grid-size meshes differed by less than 1.2%. An infinite slope

means that the longitudinal strain rates (€, ), and because
of the incompressibility condition also the transverse strain
rates(€,,), become singular at the junction point.

The velocity gradients increase with 7, as can be seen in
Figure 4a. For n =1 and n = 3, 90% of the maximum
center-line velocity is reached at & = 0.78 and @ = 0.30, re-
spectively. This is a posteriori justification of using a dis-
tance of 5 between the two no-slip/free-slip transitions
within the model.

Figure 4b depicts the longitudinal and transverse
velocities along a transverse profile that traverses the chan-
nel at the height of the junction point. Velocities were nor-
malized by the maxima of the longitudinal center-line
velocities. The location of the junction point on the x axis is

1.0[ +n=1 b

velocity

02 04 06 08
transverse distance

Fig. 4. (a) Longitudinal velocilies (v, ) along the center line as functions of the longttudinal distance from the junction point ( J ).
(b ) Longitudinal and transversal velocities along a transverse profile. The velocities ave normalized by the maximum longiludinal

velocities al the center line. Symbols represent calculated values. Lines are based on linear interpolations.
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indicated in the figure by J. The maxima of the velocities are
shifted somewhat towards the junction point with respect to
the geometric center of the channel. This shift is larger for
n = 3 than for n = 1, and more pronounced for the trans-
verse (v,) than for the longitudinal velocities (v, ). The max-
imum of the transverse velocity for n = 3 could, in fact, not

be localized precisely, due to the finite spatial dimensions of

the FE mesh. Hence, the region of positive transverse strain
rates is strongly localized about the junction point. The
same observations as made in connection with Figure 4a
suggest that the slopes ofall curves asymptotically approach
infinity at the junction point, and it must be concluded that
the finite slopes depicted result from numerical errors.
Transverse velocities are about [8% of the maximum long-
itudinal velocities, leading to a marked convergence of flow-
lines. This is in general agreement with the findings
obtained from the analytical solutions discussed above.

As examples for calculated velocity fields, the longitudi-
nal velocities over the confluence area are shown in Figure

Sa and b for n = 1 and n = 3, respectively. Only a part of

the FE model is depicted. The lower left corner of the part
of the model section shown has the coordinates (—1.0), and

a n=1 J

the upper right corner the coordinates (2, 1). The junction
point is, as said before, situated at (0, ). The corresponding
transverse velocities are shown in Figure 5¢ and d. Light-
gray tones represent high velocities. Calculated velocities
were normalized with the maximum of the longitudinal
velocities along the center line. The general flow direction
is from left to right.

The maxima of the transverse velocities (Iig 5¢ and d)
move towards the junction point, and the spatial extent of
the regions of transverse compression become smaller with
increasing n. or n = 3, the velocity maximum is in fact
found only two nodes away from ], which is at the verge of
the spatial resolution of the mesh. Further mesh refinements
might move the maximum closer to J and inerease its mag-
nitude.

Accuracy of the numerical solution

The shape function of the elements used for the calculations
does not account for singularities, and there will inevitably
be errors introduced by this inappropriate choice of shape
function. These errors are, however, not expected to propa-

longitudinal

longitudinal

[n=1] ¢ n=1 J
0.20

0.18

<

0.10
0.08 d n=3 J
0.06
0.04
0.02

0.00

transversal [n=3]
0.240
0.216
0.192

0.168

10.144

1 0.120
transversal 0.096
0.072
0.048
0.024

0.000

Lig. 5. Numerically calculaled velocities for a no-stip/ free=slip transition al J forn = I (aand c) andn = 5 ( b and d ). General

Sow divection is from left to right.
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gate very far, inasmuch as even for the region in the im-
mediate neighborhood of the point of singularity the
balance equations are, duc to the integral nature of the FE
method, fulfilled in an average sense (Bathe, 1996). Still, 1t
must be concluded that a proper numerical treatment of this
classic glaciological problem is possible only with the use of
singular elements.

Inahility to represent the singularity of the underlying
solutions makes it difficult to estimate the numerical errors
involved. Based on results obtained through successive mesh
refinement, and comparison with analytical solutions, it can
be concluded that overall errors in velocities are less than
about 1% . Errors in ficlds that depend on velocity gradients
can be significantly larger.

Discussion

The general picture of the ice-deformational pattern along
the surface of a confluence area, which emerged [rom the
analysis of the analytical solution described above, is sup-
ported by the numerical calculations. The numerical results
also strongly suggest that strain rates and stresses become
singular, and that the slope of the longitudinal velocity
profile along the center line is infinite at the junction point
(Fig. 4a). Analysis of the properties of the analytical solu-
tions showed that this singularity is, at least for n = 1, asso-
ciated with the infinitely high-frequency components of the
velocity variation along the center line. It is therefore possi-
ble that if the no-slip/free-slip transition were to be slightly
smoothed out, the singularity would disappear.

Velocity gradients increase greatly with n, and the size
of the region affected by the no-slip/free-slip transition de-
creases at the same time. It follows that observations on ice
deformation on confluence areas are well suited for obtain-
ing information on the rheological behavior of glacier ice,
not only because the glacier must adjust itself to a com-
pletely new surface geometry, but also because the sudden
change in houndary conditions at the junction point gives
rise to a marked region of high rates of ice deformation.
The shape and size of this region depends strongly on the
values of parameters of the constitutive law.

Longitudinal velocities decrease as the ice enters the
confluence area, and then increase again (Fig. 5a and b). A
similar decrease and a subsequent increase in surface
velocities is evident from measurements of the annual sur-
face velocities of the confluence area of Unteraargletscher
(Gudmundsson and others, 1997, fig. 6).

SUMMARY AND CONCLUSION

A map-plane model was used to elucidate the strain-rate
pattern at the surface of a glacier caused by the change in
boundary conditions at the junction point. In addition, the
effect of the apparent ice-thickening along the center line,
from the junction point to the center of the confluence, on
the vertical strain-rate variation was investigated by calcu-
lating numerically flow over a sinusoidal bed, using both
no-slip and free-slip boundary conditions. The results were
compared to field measurements for the confluence area of
Unteraargletscher.

The principal conclusions are illustrated in Figure 6 and
may be listed as follows:

The center line is subjected to a transverse compression
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Fig. 6. Summary of lhe vesults obtained with the help of the
map-plane model. J indicates the position of the junction
paint. The area with an inscribed plus sign is an elevated zone,
and the one with an inscribed minus sign a zone of local sur-
Jace depression.

and a longitudinal extension, even when the angle
between the two tributaries is equal to zero.

Along the center line, where the ice thickness increases in
downstream direction, depth-integrated vertical strain
rates are positive. As a consequence the horizontal trans-
verse compression will generally exceed the concomitant
extension in magnitude.

For free-slip boundary conditions, the vertical strain
rates are increasingly positive with depth until a maxi-
mum is reached. With further depth the strain rates
become smaller but remain positive.

For no-slip boundary conditions the vertical strain rates
change from positive (extension) in the upper part to
negative (compression) in the lower part. The strain-
rate variation is, thus, in this case rather complicated,
but corresponds in qualitative terms to the measured
strain-rate variation on Unteraargletscher. This agree-
ment is found despite the fact that some basal sliding
took place during the period over which strain rates
were measured on Unteraargletscher.

A local surface depression forms in the vicinity of the
junction point, and two super-clevated zones on the mar-
ginal sides of the tributaries facing the junction point. A
corresponding displacement of contour lines can be seen
on Unteraargletscher and on numerous other glaciers.
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