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Abstract

We examine the differential properties of the solution of the linear integral equation of
the second kind, whose kernel depends on the difference of arguments and has an
integrable singularity at the point zero. The derivatives of the solution of the equation
have singularities at the end points of the domain of integration, and we derive precise
estimates for these singularities.

1. Introduction

As a rule, the rate of convergence of approximate methods depends on the
smoothness of the solution of the initial problem. The properties of the solution
of the integral equation u(t) = /£ K(t, s)u(s) ds + f(t) with a weakly singular
kernel K{t, s) have been studied in papers [2]-[7]. Kahane [2] presents condi-
tions under which the solution of the equation is analytical in the interior points
of the domain of integration. Richter [5] submits concrete results of
practical value concerning the integral equations whose kernel has the form
K(t, s) = logflf - s\) or K(t, s) = \t - s\~" for 0 < a < 1. Schneider [6] extends
these results to kernels of the form K(t, s) = m(t, s~)\o%{\t - s\) and
K(t, s) = m(t, s)\t - s\~° for 0 < a < 1, with a smooth function m.

The current paper (see also [7]) deals with kernels of the form K(t, s) =
K(\I — s\), where <c and its derivatives have certain algebraic estimations (see
(2.3)). The class of kernels allowable here is different to that allowed by
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Schneider, and allows, for example, kernels of the form

K(t, s) = m(\t - s\)\t - *r(log(|< - s\))n,
with a smooth function m, 0 < a < 1 and n G N. We give precise estimations to
derivatives of the solution. The main result is contained in Theorem 1. Without
any serious difficulties, one can generalize this theorem to the case of kernels
K(t, s) = m(t, s)K(\t - s\) or K(t, s) = m(t, s)n(t - s). The details will be
treated in another paper of ihe authors.

We refer also to papers [3], [4] that estimate the behaviour of the first and
second derivatives of the solution.

2. Main results

We consider the linear integral equation of the second kind

u(t) = (bK(\t - s\)u(s) as + f(t), 0 < t < b, b< oo, (2.1)
•'o

where the functions K and / are given. We shall assume that

/ e C m [ 0 , b] and K e. Cm~\Q, b] for m > 1, (2.2)

| /cw(0| < ykf"~k for 0 < / < b and k = 0, 1, . . . , m - 1, (2.3)

and

I«W(')I > y°kt~
<"'-k for 0 < / < t0 and k = 0, 1, . . . , m - 1, (2.4)

where a and a0 are real constants such that

0 < a < 1 and a - (1 - a) < a0 < a, (2.5)

and yk, y° and t0 are some positive constants. By C[0, b], where p is a
non-negative integer, is denoted the set of p times continuously differentiate
real-valued functions on [0, b] (later abbreviate C°[0, b] by C[0, b)) and byyik) is
denoted the &th derivative of the function^: y(k\t) = (dky/dtk)(t). Our main
results are contained in the following theorem.

THEOREM 1. Suppose that the homogeneous equation corresponding to (2.1) has
in C[0, b] only the trivial solution. If the conditions (2.2) and (2.3) hold, then
equation (2.1) has a unique solution u and

u e C[0, b] n Cm(0, b),

W ( k \ t ) \ < v k [ t ^ ~ k + l + ( b - 0 " a " * + 1 ] , 0 < t < b , k = 0 , l , . . . , m ,

(2.6)
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where -qk, k = 0, 1, . . . , m, are positive constants. If the conditions (2.2) to (2.4)
hold, then

«<*>(*) = u(0)K<k-l\t) - u{b)K«-x\b - t) + vk(t), * - 1, 2, . . . . m,

(2.7)

where

vk e Cm-*(0, b),

^ ( / )
 0 and Urn - - ^ 0. (2.8)

The proof of Theorem 1 is given in Section 6. Sections 4 and 5 contain
necessary preliminaries for the proof.

REMARK 1. If (2.4) holds only for some k = A;o, then (2.7) holds for k —
ko+ 1.

REMARK 2. Theorem 1 is easily modifiable to a case when K G C[0, b] but a
certain derivative has a singularity at the point zero. The corresponding formula-
tion can be guessed by means of equality (2.7).

3. Some specific cases

Many problems of practical interest reduce to the problem of solving the
integral equation (2.1) with a kernel of the form

K(I) = log t + K0(t), (3.1)

K(t) Jt-f + K0(t), 0</3<l, (3.2)

or, more generally,

K(/) = r\log t)" + K0(t), 0 < A < l , l < / i < o o , (3.3)

where K0 e Cm~'[0, b] is a smooth function on [0, b] without singularities. For
such kernels conditions (2.3) and (2.4) hold, and we can use Theorem 1 to
characterize the singularities which appear in the solution of integral equation
(2.1). In the case (3.2) we can set a = a,, = ft; in the cases (3.1) and (3.3) we can
take correspondingly OQ = 0 with a = e and ao = X with a = X + e with some
e > 0 .
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4. Properties of the integral operator

Let T be the integral operator of equation (2.1):

( 7 » ( 0 = f V k - '\)y(') ds, 0<t<b.Jo
We shall assume throughout that condition (2.3) holds for k = 0. Then T is a
compact (or completely continuous) linear operator in Banach spaces C =
C[0, b] and V = Lp(0, b), 1 < p < oo. In addition, the operator T maps Lp

into L7 with/> < <7 <p/(i — (1 — a)/>) and there exists a positive integer / that
the composition T1 maps L1 into C. These facts are well known (see, for
example, [1]).

Our objective in this section is to estimate derivatives of the function Ty when
the behaviour of the function y and its derivatives is known. The derivatives we
shall understand in the sense of distributions.

Let D'y denote the A:th distributional derivative of y. It can be defined as
follows: choose the space <$ = ^(0 , b) of all infinitely differentiable on (0, b)
functions with the supports in (0, b) and the space ^ * of continuous linear
functionals on ^D, and then determine D 'y by insisting that

{D'y, <p> = (-1)*O

for any q> G 6i>, where <z, <p> denotes the value o f z e 6 D * o n « p G 6 D . Fo r the

locally integrable function y we can write

<y, <p> = f y(t)<p(O dt.f
Each locally integrable function y is differentiable in the sense of distributions
(but D'y need not be a function); if y G C*(0, b), then the equality D'y = y(k)

is valid. For more detailed information see, for example, [1].

LEMMA 1. / / the function y G C[0, b] is such that Dy G L'(0, b), then the
function Ty has the same properties, and *

DTy = TDy + y(0)K - y{b)Kx, (4.1)

where

K,(0 = K{b - t).

PROOF. Write

(7»(0 = f«( ' - s)y(s) ds + [\(s - t)y(s) ds
Jo Jt

= VK(p)y{t - a) da + f '*c(a)>>(r + a) da.
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From here, because of the differentiability of y, it is easy to conclude the
differentiability of Ty. Differentiating, we then obtain (4.1):

(DTy)(t) = f\(a)[(Dy)(t - a)] da + JT*~'K(«0[(S>0(' + a)] da

+y(0)K(t) - y(b)K(b - t)

= (TDy)(t) + y(0)K(t) - y(b)K(b - t),

and so Lemma 1 is proved.

COROLLARY 1. Ifcp S ^ (0 , b), then T<p e C°°[0, b] and

DkT<p=TDk<p, k = 0, 1 ,2 , . . . . (4.2)

LEMMA 2. Let the function K be such that the conditions (2.3) are fulfilled. If
y £ Cm-\0,b)and

0<t<b,0<fi<l,k"0,l,...,m-\, (4.3)

then for the function z - Ty we get that z G C""~ '(0, b) and

|z<*>(/)| < <[ r* -* + I - " + (b - t)-0-k+i—],

0 < t < b, k = 0, 1, . . . , m - 1, (4.4)

where ak and a'k are some positive constants.

PROOF. It is sufficient to observe a case when

yeCm-\0,b],

\y(k\t)\ <akr
fi~k, 0<t <b,k

y{b) = y'(b) = • • • = /""

(4.5)

To see this, we take a function r such that r £ C°°[0, b], r(t) = 1 for 0 < / <
(b/3) and r(t) = 0 for (26/3) < t < b, and present the function ^ in the form
y = yQ + yt with >»0 = ry and .y, = (1 — r)y. Then conditions (4.5) for the
function y0 are satisfied. For the function yi we get the same conditions after
substitutions /' = b — t and s' = b — s in the definition of the operator T.

In the case k = 0, the function z is continuous over (0, b) and the inequality
(4.4) holds. We shall find a formula for Dkz, k > 1. For each <p G ^(0 , 6) the
equalities

(Dkz, <p> = (-l)*<
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are valid. Because of the symmetry of the kernel of the integral operator T and
Corollary 1, our chain of equalities can be continued like this:

y(s)j-k[(T<p)(s)] ds

1 ds.

The function in square brackets belongs to class C °°[0, b] and its derivatives of
order p,p < k — 1, at the zero point s = 0 cancel. This enables us, by means of
integration by parts, to transfer the derivatives to the function y, whereby
members outside the integral cancel:

X' (T<p)(s) - 2 *i
i-o l !

ds.

The interior integrals

fb
K(t)<p«\t) dt, 1, 2, . . . , k - 1,

are integrated by parts. Then we obtain

- s\)+

(4.6)

Now we change the order of integration on the right of equality (4.6). The
foundation of this step is given later. We get

,=o
ds)<p(t)dt,

J

from which, owing to the arbitrariness of the function <p e ^D, we get finally that

>. (-i) -7TKKI

in I-
ds. (4.7)

From here

|(D*z)(/)| < &(/) + **(/), 0 < / < 6, Ac = 1, 2, . . . , m - 1,
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where (see (4.5))

and

**(0 = a.
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,-ft-*
k-\ -i

2 (_i)'+«i-K(o(
1-0 ' !

A : - l

2
i = 0

t-1 -i

2 7i-|t(I)(0l *•

For estaimating the member gk we use Taylor's formula in the form

•nSk\a)da
i = o (* " 0!

and assumption (2.3). The result is

- 0 - ** }
The last integral converges if /J < 1 and a < 1; to get the last equality, we
introduced new variables r = st~l and p = at'1. Using (2.3) again, we get the
estimate for member hk:

\K(s - 01 ds < y0 - t)'a ds

ds + }\s - typ-k-a ds},

and

J,

t < | ,

d s , j " 0 , 1 , . . . , k - l ,

and, after finding the integrals, we get that

hk(t) < (constant)* [r"-*+>-» + (b - O"'

Hence, estimate (4.4) is valid for 1 < k < m — 1. It should be mentioned here
that this estimate justifies the change in the order of integration in formula (4.6)
since the function to be integrated is absolutely integrable in the square 0 < /,
s < b; it is considered here that tp(t) equals zero in some neighborhoods of / = 0
and / = b.

By means of standard discussions based on the idea of the suppression of
singularities, we conclude from equality (4.7) that Dkz, k = 1, 2, . . . , m — 1, is
continuous; therefore Dkz = z w and z G Cm~\0, b). Thus Lemma 2 is proved.
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According to (2.3) and Lemma 2 we have

Repeated application of Lemma 2 gives

\(D'PK)(t)\ < ^ [ r - " * 1 — > + (b - z ) - ]

provided $r = [a - (J - 1)(1 - a)] > 0. If ft- < 0, which occurs for all suffi-
ciently large j , then we substitute the power —/̂  — / by —e — /', where e > 0, and
Lemma 2 allows the estimate

Combining these two estimates we get the estimate

\ ( D ' P K ) ( t ) \ < a i J e [ r i + m i a v - " - ' - J - v + * ) ° ) + ( b - / ) - ' + « » s » { > - « - ^ ]

i = 0, 1, . . . , m - 1, 7 = 0, 1, 2

Taking herey = / > 1/(1 - a - e), we obtain that

| ( Z ) ' ( P 7 » ( 0 | < *1 +,,,,,[ r ' -" -< + (6 - O"*"""1], i - 0, 1, . . . . w - 2,

which allows us to use Lemma 2 again and, by means of arguments as above, we
get that

\(D'P(DT')K)(t)\ < aiMt[r'+'>~ + (b- tTl+'>»],

where / = 0, 1, . . . , m — 2,j = 0, 1, 2, . . . and

0>>£ = min{ l - a - e j - (j + l)(a + e)}. (4.8)

Again takingy = / > 1/(1 - a - e), we get

\(D'(DT')2
K)(t)\ < ai+ , , U e [ r1—' + (b- / ) - ' - " - ' ] , i = 0, 1, . . . , m - 3,

and so on. The result is formulated as follows.

LEMMA 3. Let the conditions (2.3) be fulfilled, and the inequalities j > 0, / > 0,
n > 0, i + n < m — 1 and I > 1/(1 — a — e), with an e > 0, where e + a < 1,
be valid. Then

\(D'P(DT')\)(t)\ < aIJJwH,[r'+0.... + (Z, - / r + o ~ ] , (4.9)

where rjae is defined by (4.8) andaiilnc is a positive constant.
All the derivatives to the left of inequality (4.9) exist in the classical sense. The

same estimate holds if we replace K by /c,, where Kt(t) = K(b — t).

If we take i = j = 0 in inequality (4.9), then we get

\((DT')\)(t)\ < aOM^lr°-< + (b- ,)—'].
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Therefore

(DT')\ G L\0, b) and (DT')\ e ^'(0, b), (4.10)

for n = 0, 1, . . . , m — 1. In the following we consider the integer / >
1/(1 - a - e) to be such that T1 maps L\0, b) into C[0, b]. Therefore

T'(DT')\ G C[0, 6] and T'(DT')\ G C[0, 6], (4.11)

for n = 0, 1, . . . , m — 1.

5. The first derivative of the solution

LEMMA 4. Let the kernel K satisfy the conditions (2.3) and let the homogeneous
equation u0 = Tu0 have in the space C[0, b] only the trivial solution u0 = 0. Let
f G C[0, b] and Df G L'(0, b). Then the solution u of the equation

u=Tu+f (5.1)

has an integrable derivative v = Du G Ll(0, b) which satisfies the equation

o => Tv + Df+ U(0)K - u(b)Kl, K , ( 0 = K(b - t). (5.2)

PROOF. AS mentioned previously, the operator T is completely continuous in
spaces C and Lp, 1 < p < oo. If, for M0 G LP, the equation M0 = Tu0 is valid,
then M0 = 7^M0, 7 = 1, 2, . . . , from which we conclude that u0 G C and,
according to the assumption of the lemma, u0 = 0. Thus equation (5.1) has a
unique solution in both spaces C and Lp, and the solution belongs to the same
space as the inhomogeneous term. Hence equation (5.1) has a unique solution
u G C[0, b] and equation (5.2) has a unique solution v G L'(0, b). If it were
known for the solution u of equation (5.1) that Du G L1 then, according to
Lemma 1, u = £>M would satisfy equation (5.2). Approximating the kernel K by
smooth kernels, it is easy to show that Du really belongs to L1. We omit details.
Thus Lemma 4 is proved.

6. Proof of Theorem 1

Let the assumptions of Theorem 1 be fulfilled and let 1 < k < m. Put
S = / + T + T2 + • • • + T'~' and / = T°; concerning the choice of /, see the
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last part of Section 4. Fo r the solution u of equation (2.1) we shall derive the

formula

Dku = Dk~lS[u(0)K - M(6)K,]

+ Dk-2S[u(0)(DT')K - u(b)(DT')Kl + w,(O)ic - U,(6)K,]

+ D°s[u(0)(DT')k-l
K - u{b)(DT')k-\x +

'f-2^ +•••

+ uk, (6.1)

where w,, U2, • • • , uk are continuous functions over [0, b] introduced in the
course of discussions and «,(f) = K(6 — i).

We start from the fact that Du G Ll and Du satisfies the equation

Du = TDu + f + U(0)K - u{b)Kx

(see Lemma 4). We introduce the function M, SO that

Du = S[w(0)ic - M(6)K1] + w, (6.2)

is valid. Then «, satisfies the equation ul = Tiu, + /,, where/, = / ' + U(0)T'K —
u(b)T'Kv According to the conditions (4.10) and (4.11), we get that/, e C and
£>/, £ Z,1, and using Lemma 4 results in M, €E C, .DM, E L1 and

Z)M, = TDM, + / " + U(0)(DT')K - u(b)(DT')Ki + W,(0)K - M,(6)K,

being valid. Now we introduce the function u2 so that

Z)w, = S[U(0)(DT')K - u(b)(DT')nx + M,(0)K - M,(6)K,] + «2 (6.3)

is valid. Then u2 satisfies the equation u2 = Tu2 + f2 where

h = /" + ^ [ ^ ( p r O K - ^^ (DTOK, + «,(o)K - «,(*)«,].
Again by means of (4.10) and (4.11) we see that/2 e C and Df2 £ l ' , and again
using Lemma 4 we get u2 E C, Du2 S L1 and

Z)M2 = TDu2 + (DT')[U(0)(DT')K - u(b){DT')Kx +M,(0)K - «,

+ « 2 (0 )K - u2(b)Kl

and so on. At the fcth stage, according to the member Duk_l we introduce the
function uk so that

Duk_i = ^[^(OXDrO^V - u{b)(DT')k~\x

"-2^

] «t (6.4)
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is valid. Then uk satisfies the equation uk = Tuk + fk where

T'[u(0)(DT')k-lK - u{b){DT'f-\x

Again according to (4.10) and (4.11) we get that^ G C and thus also uk G C.
Now we gradually establish by means of connections (6.2) to (6.4) that

Dku = Dk~lS[u(0)K - u(b)Kx] + Dk~iul

= D * - 1 S [ U ( 0 ) K - «(*>)*,]

+ D"-2S[U(0)(DT')K - u{b)(DT')Kx + U,(0)K - «,(6)/c,]

and so on. Finally we get formula (6.1).
From (6.1), by means of Lemma 3, we get that Dku = ww is continuous over

(0, b) and statement (2.6) holds.
Really, the dominant member among members with singularities to the right

of the equality (6.1) is

U(0)Z>*-'K - u{b)Dk-\. (6.5)

The next rival member is

According to Lemma 3 its bound is
2 a-2 e + (b -

If e > 0 is small enough, then it follows from a — (1 — a) < a0, see (2.5), that

- (k - 1) - a0 < - (k - 1) + 1 - 2a - 2e.

Thus the singularities in (6.6) are milder than the ones of

and

see (2.4). Therefore the member (6.5) is the dominant member in (6.1); the other
members to the right in (6.1) have still milder singularities. The proof of
Theorem 1 is completed.
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