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Abstract

A transcendence theorem is proved for functions satisfying functional equations of the shape
P(z, / (z) , f(zp)) = 0, where P is a polynomial and p > 2 is an integer.

1980 Mathematics subject classification (Amer. Math. Soc): 10 F 35

1. Introduction

In a sequence of three papers, K. Mahler (1929, 1930a, 1930b) discussed the
arithmetic properties of functions in several complex variables satisfying a certain
type of functional equation. Mahler (1969) gave a summary of his earlier work
and proposed three problems connected with it. Two of the three problems have
been studied by K. K. Kubota, J. H. Loxton, A. J. van der Poorten and D. W.
Masser. (An account of the progress up to 1977 is given in Loxton and van der
Poorten (1977).) The present investigation is concerned with the remaining
problem. Specifically, this problem asks for the transcendency at algebraic points
of functions / (z ) satisfying algebraic functional equations of the form
P(z, f(z), f(zp)) = 0, where P is a polynomial and/? > 2 is an integer. The same
question can be asked for functions of several complex variables, with an
appropriate generalization of the transformation z -* zp. We shall consider only
functions of one variable, but we generalize the basic transformation z -> zp in a
different way, as follows.
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[2] Transcendency of function values 387

Define the transformation T on the complex plane by

(1-1) Tz = tpz" + tp+lz"+l + ••• + t p + N z P + N ,

where tp,...,tp+N are algebraic numbers, p and N are integers with p > 1 and
N>0, and tptp+N ^ 0. We set

U=max[l,\tp\+ ••• +\tp+N\).

We shall consider functions/(z) satisfying functional equations of the shape

(1.2) Q0(z, f(z))f(Tz)n + Qx{z, f(z))f{Tz)"-] + ••• +Qn(z, / ( z ) ) = 0

where the (?,(z, u) are relatively prime polynomials with algebraic coefficients
and Q0(z, u) is not identically zero. Then we can find polynomials g,(z, M) with
algebraic coefficients such that

n

g(z)(say) = 2 g,(z> ")Qi(z, u)
i = 0

is independent of u and not identically zero. We set

m— max deg Q (z, u) and M — max{p + N, m).

As usual, if a is an algebraic number, we denote by [a~\ the maximum of the
absolute values of the conjugates of a and by d(a) the least positive integer such
that d(a)a is an algebraic integer, and we set size(a) = max{log [a] , log d(a)}.

We can now state out theorem, using the notation established above.

THEOREM. Let / ( z ) = 2^°=0 ahz
h be a power series whose coefficients all lie in a

fixed algebraic number field and suppose that f(z) converges in some neighbourhood
of the origin, satisfies the functional equation (1.2) and is not an algebraic function.
Let dh be the least positive integer such that dhaj is an algebraic integer for
0 < j < h and suppose that

(1.3) \og\a2,\ogdh<chL (h>l),

for some c > 0 and L > 1. Let a be an algebraic number with 0 < U \ a \ < 1 such
that f(a) converges and T'a and g(T'a) are non-zero for i > 0. / /

(1.4) M(p + N)n2<p2+l/L,

then f(a) is transcendental.

For the extension of previous work required to deal with algebraic functional
equations, it is necessary to invoke a quantitative form of Siegel's lemma in the
construction of the auxiliary function given below. This is the reason for the
appearance of the hypotheses (1.3). Unfortunately, the theorem cannot be applied
to such interesting functions as u(\ogz/2iri) — z~\ where j(w) is the modular
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invariant, because (1.4) is not satisfied. The following are some elementary
instances of the theorem not covered by previous work.

(1) The function fpn(z) — U^=0(l ~ zp )" satisfies the functional equation
(1 - z)fpn(z

p)" = / (z) . If 0 < n < / > 1 / 2 and a is an algebraic number with
0 < | a |< 1, then the hypotheses of the theorem are satisfied and/ (a) is transcen-
dental.

(2) Let P(z) be a polynomial with algebraic coefficients such that P(0) — 1.
The function Fpn(z) = Uf=Q P(zp )" satisfies the functional equation
P(z)Fpn(z

p)n - Fpn(z) and we can take L = 1 in (1.3). If P(fi) = 0 for some fi
with | /? | < 1, then F(z) is not an algebraic function because it has infinitely many
zeros at /?, f}l/p,... inside its circle of convergence (z: | z | < 1}. (Some care is
needed here, in view of the example II*=O(1 + z2 ) = (1 — z)"1.) Thus, if 0 < n
</? 1 / 2 and a is an algebraic number such that 0 < | a |< 1 and P{ap) =£ 0 for
/' s* 0, then Fpn(a) is transcendental.

(3) Define T as in (1.1) and suppose that p + N <p3/2. The function/(z) =
2™=0T

hz converges in (z: \z\<U~1} and satisfies the functional equation
f(Tz) = f(z) — z, so / (z ) is not an algebraic function. If a is an algebraic
number, 0 < U\ a | < 1 and T'a ¥" 0 for / s* 0, then/(a) is transcendental.

2. Preliminary lemmas

The first lemma is elementary, but useful in estimating the size of a root of a
polynomial with algebraic coefficients.

LEMMA 1. Suppose that Ao =£ 0, Av.. .,An are algebraic numbers and A0/i" +
Ax$

n~x + ••• +An = 0.Then

Further, if A is a positive integer such that AA0, AAx,...,AAn are algebraic

integers, then so is AA0/3.

The next two lemmas deal with the interates of the transformation T defined in
(1.1).

LEMMA 2. Let a be an algebraic number. Then there are a constant c, and a
positive integer D, independent of r, such that | 7"« |< c\p+Ny and D(p+NyTra is
an algebraic integer for all r>0.
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PROOF. We verify by induction that

. .. . -+I.P + NY

i * " i - ~ i

for a suitable constant c,, and that
jy] + (p + N)-i l-(P + NY-rr

is an algebraic integer for a suitable positive integer D. This strategy is typical of

several similar calculations in what follows.

L E M M A 3 . If 0 < U\a | < 1, then | Tra | < (U\ a \ ) p ' for r > 0 and \Tra\<\a\

for r ^ 1.

PROOF. We verify by induction that

In connection with one of the hypotheses of the theorem, it follows from

Lemma 3 that, if

{ | ( | + 1 | + ••• +\tp+N

then Tra ^ 0 for r > 0. Indeed, if Tra = 0, then

\tp+l\

3 . Proof of the theorem

Let the power ser ies / (z ) and the number a satisfy all the requirements of the

theorem and suppose, in addition, that / ( a ) is algebraic. Under these assump-

tions, we shall derive a contradiction, thereby proving the theorem. Let F be an

algebraic number field containing the coefficients tp,... ,tp+N of the transforma-

tion polynomial, all the coefficients of the power ser ies / (z) , the coefficients of the

polynomials Q0(z, M ) , . . . ,Qn(z, u) appearing in the functional equation, and the

number a a n d / ( a ) . We assume, as we may, that the coefficients of the polynomi-

als Q0(z, u),.. .,Qn(z, u) are algebraic integers.

Introduce the parameter w by
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From the definition of M and the assumption (1.4), we have 0 < w =£ 1/2.
Further, by the assumption (1.4),

L = n(p + N)pV~wVL = (n2M(p +

Consequently, we can choose numbers q and e such that

(3.1) \<q<pl/L, £ > 1 , enMqw<pq, n{p + N)ql'w < pq.

In what follows, c 2 ,c 3 , . . . denote positive constants depending only on the
quantities introduced above.

By Lemma 3, | r r a | < | a | for r > 1, so all the series f(Tra) converges and
satisfy

(3.2) Q0(T
ra, f(Tra))f(Tr+ia)" +••• +Qn(T

ra, f(Tra)) = 0 .

Now, g(Tra) ¥= 0 by hypothesis, so at least one of Q0(T
ra, f{Tra)),

• • -,Qn-\(T
ra, f(Tra)) is non-zero. We set

jr = mxn{ j:Qj(T'a,f(T'a))*0}

and define Yr (r > 0) inductively, as follows:

Thus Yr¥^0 for all r s* 0. The next lemma gives estimates for these quantities.

LEMMA 4. For r>l, [F(f(Ta),... ,f{Tra))\ Q] ^ c2n
r and

size(Yr), size(YJ{Tra)) < c3rMr.

PROOF. The assertions follow by induction, using (3.2) and Lemma 1 and 2.

The next lemma, involving the construction of the auxiliary function, is the
central point of the proof.

LEMMA 5. Let k be a positive integer and set p, = 2[qwk] and p2 = 2[q^~w)k].
Then there are p, polynomials Pj(z) = 2f io ' fy;z' (0 ^ 7 ** Pi ~ 1) w'tn degrees at
most p2 — 1 and whose coefficients are algebraic integers in F with sizes at most
c4kqLk, such that the function

Ek(z) = \ Pj{z)f(z)J= ibhz
h

j = 0 /! = ()

is not identically zero, but all the coefficients bh with h < ( l /2)p,p2 vanish. Further,

size(bh) < c5khL and \og\bh\ < c6(kqLk + h),

providing k is sufficiently large.
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PROOF. Set f(z)J = 2"=0 aJhz
h fory s* 0. It is easily verified that

\^^cJ,+hL and \ajh\<ci+h (;, h > 0).

The first estimate follows from the hypothesis (1.3) and the second follows from
the assumption that /(z) converges in some neighbourhood of the origin. The
polynomials Pj(z) have in all ptp2 coefficients bjt. We can achieve the property
required of the auxiliary function Ek{z) by choosing bjt to satisfy the (l/2)p,p2

linear equations

(3.3) 2<W>y/ = 0 ( 0 < * < ( l / 2 ) P l p 2 ) .

(The sum is taken over all / and j satisfying 0 <y < p, — 1 and 0 < /' <
min{p2 — 1, h}.) The integer D = II^i ^[Plp2/2r] w i n serve as a common de-
nominator for all the av-iA_,- appearing in these equations. The hypothesis (1.3)
gives

log D < c9((l/2)p,p2)Llog p, < cwkqLK,

whence, by the remark at the beginning of the proof,

By a standard version of Siegel's lemma, as given, for example, in Lang (1966),
page 4, the equations (3.3) have a non-trivial solution in which the btj are
algebraic integers in F and

size(/>,7) < c4kqLk (0 < / < p, - 1, 0 <> < p2 - 1).

Since/(z) is a transcendental function, the function Ek(z) so constructed is not
identically zero. By the construction of Ek(z).

(3-4) ** = 2 «;.*-, V
where the sum is taken over all i and j satisfying 0 <_/ < p, — 1 and 0 < / =£
min{p2 — 1, A}. In estimating bh, we can suppose that h 2* (l/2)p,p2, since
otherwise £>A = 0. Now, if /: is sufficiently large, we have h s* qk, so

logfS^< logp,p2 + (p, + /jL)logc7 + c4kqLk

*icnkhL.

Also, the integers Dh = I l^i </(/,/r] will serve as a common denominator for all
the aJth_i appearing in (3.4), so

log d(bh)<i log Dh < cgh
Llog p, < c10A:/!L.

This gives the required estimate for the size of bh. Finally, again using (3.4),

log plP2 + (p, + A)log c8 + c4kq Lk

This completes the proof of the lemma.
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In the final part of the proof, we Seek to exploit the fundamental inequality of
transcendency theory: if /? is a non-zero algebraic number, then

(3.5) Iog|j8|>-2[0(0):e]size()8).

Let Ek(z) be the function constructed in Lemma 5. Let H be the least integer
such that bH¥=0 and let K be the integer such that qK < H < qK+{. For k
sufficiently large, we have H ** (\/2)pxp2 s* qk, so that K > k.

LEMMA 6. Ifk is sufficiently large, then

[Q{Y£<Ek(T
Ka)):Q]<c2n

K

and

£<Ek(T
Ka)) < cl3(max{eMq",(p K

PROOF. The first assertion follows at once from Lemma 4. For the second, we
use the representation

j
7 = 0

From Lemma 2, 4 and the estimate for the size of the coefficients of the
polynomials Pj(z) in Lemma 5, we find

size(YpEk(T
Ka)) < logp,p2 + c4kqLk + cl4(p + N)Kp2 + c3KMK

Pl.

This yields the assertion of the lemma, since qL < p from (3.1).

LEMMA 7. Ifk is sufficiently large, then Y£<Ek(T
Ka) ¥= 0 and

PROOF. We can write

(3.6)

E k ( T K a ) = b H ( T « a ) H { l + { b H + { / b H ) T « a + { b l l + 2 / b H ) { T K a f + • • • } .

From Lemma 3, the estimates in Lemma 5 and the fundamental inequality (3.5)
applied to bH,

\og\{bH+h/bH){TKa)h\ < c6(kqLk + H + h) + cxikHL + pKh

^ cl6KqLK + c6h + pKhlog(U\a\).

We can compare the absolute values of the terms of the series

( b H + l / b H ) T K a + ( b H + 2 / b H ) ( T K a f + •••
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with those of the geometric progression

e c " K ' i u L c > ( U \ a \ ) p K + ( e e < ( U \ a \ ) p " ) 2 + • • • ) .

By hypotheses, TKa =h 0 and U\ a | < 1. Now, as soon as eC6(U\ a \)pK < 1/2, the
last series is less than ec'"Kq"! • eC6(U \<x\)p • 2. If k is sufficiently large,

e^K"LK • ec<(U\a\)p" • 2 < 1

since ql < p. Thus, Ek{TKa) =t 0 and

log\YpEk{TKa)\< c3KMKp, + c6(kqLk + H) + pKHlog(U\a\) + log2,

and the lemma follows from the inequalities in (3.1).
To complete the proof of the theorem, we apply the fundamental inequality

(3.5) to the number YfrEk(T
Ka). By Lemma 6 and Lemma 7, we obtain

(\/2)pKqK\og{V\a\) > -2c2«*c13(max{eA/<r,(/> + N)q^})K,

providing k is sufficiently large. Since log(t/| a |) < 0 and K**k, this contradicts
the choice of the parameters in (3.1).
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