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Abstract

Let 6 be a set and σ be a positive function on 6. We introduce and study a locally convex topology
β1(6, σ ) on the space `1(6, σ ) such that the strong dual of (`1(6, σ ), β1(6, σ )) can be identified
with the Banach space (c0(6, 1/σ), ‖ · ‖∞,σ ). We also show that, except for the case where 6 is finite,
there are infinitely many such locally convex topologies on `1(6, σ ). Finally, we investigate some other
properties of the locally convex space (`1(6, σ ), β1(6, σ )), and as an application, we answer partially
a question raised by A. I. Singh [‘L∞0 (G)

∗ as the second dual of the group algebra L1(G) with a locally
convex topology’, Michigan Math. J. 46 (1999), 143–150].
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1. Introduction

Throughout this paper, let 6 be an arbitrary set and σ be a positive function on 6.
We denote by `1(6, σ ) the space of all complex-valued functions ϕ on 6 such that
σϕ ∈ `1(6), the usual Lebesgue space of the discrete space 6. Then `1(6, σ ) with
the norm ‖ · ‖1,σ defined by

‖ϕ‖1,σ := ‖σϕ‖1

is a Banach space. For each x ∈6, we denote by δx the function defined on 6 by
δx (t)= 1 for t = x and δx (t)= 0 otherwise. Also, let `∞(6, 1/σ) denote the space
of all complex-valued functions f on 6 with f/σ ∈ `∞(6), the space of all bounded
functions on 6. Then `∞(6, 1/σ) with the norm ‖ · ‖∞,σ defined by

‖ f ‖∞,σ = ‖ f/σ‖∞

is a Banach space. Moreover, `∞(6, 1/σ) is the dual of `1(6, σ ) by the pairing

〈θ( f ), ϕ〉 :=
∑
x∈6

f (x)ϕ(x) ( f ∈ `∞(6, 1/σ), ϕ ∈ `1(6, σ )).
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Denote by c0(6, 1/σ) the subspace of `∞(6, 1/σ) consisting of all functions f on6
with f/σ ∈ c0(6), the space of all functions on 6 vanishing at infinity, and note that
`1(6, σ ) is the dual of c0(6, 1/σ) under the above duality.

The study of the strict topology on C(X), the space of continuous functions on the
topological space X , began with Buck’s work in [1]. There is an extensive literature
on this subject; see, for example, [10, 11]. Also, for such a study in another context,
see [4, 14, 16], for example. For a generalization of the strict topology and/or strict
topology in a more general setting, see, for example, [2, 7].

In this paper, we introduce and study a locally convex topology β1(6, σ ) on
`1(6, σ ) such that c0(6, 1/σ) can be identified with the strong dual of `1(6, σ ).
We then show that, except for the trivial case where 6 is finite, there are infinitely
many such locally convex topologies τ on `1(6, σ ), and hence c0(6, 1/σ) can be
considered as the strong dual of `1(6, σ ). We study, among other things, some locally
convex space properties of the space (`1(6, σ ), β1(6, σ )). Finally, we give a partial
answer to a question raised by Singh in [12].

2. A locally convex topology on `1(6, σ)

Let 6 be a set and σ :6 −→ (0,∞). The set of increasing sequences of finite
subsets of 6 is denoted by F and the set of increasing sequences (rn) of real numbers
in (0,∞) with rn→∞ by R. For any (Fn) ∈ F and (rn) ∈R, set

U ((Fn), (rn)) :=
{
ϕ ∈ `1(6, σ ) :

∑
x∈Fn

|ϕ(x)|σ(x)≤ rn for all n ≥ 1
}
,

and note that U ((Fn), (rn)) is a convex balanced absorbing set in the space `1(6, σ ).
It is easy to see that the family U of all sets U ((Fn), (rn)), for (Fn) ∈ F and (rn) ∈R,
is a base of neighbourhoods of zero for a locally convex topology on `1(6, σ ); see,
for example, [13, Theorem 1.18]. We denote this topology by β1(6, σ ) and call it
the strict topology on `1(6, σ ). Note that the strict topology can be generated by the
family {PU :U ∈ U} of seminorms on `1(6, σ ), where

PU (ϕ) := sup
{

r−1
n

∑
x∈Fn

|ϕ(x)|σ(x) : n ≥ 1
}

for all ϕ ∈ `1(6, σ ) and U :=U ((Fn), (rn)) ∈ U . We denote the norm topology on
`1(6, σ ) by n(6, σ ); note that β1(6, σ )≤ n(6, σ ).

PROPOSITION 2.1. Let 6 be an infinite set and σ be a positive function on 6. Then
a subset of `1(6, σ ) is n(6, σ )-bounded if and only if it is β1(6, σ )-bounded.

PROOF. Let B be a β1(6, σ )-bounded set in `1(6, σ ), and suppose that B is not
n(6, σ )-bounded. Then there is a sequence (ϕn)⊆ B such that ‖ϕn‖1,σ > n for all
n ≥ 1. For each n ≥ 1, choose a finite set Fn in 6 such that∑

x∈Fn

|ϕn(x)|σ(x)≥ n
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and note that (Fn) ∈ F . Let (rn) be a sequence in R with r2
n ≥ n. Since B is β1(6, σ )-

bounded, there is a constant s > 0 such that

B ⊆ sU ((Fn), (rn))

for all n ≥ 1. We therefore have

n ≤
∑
x∈Fn

|ϕn(x)|σ(x) < rns

which is a contradiction. The converse is clear. 2

We denote by τb(6, σ ) the strong topology on (`1(6, σ ), β1(6, σ ))∗; that is, the
topology of uniform convergence on bounded subsets of `1(6, σ ) with respect to the
weak topology σ(`1(6, σ ), (`1(6, σ ), β1(6, σ ))∗). We also denote the topology
given on (`1(6, σ ), β1(6, σ ))∗ by the norm

‖ f ‖ = sup{| f (ϕ)| : ϕ ∈ `1(6, σ ), ‖ϕ‖1,σ = 1},

by τn(6, σ ). An immediate consequence of Proposition 2.1 is that on (`1(6, σ ),

β1(6, σ ))∗ the strong topology τb(6, σ ) coincides with the topology τn(6, σ ).

PROPOSITION 2.2. Let6 be a set and σ be a positive function on6. On `1(6, σ ) the
norm topology n(6, σ ) coincides with the strict topology β1(6, σ ) if and only if 6 is
finite.

PROOF. Consider the set

U := {ϕ ∈ `1(6, σ ) : ‖ϕ‖1,σ < 1}

and note that U is n(6, σ )-open, and thus β1(6, σ )-open. It follows that there is a
sequence ((Fn), (rn)) in F ×R such that U ((Fn), (rn)) ∈U . Suppose that 6 is not
finite, so we can choose n0 such that rn0 > 1 and xn0 ∈6 \ Fn0 . Let

ϕ := σ(xn0)
−1δxn0

.

We then have ϕ ∈U ((Fn), (rn)), but ϕ /∈U . 2

3. Dual of `1(6, σ) with the strict topology

We commence this section with the following key result.

THEOREM 3.1. Let 6 be a set and σ be a positive function on 6. Let τ be a
locally convex topology on `1(6, σ ) with σ0(6, σ )≤ τ ≤ β

1(6, σ ). Then the dual
of (`1(6, σ ), τ ) endowed with the strong topology can be identified with c0(6, 1/σ)
endowed with ‖ · ‖∞,σ -topology.

PROOF. It is sufficient to prove the theorem for the case τ = β1(6, σ ). To this end
we first show that

θ(c0(6, 1/σ))⊆ (`1(6, σ ), β1(6, σ ))∗.
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Let f be in c0(6, 1/σ) and ε > 0 be given. Choose an element ((Fn), (rn)) of F ×R
with rn −→∞ and r1 ≥ 2 such that

| f (x)| ≤ εr−2
n σ(x) (n ≥ 1)

for x ∈6 \ Fn . We show that

|〈θ( f ), ϕ〉| ≤ ε for all ϕ ∈U ((Fn), (rn))

from which it follows that θ( f ) ∈ (`1(6, σ ), β1(6, σ ))∗.
To this end, let ϕ ∈U ((Fn), (rn)), and set F0 = ∅ and r0 = 2. Since f (x)= 0 for

all x ∈6 \
⋃
∞

n=2 Fn , it follows from

∞⋃
n=2

Fn =

∞⋃
n=0

(Fn+1 \ Fn)

that

|〈θ( f ), ϕ〉| =
∣∣∣ ∑

x∈6

g(x)ϕ(x)
∣∣∣

≤

∑
x∈
⋃
∞

n=2 Fn

| f (x)||ϕ(x)|

≤

∞∑
n=0

( ∑
x∈Fn+1\Fn

| f (x)||ϕ(x)|
)

≤

∞∑
n=0

εr−2
n

( ∑
x∈Fn+1\Fn

|ϕ(x)|σ(x)
)
.

On the other hand,

m∑
n=0

r−2
n

( ∑
x∈Fn+1\Fn

|ϕ(x)|σ(x)
)
=

m∑
n=0

(r−2
n − r−2

n+1)
( ∑

x∈Fn+1\F1

|ϕ(x)|σ(x)
)

+ r−2
m+1

∑
x∈Fm+1\F1

|ϕ(x)|σ(x)

≤

m∑
n=0

2(r−1
n − r−1

n+1)r
−1
n

( ∑
x∈Fn+1

|ϕ(x)|σ(x)
)

+ r−2
m+1

∑
x∈Fm+1

|ϕ(x)|σ(x)

≤

m∑
n=0

2(r−1
n − r−1

n+1)+ r−1
m+1.

Thus,
|〈θ( f ), ϕ〉| ≤ ε(2r−1

0 − r−1
m+1) < ε.
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This shows that
θ( f ) ∈ (`1(6, σ ), β1(6, σ ))∗.

Now, let H be a β1(6, σ )-continuous functional on `1(6, σ ). Then there is an
element ((Fn), (rn)) in F ×R such that

|〈H, ϕ〉|< 1 for all ϕ ∈U ((Fn), (rn)).

It is clear that H is also norm continuous on `1(6, σ ). It follows that H = θ( f ) for
some f ∈ `∞(6, 1/σ). We show that f ∈ c0(6, 1/σ). It suffices to prove that

| f (x)| ≤ σ(x)r−1
n

for all n ≥ 1 and all x ∈6 \ Fn .
To this end, suppose on the contrary that there exist m ≥ 1 and x0 ∈6 \ Fm such

that
| f (x0)|> σ(x0)r

−1
m .

Thus, there is a function g ∈ `∞(6, 1/σ) such that g f = | f |σ and ‖g‖∞,σ ≤ 1. Let ϕ
be a function in `1(6, σ ) with

σ 2ϕ = rm gδx0 .

Then ∣∣∣∑
x∈6

f (x)ϕ(x)
∣∣∣ = ∣∣∣∑

x∈6

rm g f δx0

σ 2

∣∣∣
= rm

| f (x0)|

σ(x0)

> 1.

That is, |〈H, ϕ〉|> 1 which contradicts the fact that ϕ ∈U ((Fn), (rn)). Therefore,

θ(c0(6, 1/σ))= (`1(6, σ ), β1(6, σ ))∗.

Moreover, ‖ f ‖∞,σ = ‖θ( f )‖ for all f ∈ c0(6, 1/σ). Now, invoke Proposition 2.1
to conclude that θ is an identification from c0(6, 1/σ) endowed with the ‖ · ‖∞,σ -
topology onto (`1(6, σ )), β1(6, σ ))∗ endowed with the norm topology. 2

We denote by σ0(6, σ ) the weak topology σ(`1(6, σ ), θ(c0(6, 1/σ))). Let us
remark that

σ0(6, σ )≤ β
1(6, σ )≤ n(6, σ ).

PROPOSITION 3.2. Let 6 be a set and σ be a positive function on 6. Then the weak
topology σ0(6, σ ) on `1(6, σ ) coincides with the strict topology β1(6, σ ) if and only
if 6 is finite.

PROOF. Suppose that 6 is infinite. Let (Fn) ∈ F be an increasing sequence with
F0 = ∅. So, if rn = n, then U ((Fn), (rn)) is a β1(6, σ )-neighbourhood of zero.
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Let E be the subspace of `1(6, σ ) consisting of all ϕ ∈ `1(6, σ ) with∑
x∈Fn

ϕ(x)σ (x)= 0 for all n ≥ 1,

and note that ϕn /∈ E , where ϕn = χFn\Fn−1 . Then E has infinite codimension in
`1(6, σ ). It follows that any subspace F of `1(6, σ ) contained in U ((Fn), (rn)) has
infinite codimension; this is because F ⊂ E . Since any σ0(6, σ )-neighbourhood of
zero contains a subspace of `1(6, σ ) with finite codimension, U ((Fn), (rn)) is not a
σ0(6, σ )-neighbourhood of zero, whereas it is a β1(6, σ )-neighbourhood. 2

COROLLARY 3.3. Let 6 be an infinite set and σ be a positive function on 6. Then
there exist uncountably many locally convex topologies τ on `1(6, σ ) such that
σ0(6, σ )≤ τ ≤ β

1(6, σ ).

PROOF. Since 6 is infinite, Proposition 3.2 implies that σ0(6, σ ) < β
1(6, σ ). We

now only need to recall from [8] that the only case in which the dual pair generates
a finite number of polar topologies is when all polar topologies are equal to the weak
topology. 2

4. Some properties of the strict topology

In this section, we investigate the strict topology on `1(6, σ ) as a locally convex
topology.

PROPOSITION 4.1. Let 6 be a set and σ be a positive function on 6. The locally
convex space (`1(6, σ ), β1(6, σ )) is complete.

PROOF. Let (ϕα) be a β1(6, σ )-Cauchy net in `1(6, σ ). Obviously, we can find a
function ϕ on 6 such that (ϕα) converges to ϕ in the pointwise topology. Suppose
towards a contradiction that ϕ is not in `1(6, σ ). Then we can find a sequence (xn)

in 6 such that
kn∑

i=1

|ϕ(xi )|σ(xi )≥ 2kn

for all n ≥ 1, where 1< k1 < k2 < · · · . Let Fn := {xk1, xk2, . . . , xkn } and rn := kn .
There exists α0 such that∑

x∈Fn

|ϕα(x)− ϕβ(x)|σ(x) < kn (α, β ≥ α0).

Taking the limit over β we get∑
x∈Fn

|ϕα0(x)− ϕ(x)|σ(x) < kn for all n ≥ 1,

and so ∑
x∈Fn

|ϕα0(x)|σ(x)≥ kn,
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which contradicts the fact that ϕ0 is in `1(6, σ ). Hence ϕ ∈ `1(6, σ ). Since β1(6, σ )

has a base at zero consisting of a pointwise closed set, it follows easily that (ϕα)
converges to ϕ in the strict topology. 2

We denote the topology of pointwise convergence on `1(6, σ ) by π(6, σ).

PROPOSITION 4.2. Let 6 be a set and σ be a positive function on 6. On `1(6, σ )

the topology π(6, σ) coincides with the topology β1(6, σ ) if and only if 6 is finite.

PROOF. Suppose that 6 is infinite and let A be an infinite countable subset of 6, say

A = {x1, x2, . . .},

such that xi 6= x j for i 6= j . Then A \ F 6= ∅ for all finite subsets F of 6. Let F be
a finite subset of 6 and choose xF ∈ A \ F . For each natural number n, define the
function ϕ(F,n) ∈ `1(6, σ ) by

ϕ(F,n)(xF )= n!σ−1(xF )

and zero otherwise. Consider the set

0 = {(F, n) : F ⊂6 is finite and n ≥ 1}

directed by (F, n)≤ (F ′, n′) if and only if F ⊂ F ′ and n ≤ n′. Then (ϕγ )γ∈0
converges to zero in the π(6, σ)-topology.

Define Fn := {x1, x2, . . . , xn} and rn := n!. For any γ := (F, n) ∈ 0, the chosen
xF is an element of Fn0 for some n0 ≥ n and hence

sup
{ 1

rn

∑
x∈Fn

|ϕ(F,n0)(x)|σ(x) : n ≥ 1
}
≥ 1.

In other words, PU (ϕ(F,n0))≥ 1, where U :=U ((Fn), (rn)). Therefore (ϕγ )γ∈0 could
not converge to zero in the β1(6, σ )-topology. 2

PROPOSITION 4.3. Let 6 be a set and σ be a positive function on 6. The topologies
π(6, σ) and β1(6, σ ) coincide on all norm bounded subsets of `1(6, σ ).

PROOF. We only need to prove that if (ϕα) is uniformly bounded and ϕα −→ 0
in the π(6, σ)-topology, then ϕα −→ 0 in the β1(6, σ )-topology. Assume that
‖ϕα‖1,σ ≤ M for all α, and let ((Fn), (rn)) ∈ F ×R. Let ε > 0 and n0 ≥ 1 be such
that εrn0 ≥ M . Then

sup
{ 1

rn

∑
x∈Fn

|ϕα(x)|σ(x) : n ≥ n0

}
≤ ε.

Since ϕα −→ 0 in the π(6, σ)-topology, there exists α0 such that∑
x∈Fn

|ϕα(x)|σ(x) < εrn

for all n < n0 and α ≥ α0. So, PU (ϕα)≤ ε for all α ≥ α0 and U ∈ U . The result now
follows. 2
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PROPOSITION 4.4. Let6 be a set and σ be a positive function on6. A sequence (ϕn)

in `1(6, σ ) is β1(6, σ )-convergent if and only if it is π(6, σ)-convergent and norm
bounded.

PROOF. The ‘if’ part follows from Proposition 4.3. To prove the converse, suppose
that (ϕn) is a sequence in `1(6, σ ) which is not norm bounded. We show that (ϕn)

does not also converge in the strict topology. We can assume that ‖ϕn‖1,σ > 2n for all
n ≥ 1. Select Kn := {x1, x2, . . . , xn} such that∑

x∈Fn

|ϕn(x)|σ(x)≥ 2n.

Setting Fn :=
⋃n

i=1 Ki and rn := n,

PU (ϕn) := sup
{

1
rn

∑
x∈Fn

|ϕn(x)|σ(x) : n ≥ 1
}

≥ sup
{

2n

n
: n ≥ 1

}
,

where U :=U ((Fn), (rn)). So, (ϕn) does not converge in the strict topology. 2

Let us recall some definitions from the theory of locally convex spaces. A locally
convex space (E, τ ) is called a barrelled space if each barrel set (that is, a closed
convex balanced absorbing set) in E is a neighbourhood of zero; it is called a
bornological space when every convex balanced subset that absorbs bounded subsets
in E is a neighbourhood of zero.

PROPOSITION 4.5. Let6 be a set and σ be a positive function on6. Let τ be a locally
convex topology such that σ0(6, σ )≤ τ ≤ β

1(6, σ ). Then the following statements
are equivalent.

(a) (`1(6, σ ), τ ) is bornological.
(b) (`1(6, σ ), τ ) is barrelled.
(c) (`1(6, σ ), τ ) is quasi-barrelled.
(d) (`1(6, σ ), τ ) is reflexive.
(e) (`1(6, σ ), τ ) is metrizable.
(f) 6 is finite.

PROOF. We only need to show that (f) holds if (a) or (b) holds. This follows from
the fact that any metrizable space is a bornological space, and any reflexive space is a
quasi-barrelled and therefore barrelled space.

First, suppose that (a) holds and let I be the identity map from (`1(6, σ ), β1(6, σ ))

into (`1(6, σ ), n(6, σ )). Then I is a bounded map by Proposition 2.1. Since by
assumption (`1(6, σ ), β1(6, σ )) is a bornological space, I is continuous. Therefore
n(6, σ )= β1(6, σ ) . This, together with Proposition 2.2, implies (f).

Next, suppose that (b) holds. Then the unit ball

{ϕ ∈ `1(6, σ ) : ‖ϕ‖1,σ ≤ 1}
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is a β1(6, σ )-closed barrel set in `1(6, σ ), and by assumption it is a β1(6, σ )-
neighbourhood of zero. That is, n(6, σ )≤ β1(6, σ ). Invoke Proposition 2.2 to infer
that 6 is finite. 2

Let us recall that the locally convex space (E, τ ) is said to be a dual space if there
exists a locally convex space (E0, τ0) such that (E, τ ) coincides with the strong dual
of (E0, τ0).

PROPOSITION 4.6. Let 6 be a set and σ be a positive function on 6. The space
(`1(6, σ ), β1(6, σ )) is a dual space if and only if 6 is finite.

PROOF. We only prove the ‘only if’ part. By Theorem 3.1,

(`1(6, σ ), β1(6, σ ))∗ = c0(6, 1/σ).

So, if (`1(6, σ ), β1(6, σ )) is a dual space, then (`1(6, σ ), β1(6, σ )) must be
normable; this follows from the fact that a dual space whose dual is normable, itself is
normable; see [5, Lemma 3.2]. Hence 6 is finite. 2

PROPOSITION 4.7. Let 6 be a set, σ be a positive function on 6 and A be a subset
of c0(6, 1/σ). Then the following statements are equivalent.

(a) A is β1(6, σ )-equicontinuous.
(b) A is ‖ · ‖∞,σ -bounded and, for ε > 0, there exists a finite subset F of 6

such that 〈| f |, |ϕ|〉< ε for all f ∈ A and ϕ ∈ `1(σ, 6) with ‖ϕ‖1,σ ≤ 1 and
coz(ϕ)⊂6 \ F.

(c) A is ‖ · ‖∞,σ -bounded and, for ε > 0, there exists a finite subset F of 6 such
that | f (x)|< ε for all f ∈ A and x ∈6 \ F.

PROOF. (a)⇒ (b). Norm boundedness of A follows easily from definition and
β1(6, σ )-boundedness of the unit ball of `1(6, σ ). Now, choose a neighbourhood
U ((Fn), (rn)) such that

|〈 f, ϕ〉| ≤ 1

for f ∈ A and ϕ ∈U ((Fn), (rn)). For an arbitrary ε > 0, choose n0 ∈ N such that
εrn0 > 1. Set

F :=
n0⋃

n=1

Fn.

We then have ϕ ∈ εU ((Fn), (rn)) for all ϕ ∈ `1(6, σ ) with ‖ϕ‖1,σ ≤ 1 and

coz(ϕ)⊆6 \ F.

So |〈 f, ϕ〉| ≤ ε for f ∈ A. This implies that 〈| f |, |ϕ|〉 ≤ ε.
(b)⇒ (c). Let ε > 0 and F be as in part (b) and note that, for any point x ∈6 \ F

and f ∈ A,
| f (x)| = 〈| f |, δx 〉< ε.
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(c)⇒ (a). For n ∈ N, choose a finite set Fn such that | f (x)| ≤ 2−2n for x ∈6 \ Fn .
Setting rn := 2n and U :=U ((Fn), (rn)), for each f ∈ A,

|〈 f, ϕ〉| =
∑
x∈F1

| f (x)||ϕ(x)| +
∞∑

n=1

( ∑
x∈Fn+1\Fn

| f (x)||ϕ(x)|
)

≤

∑
x∈F1

| f (x)||ϕ(x)| +
∞∑

n=1

(
2−2n

∑
x∈Fn+1\Fn

|ϕ(x)|
)

≤

∑
x∈F1

| f (x)||ϕ(x)| +
∞∑

n=1

2−2n
(

n + 1
2

)
≤ 2‖ f ‖∞,σ + 2,

for all ϕ ∈U and f ∈ A. So, f is bounded on U for all f ∈ A. This completes the
proof. 2

A locally convex space (E, τ ) is called a Mackey space if τ coincides with the
Mackey topology µ(E, E∗); also (E, τ ) is called a DF space if E possesses a
fundamental sequence of bounded sets (that is, a sequence of bounded sets (Bn)

such that Bn + Bn ⊂ Bn+1), and if every strongly bounded countable union of
equicontinuous subsets of E∗ is equicontinuous; see [6] for more details.

PROPOSITION 4.8. Let 6 be a set and σ be a positive function on 6. Then the
following statements are equivalent.

(a) (`1(6, σ ), β1(6, σ )) is Mackey space.
(b) (`1(6, σ ), β1(6, σ )) is DF space.
(c) 6 is finite.

PROOF. (a)⇒ (c). Let 1= {δx : x ∈6} ⊆ c0(6, 1/σ). Then an easy application of
the Smulian–Eberlein and Krein theorems implies weak compactness of 1 and its
closed convex hull. It follows from [15, Theorem 9.4.2] that 1 is equicontinuous.
Now invoke Proposition 4.7 to conclude that 6 is finite.
(b)⇒ (c). If there is a sequence (xn) of distinct elements of 6, then

⋃
∞

n=1{δxn }

is equicontinuous by (b). So,
⋃
∞

n=1{δxn } satisfies condition (b) in Proposition 4.7, a
contradiction. 2

PROPOSITION 4.9. Let 6 be a set and σ be a positive function on 6. The strict
topology is the finest locally convex topology that agrees with the strict topology on
norm bounded subsets of `1(6, σ ) if and only if 6 is countable.

PROOF. Let β0(6, σ ) denote the locally convex topology generated by seminorms

P f (ϕ)= ‖ f ϕ‖1,
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where f ∈ c0(6, 1/σ). By [10], β0(6, σ ) is the finest locally convex topology on
`1(6, σ ) that agrees with β0(6, σ ) on bounded sets. It is clear that β1(6, σ )≤

β0(6, σ ). Suppose that 6 is uncountable. Let V f be the β0(6, σ )-neighbourhood

{ϕ ∈ `1(6, σ ) : ‖ f ϕ‖1 ≤ 1}

of zero, where f ∈ c0(6, 1/σ) and f (x) 6= 0 for all x ∈6.
Then V f is not a β1(6, σ )-neighbourhood; indeed, if there exists ((Fn), (rn)) ∈

F ×R such that U ((Fn), (rn))⊆ V f , then rnδx ∈U ((Fn), (rn)) for all n ≥ 1 and
x ∈ Fn , but rnδx /∈ V f for some n ≥ 1 and x ∈ Fn .

Conversely, let 6 be countable and

V f = {ϕ ∈ `
1(6, σ ) : ‖ f ϕ‖1 ≤ 1}.

For n ∈ N, choose a finite set Fn ⊂6 such that

n2n f (x) < σ(x)

for all x ∈6 \ Fn . We show that

U ((Fn), (n))⊆ V f .

Let ϕ ∈U ((Fn), (n)). Then∑
x∈Fn

|ϕ(x) f (x)| =
n∑

m=1

( ∑
x∈Fm\Fm−1

| f (x)ϕ(x)|
)

≤

n∑
m=1

( ∑
x∈Fm\Fm−1

1
m2m |ϕ(x)|σ(x)

)
≤

n∑
m=1

1
2m .

Since f (x)= 0 for all x ∈6 \
⋃
∞

n=1 Fn , it follows that ‖ f ϕ‖1 ≤ 1 as required. 2

A locally convex space E is called quasi-normable if every open subset U ⊆ E
contains an open subset V ⊆ E such that, for each α > 0, we can find a bounded
subset B ⊆ E with V ⊆ B + αU .

PROPOSITION 4.10. Let6 be a set and σ be a positive function on6. Then `1(6, σ )

with the strict topology is always quasi-normable.

PROOF. Let U =U ((Fn), (rn)) be an arbitrary β1(6, σ )-neighbourhood of zero.
Choose a sequence of positive numbers (sn) ∈R such that sn ≤ rn and (sn/rn) tends
to zero. Define

V = V ((Fn), (sn)).

For a given 0< α < 1, choose a natural number n0 such that sn ≤ αrn for all n ≥ n0.
It is easy to see that each ϕ ∈ V is the sum of two functions χFn0

ϕ and (1− χFn0
)ϕ
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such that
χFn0

ϕ ∈ {ϕ ∈ `1(6, σ ) : ‖ϕ‖1,σ ≤ sn0}

and (1− χFn0
)ϕ ∈ αU , and the proof is complete. 2

Let E be a locally convex space, and let U be a base at zero for E consisting
of absolutely convex sets. The linear space of all sequences (xn) in E such that
(〈 f, xn〉)n ∈ `

1(N) for all f ∈ E∗ is denoted by `1[E]. The seminorms

εU ((xn)) := sup
{ ∞∑

n=1

|〈 f, xn〉| : f ∈U ◦
}

(U ∈ U)

generate a locally convex topology on `1[E]. A sequence (xn) in E is called absolutely
Cauchy if

πU ((xn)) :=

∞∑
n=1

qU (xn) <∞

for all U ∈ U , where qU denotes the Minkowski functional of U . The linear space
of all absolutely Cauchy sequences in E is denoted by `1{E} equipped with the
topology given by the seminorms πU . A locally convex space E is called nuclear if
`1{E} = `1[E] topologically and algebraically; for more details, see [6], for example.

The following theorem shows that (`1(6, σ ), β1(6, σ )) behaves as a Banach space
with respect to nuclearity.

PROPOSITION 4.11. Let6 be a set and σ be a positive function on6. Then `1(6, σ )

with strict topology is a nuclear space if and only if 6 is finite.

PROOF. Proposition 4.7 implies that (`1(6, σ ), β1(6, σ )) is sequentially evaluable;
recall that a locally convex space (E, τ ) is said to be sequentially evaluable if every
β(E∗, E)-convergent sequence in E∗ is equicontinuous. Note also that `1(6, σ ) has
a fundamental sequence of bounded sets (take, for example,

Bn = {ϕ : ‖ϕ‖1,σ ≤ n}

for all n ≥ 1). Now, if (`1(6, σ ), β1(6, σ )) is nuclear, then [9, Theorem 2.14] implies
that the Banach space

(`1(6, σ ), β1(6, σ ))∗ = c0(6, 1/σ)

is nuclear, and hence 6 must be finite. 2

5. An application to semigroup algebra

Let S be a semigroup and σ be a weight function on it; that is, a positive function
with σ(st)≤ σ(s)σ (t) for all s, t ∈ S. The convolution product on `1(S, σ ) is defined
by

(ϕ ∗ ψ)(x)=
∑
st=x

ϕ(s)ψ(t)
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for ϕ, ψ ∈ `1(S, σ ) and x ∈ S when st = x has a solution, and (ϕ ∗ ψ)(x)= 0
otherwise.

Here, we consider the semigroup algebra `1(S, σ ) with convolution as
multiplication, and prove separate β1(S, σ )-continuity of this multiplication for a large
class of semigroups.

First, let us recall that a semigroup S is called finitely cancellative if

t−1x = {s ∈ S : ts = x}

is finite for all x, t ∈ S.

PROPOSITION 5.1. Suppose that S is a countable finitely cancellative semigroup.
Then (`1(S, σ ), β1(S, σ )) with convolution as multiplication is a complete semi-
topological algebra.

PROOF. Since S is countable, in view of Proposition 4.9, we only need to show
that convolution on (`1(S, σ ), β1(S, σ )) is β1(S, σ )-continuous on β(6, σ)-bounded
sets; see [6]. Let (ϕα) be a norm bounded net in `1(S, σ ) convergent to zero in
β1(S, σ ). Let ψ ∈ `1(S, σ ) and fix x0 ∈ S. Choose a finite set F ⊆ S such that∑

t∈S\F

|ψ(t)|σ(t) <
εσ(x0)

2M
,

where M is a bound for the net (ϕα). Then F−1x0 is finite by the finite cancellativity
of S. So, if we put

Fn := F−1x0 and rn :=
εnσ(x0)

2‖ψ‖1,σ
,

then ((Fn), (rn)) ∈ F ×R, and so there is α0 such that ϕα ∈U ((Fn), (rn)) for all
α ≥ α0. In particular, ∑

s∈F−1x0

|ϕα(s)|σ(s) <
εσ(x0)

2‖ψ‖1,σ

for all α ≥ α0, where

F−1x0 := {s ∈ S : ts = x0 for some t ∈ F}.

Now, for each α ≥ α0,∣∣∣ ∑
st=x0

ϕα(s)ψ(t)
∣∣∣ ≤ σ(x0)

−1
∑

st=x0

|ϕα(s)||ψ(t)|σ(s)σ (t)

≤ σ(x0)
−1
∑
t∈F

∑
s∈F−1x0

|ϕα(s)|σ(s)|ψ(t)|σ(t)

+ σ(x0)
−1

∑
t∈S\F

∑
s∈(S\F)−1x0

|ϕα(s)|σ(s)|ψ(t)|σ(t)
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≤ σ(x0)
−1
‖ψ‖1,σ

∑
s∈F−1x0

|ϕα(s)|σ(s)

+ σ(x0)
−1 M

∑
t∈S\F

|ψ(t)|σ(t)

≤ ε.

Hence, (ϕα ∗ ψ)(x0)−→ 0 and ϕα ∗ ψ −→ 0 in the β1(S, σ )-topology. 2

The following example shows that Proposition 5.1 does not hold in general.

EXAMPLE 5.2. Let S = {0} ∪ {1/n : n ∈ N}. Then S with the operation st =
max{s, t} is a countable semigroup with identity. It is easy to see that ϕ 7→ ϕ ∗ δ1
is not β1(S, σ )-continuous on `1(S, 1); in particular, S is not finitely cancellative.

In conclusion, we give a special case of Proposition 5.1 which partially answers a
question raised by Singh in [12].

COROLLARY 5.3. If G is a countable group, then (`1(G), β1(G)) with convolution
as multiplication is a complete semi-topological algebra.
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