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Abstract

We give algebraic proofs of some results of Wang on homomorphisms of nonzero degree between
aspherical closed orientable 3-manifolds. Our arguments apply to /^-groups which are virtually poly-Z
or have a Kropholler decomposition into parts of generalized Seifert type, for all n.
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1. Introduction

Aspherical closed 3-manifolds may be partitioned into eight classes, according to the
nature of the geometric pieces of the JSJ decomposition. Wang defined a directed
graph r whose vertices correspond to these classes and which has an edge whenever
every manifold in the target class is the image of a map of nonzero degree from some
manifold in the source class [21]. We shall give purely algebraic proofs for the cases
when the atoroidal parts of the domain are of Seifert type, and our arguments apply to
Poincare duality groups in all dimensions. (In higher dimensions we partition PDn-
groups into ten classes, in terms of properties of the Kropholler decomposition [13].)
In many cases we may find degree 1 homomorphisms between such groups. We
shall also comment briefly on some related issues considered by Wang and others:
cohopficity [7, 22, 23], the volume condition [24] and commensurability [16, 17].
However our observations here are confined to PDn-groups which are either virtually
poly-Z or of generalized Seifert type.
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336 Jonathan A. Hillman [2]

2. PDn -groups and group pairs

Let G', £G, y/G and E(G) be the commutator subgroup, centre, Hirsch-Plotkin
radical and maximal normal elementary amenable subgroup of the group G, respec-
tively. A group G virtually has some property (inherited by subgroups of finite index)
if it has a subgroup of finite index with that property. If G is virtually solvable let
h{G) be its Hirsch length. If 5 is a subset of G the normal closure of S in G is ((5)),
the intersection of the normal subgroups containing S.

A group G is a PDn-group if it is FP, HP(G\1[G]) = 0 for p ^ n and
H"(G;1[G]) = Z. The 'dualizing module' D = Hn(G;l[G]) is a right I[G]-
module; let wc • G -*• Aut(D) = {±1} be the 'orientation character' determining
the action. The group G is orientable (or is a PD^-group) if wG — 1, that is, if
D = Z, the augmentation module. (See [1].) If <p : G —>• H is a homomorphism
of PDn-groups such that wG = wH4> the degree of <p is the induced homomorphism
degtf> : Hn(G;IWc) -*• Hn(H;Zw"). (If wG £ wH<$> then we set deg<£ = 0.) The
absolute value | deg0 | is independent of the choice of generators ('orientations') for
these groups.

There is a related notion of PDn-pair (G, <!?"), in which the set of 'boundary
components' & is a finite set of conjugacy classes of embeddings of subgroups
(possibly repeated, as in the example given by (Z, {Z, Z}), the fundamental group
system of the annulus Sl x [0, 1]). If & is nonempty then c.d.G = n - 1 and each
H e 8? is a PDn-\-group [2]. (In [4] the notion of PDn-pair is reformulated in terms
of pairs (G, £2), where £2 is a suitable G-set.)

A PDn-group pair (G, ^) is of {generalized) Seifert type if G has a normal, virtually
poly-Z subgroup N of Hirsch length h{N) = n — 2. The elements of & are then
represented by virtually poly-Z subgroups of Hirsch length n — 1. (See the second
paragraph of the proof of Theorem 1 below.) The pair (G, ?7) is atoroidal if every
virtually poly-Z subgroup of Hirsch length n — 1 is conjugate to a subgroup of some
element of &. In particular, if G is an atoroidal PZVgroup (with 2? empty) then
it has no normal poly-Z subgroup of Hirsch length > n - 2. If G has max-c (the
property that every strictly increasing sequence of centralizers is finite) there is a
reduced G-tree Y such that G\Y is finite, every edge stabilizer is virtually poly-Z of
Hirsch length n — 1, each such subgroup lies in some vertex stabiliser Gv and there
are natural finite families of subgroups 3TV such that (Gv, «%) are PD^-pairs of either
Seifert or atoroidal type [13]. We shall refer to this as the Kropholler decomposition
of (G, !7). (Kropholler uses the terminology of [4].)

If G is virtually of Seifert type and is not virtually poly-Z it has a normal subgroup
H of finite index such that E(H) is virtually poly-Z and H/E(H) is a PZVgroup.
Since E(H) is characteristic in H it is normal in G and so G is itself of Seifert type.
If G is virtually of Seifert type and virtually poly-Z it is virtually nilpotent, if n < 3,
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and is either virtually nilpotent or of Seifert type if n = 4 or 5. However there are
torsion free virtually poly-Z groups of Hirsch length > 6 which are neither virtually
nilpotent nor of Seifert type. (The simplest examples are perhaps the semidirect
products (Z2 x Gf,) >V,# Z> where G6 is the Hantzsche-Wendt flat 3-manifold group,
a e SL(2,Z) has infinite order and P 6 Aut( G6) is such that G6 x p Z is not of Seifert
type, see [11, Section 8.7].)

We shall use frequently the observation that if G < H are PDn-groups then [H : G]
is finite [20] and x(G) = [H : G]x(H). In particular, if a group J is virtually a
PDn-group, so that it has a subgroup G of finite index which is a PDn-group, the
rational Euler characteristic xU) = X(G)/[J : G] is well-defined.

LEMMA 1. Let G and H be PDn-groups and <f> : G —> H a homomorphism such
thatdtg(f> £ 0. Then [H : 0(G)] is finite and c.d. Ker(0) < n.

PROOF. Let w = wH. Since <j> factors through 4>(G), Hn((j>(G);lw) £ 0 and so
c.d.<p(G) = n. Therefore [H : <p(G)] is finite, by [20]. Since [G : Ker(0)] = \<p(G)\
is infinite, the same result implies that c.d. Ker(</>) < n. D

In general, finiteness of the index [H : <p(G)] does not imply that deg<£ ^ 0.
For instance, if it = F(a, b) *z F(x, y) is the fundamental group of the orientable
surface of genus 2, with presentation (a, b, x, y | [a, b] = [x, y]), the epimorphism
p : n —• n/((b, y, [a, x])) = Z2 factors through the free group F(a, x) and therefore
has degree 0.

LEMMA 2. Let G and H be PDn-groups and <j> : G —>• H a monomorphism. Then
[H : 0(G)] is finite and | degtf>| = [H :

PROOF. The first assertion follows from [20]. It follows also that the restriction of
w = wH to G is wG- The restriction homomorphism Res : //„(//; 1W) -> //n(G; Z"0
is an isomorphism (see [1, Section 5.3]). As deg^Res is multiplication by the index
the second assertion holds also. •

Theorem 9.11 of [1] implies that if Ker(0) ^ 1 then it is not FPn_x.

3. Wang's partition

Define ten classes of PDn-groups as follows

(1) G is atoroidal;
(2) one of the vertex terms (Gv, fiw) of the KrophoUer decomposition is atoroidal;
(3) the vertex terms of the KrophoUer decomposition are of Seifert type, but G is

neither of Seifert type nor virtually poly-Z;

https://doi.org/10.1017/S1446788700014476 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700014476


338 Jonathan A. Hillman [4]

(4a) G is virtually poly-Z, but is not virtually of Seifert type;
(4b) G is virtually a product E x Z2, where E is poly-Z but not virtually nilpotent;
(4c) G is virtually poly-Z and virtually of Seifert type but is not virtually nilpotent
nor virtually a product with Z2;
(5) G is virtually a product 5 x n of a poly-Z group S with h(S) = n — 2 and a

surface group n with x(n) < 0;
(6) G is of Seifert type, but is neither virtually such a product nor virtually poly-Z;
(7) G is virtually nilpotent, but not virtually abelian;
(8) G is virtually abelian.

These classes are disjoint, and their union contains all PDn-groups G such that G
has max-c [13]. (All 3-manifold groups have this property [14].) The classification
is also stable under passage to subgroups of finite index. Classes (4a), (4b), (4c), (7)
and (8) consist of the virtually solvable PDn -groups, and class (4b) is empty if n < 4,
while class (4c) is empty if n < 3. (It is occasionally convenient to treat

(4) = (4a) U (4b) U (4c)

as a single class. The classification could be refined further by considering higher-
dimensional geometries.) When n = 3 the other eight classes correspond to the eight
classes of [21], and we may describe them more explicitly

(1) G is atoroidal (that is, G has no free abelian subgroup of rank 2);
(2) G — 7tC&), where <£ is a finite graph of groups with at least one edge,

(Gv, UvedeGe) is a PD3-.pair for all vertices v, Ge = Z2 or Z x Z for all edges e,
and ( C , UvedeGe) is atoroidal, for at least one vertex v;
(3) \/~G = 1 and G = 7r(£f), where ^ is a finite graph of groups such that

(Gv, Uv€deGe) is a PD3-pair and -/G~l ̂  1, for all vertices v\
(4) v ^ = Z2;
(5) *JG = Z and G is virtually a product;
(6) VG = Z but G is not virtually a product;
(7) G is virtually nilpotent, but not virtually abelian;
(8) VG = Z3 (that is, G is virtually abelian).

Class (1) contains the fundamental groups of closed hyperbolic 3-manifolds and
class (2) contains the groups of aspherical closed 3-manifolds with a nontrivial char-
acteristic variety such that at least one component of the complement is hyperbolic. It
follows from [10] that class (3) consists of the groups of aspherical graph manifolds
(closed 3-manifolds with a nontrivial characteristic variety in which every component
of the complement is Seifert fibred), excepting §ol-manifolds, whose groups are the
members of class (4). (It is easy to see that the edge groups Ge in a group of class (3)
are all isomorphic to Z2 or ZxZ. For c.d.Gv = 2 [2] and so the edge groups Ge

with v € de all meet •sfGl nontrivially.) Classes (5), (6), (7) and (8) consist of the
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fundamental groups of H x E-, SL-, Nil- and fiat 3-manifolds, respectively [3]. (For
groups G with subgroups of finite index with fi\ > 0 the simpler argument of [ 10] may
be used instead of [3].) It is not known whether classes (1) and (2) contain any groups
which are not 3-manifold groups, nor whether atoroidal 3-manifolds are hyperbolic.

Let Fn be the directed graph with vertices {1, 2, 3, 4a, 4b, 4c, 5, 6, 7, 8} and with an
edge (i, j) if and only if i ^ j and for every group H in class (j) there is a PDn-group
G in class (i) and a homomorphism of nonzero degree from G to H. Wang showed
that the corresponding graph F for the fundamental groups of aspherical 3-manifolds
has edges (1, n) and (2, n) for all n, (3, m) for all m > 3, (5, 8) and (6, 7). Moreover
any homomorphism between 3-manifold groups in classes not connected by an edge
in F has degree 0 [21]. We shall give algebraic arguments for these results, excepting
the existence of edges (1, 2), (2, 1) and (1, 3) and the nonexistence of an edge (3, 2).
In verifying these assertions we may pass to subgroups of finite index whenever
convenient. In particular, we may assume that all Poincare duality groups considered
are orientable, and hence that the edge groups in graph-of-groups splittings (as in
cases (2) and (3)) are also orientable. We may also assume without loss of generality
that the vertex groups are nonabelian, for if Gv is abelian then [Ge \ v e de] has two
members, and the inclusions are isomorphisms. (Note however that PD3-groups of
class (4) are virtually HNN extensions with base Z2.)

We shall see that when n = 4 the only nontrivial edges emanating from any of the
last five vertices of F4 are (5, 4c), (5, 8) and (6, 7). If n > 4 then (4a), (4b), (4c), (7)
and (8) are terminal vertices of Fn, but there are also edges (5, 4b), (5, 8), (6, 4c) and
(6, 7). (Also many groups in class (7) are degree 1 quotients of groups in class (5).)

That F has edges (1, n) with n > 3 follows as in [21] from the fact that every
closed orientable manifold has a 2-fold branched cover which is the mapping torus of
a pseudo-Apanasov diffeomorphism. The same argument would give an edge (1,2)
if all groups of class (2) were 3-manifold groups. We refer to [21] for the existence of
an edge (2, 1) in the 3-manifold case.

4. Homomorphisms with domain a graph of groups

Let (G, &) be a PD^-pair with f G = Z and 5" # 0. Then G = F(r) x Z, by
[1, Theorem 8.8 and Corollary 8.6]. Hence G has a presentation

(xu...xr, t | txtt~
l =a(jc,)),

for some or e Aut(F(r)). Let G = (JCI, .. .xr, y, t \ txtt~
l = a(xj), ty = yt) and

G = G *z2
 TT4I, where t and y 6 G are identified with a meridian and longitude in

the figure-eight knot group TT4\, respectively. Then (G, S) is a PD3-pair, and the
natural epimorphism from G to G = G/(((^4!)')) induces a degree 1 map of pairs.
It follows easily that F has an edge (2, 3).
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If G is a PZ)3-group in class (4) we may assume that G = Z2 xg Z, where
8 e SL(2,1) has infinite order. The automorphism 0 lifts to an automorphism 0 of
the free group F(x, y), such that &([x, y]) = [x, y], by a theorem of Nielsen—see
[15, Section 3.5]. Let

b)x Z,Z[a,b]x Z) and

(G2, Z2) = (F(x,y) x 0 Z, Z[x, y] x Z).

Then G\ *Z2 G2 is a group in class (2) which maps onto G via a degree 1 homomor-
phism. Hence V has an edge (2, 4). (We shall see below that T has an edge (3,4), so
composition gives an edge (2,4), but this construction is simpler.)

The argument excluding (3, 1) as an edge applies in all dimensions.

THEOREM 1. Let G and H be PDn-groups such that the vertex terms of the
Kropholler decomposition of G = n (&) are of Seifert type and H is atoroidal.
If4>'. G —> H is a homomorphism then deg(p = 0.

PROOF. Let se : Ge -> GJ((,) and te : Ge -*• G,(C) be the inclusions of the edge
group Ge into the vertex groups corresponding to the source and target of the edge e.
We may assume that G is orientable. Let <3 be the graph of groups with the same
underlying graph as & and with Gv = <j>(Gv) and Ge = (p(Ge), for all vertices v and
edges e. Then cf> factors as <j> = <pp, where p : G ^ G = nC&) and <p : G —> H. For
e a c h v e r t e x v l e t Wv = {Ge | s(e) = v)U {Ge | t(e) = v).

If Gv is a vertex group then c.d.Gv = n — 1 and so GV/E(GV) is virtually free, by
[1, Theorem 8.4]. Hence Ge/GeD s;l(E(Gs(e))) and Ge/Gen t-\E{Gt(e))) are also
virtually free, for all edges e. Since c.d.Ge = n — 1 it follows that ft(Ge n £(GU)) =
« — 2, and since Ge is a PDn_i-group it must in fact be virtually poly-Z. Let
Kv = KerM^c,,)). Then either Kv ^ 1 or [0(G«) : 0 ( E ( G J ) ] is finite, since H
is atoroidal and torsion-free. In the latter case <f>(Gv) is torsion-free and virtually
poly-Z, and h(<p(Gv)) = n-2.

If 4>{GV) is virtually poly-Z and h((j>(Gv)) = n - 2 for all vertices v then c.d.G <
« — 1, and so deg</> = 0. Suppose there is a vertex v such that ATV 7̂  1. Let G*v

be a normal subgroup of finite index in Gv which contains E(GV) and is such that
G*V/E(GV) is a free group. Then conjugation by coset representatives for Gv/ G*v

determines lifts of the embeddings se and te to embeddings of se(Ge) n G* and
te(Ge) n G* in G*. Let ^ * be the set of G*-conjugacy classes of such lifts. Then
(G*. &*) is a PD+-pair, and the inclusion of G*v into Gv has degree [Gv : GJ] £ 0
(by the relative version of Lemma 2).

Let Gv = G*v/Kv and let <^ be the corresponding set of embeddings of quotients
of members of &*. Since E(GV)/KV = (j>(E(Gv)) it is torsion free, and so is a
FDm-group for some m < h(E(Gv)) = n - 2. Then (Gu; <9j,) is a PD
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Now p\G» factors through this pair, and so the homomorphism from Hn(G*v, &*\ Z) to
Hn(Gv, f7v;1) induced by p|c. is 0. This homomorphism is the top row of a commut-
ing square whose bottom row is the homomorphism Hn(G; Z) -»• Hn(G; 2) induced
by p. Since the inclusion of G* into G induces an isomorphism //n(G*, S?*\T) ->
Hn(G; 1) [2], it follows that Hn(p; T) = 0. Hence we again have deg</> = 0. •

COROLLARY 1. There is no edge (3, 1) in Yn.

In the 3-manifold case it follows that there is no edge (3, 2). Can the above
argument be adapted to show this is true in general?

Let G be a torsion-free virtually poly-Z group of Hirsch length n > 3. Then
G has a subgroup G of finite index which is an extension of a free abelian group
Zr by a nilpotent normal subgroup N, by Mal'cev's Theorem (see [19, page 35]).
If r = 1 then G = N >ia Z, for some a 6 Aut(TV). Since N is nilpotent and
h(N) > 2 there is a subgroup P < N containing N' and such that N/P = Z2.
Let F = (w,x, y, z \ w = xyz) and F = (F, t \ twt~l = z) be the fundamental
groups of the quadruply punctured sphere and the twice punctured torus. Let 6 be the
automorphism of F defined by 6 (f) = / for all / e F and 0(t) = zt, and let

H = {F,s\ sgs-1 = 9(g) Vg e F) = F x , Z.

(Thus H is the fundamental group of the mapping torus of the Dehn twist corre-
sponding to 9.) Let J = F x Z be the subgroup of H generated by F and s, and
let Jf = Z2 be the subgroup of J generated by {/, s), for all / e F. Then H
is also the HNN extension with base H, associated subgroups Jw and Jz, and sta-
ble letter t, since tst~] = z~xs and twt~x = z- Moreover (J, {Jw, Jx, Jy, Jz}) is
a PZVpair of Seifert type, while (H, {Jx, Jy}) is a PD3-pair with *J~H = 1. Let
y : H -> H/{(,t,z)) = Z2 be the canonoical epimorphism. Then y induces a
degree 1 homomorphism from {H, [Jx, Jy}) to (Z2, {Z2, Z2}). In particular, y indices
isomorphisms Jx = N and Jy = N. Let M be the extension of H by P obtained by
pullback over y, and let Mx and My be the preimages in M of Jx and Jy, respectively.
Let fix : Mx = N and fiy : My = N be the isomorphisms determined by 6. The
HNN extension G* with base M, associated subgroups Mx and My and stable letter u
acting via umw"1 = fi~lafix(m) for all m e M, is a PZVgroup in class (3), and the
projection onto G*/((x, y)) = G has degree 1. Thus Fn has an edge (3, 4a). If r > 2
then G is of Seifert type, and we shall treat this case in the next paragraph.

Let H be an extension of a PDj-group it of genus g by a torsion-free virtually
poly-Z group E of Hirsch length n — 2. Let F be the free group with basis {a,, b{ \
1 < i < g] and let n = n[ah b,]. Then n = F/((U)) and H = E xa F / ( (nur ' ) ) ,
for some homomorphism a : F -> Aut(E) and element w e E such that a(Tl)(e) =
wew'1. Let Hx = £ x a F and let 3//i be the subgroup generated by E and n . Then

https://doi.org/10.1017/S1446788700014476 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700014476


342 Jonathan A. Hillman [8]

3//i = E x Z, where the second factor is generated by Flu;"1. Let H2 = E x F(r, s)
and let dH2 = E x Z, where the infinite cyclic factor is generated by [r, s]. Then
(Hi, dHi) and (H2, dH2) are PDn-pairs, with isomorphic boundary terms. Define an
isomorphism ty : 3//i -> dH2 by ir(e) = e[r, s] foreeE and is(U) = [r, j]u>. If
we identify the boundaries via e \-> e for all e e E and Flu;"1 maps to [r, 5] we obtain
a P£>n-group G with a nontrivial KrophoUer decomposition of Seifert type, but which
is not itself of Seifert type. The canonical epimorphism from G to G/((r, s)) = H
has degree 1. Since every PDn-group of Seifert type has such a subgroup H of finite
index it follows that Tn has edges (3, 4b), (3, 4c), (3, 5) and (3, 6). When n = 3 this
construction can be adapted to show that every group in class (5) or (6) is the degree 1
quotient of a group in class (3).

5. Homomorphisms with solvable or Seifert domain

If G is a PDn-group then E(G) is virtually solvable, by [11, Theorem 1.11]. If
E(G) £ G then h(E(G)) <n-2. (Suppose that h(E(G)) > n - 1. If c.d.E(G) =
n — 1 then c.d.E(G) = h(E(G)), so E(G) is a duality group and has a finite
K(E(G), 1) complex [12]. A spectral sequence argument then shows that G/E(G)
has two ends. Otherwise c.d.E(G) = n, so [n : E(G)] is finite, by [20]. In either case
G/E(G) is virtually solvable, and so G = E(G). See [11, Theorem 8.1] for the case
n = 4.) If n = 3 and E(G) £ G then E(G) = VG = Z or 1 (see [11, Section 2.7]).
If n = 4 and h(E(G)) = 2 then £(G) = Z2 or ZxZ and G/£(G) is virtually a PD2-
group (see [11, Theorems 9.1 and 9.2]). To what extent can this be generalized? If there
is a finite K(E(G), 1) complex and /i(£(G)) = n — 2 then the LHS spectral sequence
collapses to give H"-2(E(G);1[E(G)]) = H2(G/E(G);1[G/E(G)]) = Z, so E(G)
is virtually poly-Z and G/E(G) is virtually a PD2-group [3]. If G/E(G) is virtually
a PD2-group must E(G) be virtually poly-Z?

LEMMA 3. L«r G a«J H be PDn-groups and 4> : G -> / / a homomorphism such
that deg 0 ^ 0 . If K is a virtually poly-Z normal subgroup of G and v.c.d.(G/K) is
finite then <p\K is a monomorphism and<p(K) < E(H). In particular, ifG is virtually
poly-Z then so is H, and G is virtually abelian (respectively, nilpotent) if and only
ifH is.

PROOF. The image (f> (K) is torsion-free and virtually poly-Z, since H is torsion free
and K is virtually poly-Z. If Ker(</»|jr) ^ 1 then <p factors through G = G/ Ker(</>|jf),
and cd.G = h(<p(K)) + v.c.d.(G/K) < n = c.d.G = h(K) + v.c.d(G/K), by
[1, Theorem 5.6], since K and 4>(K) are FP and v.c.d.(G/K) is finite. Thus <p is a
monomorphism if deg0 ^ 0. Since <j>(E(G)) is a characteristic subgroup of G and
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</>(G) has finite index in H it follows easily that </>(£(G)) < E(H). In particular,
<f>(K) < E(H). The final assertion is clear. D

COROLLARY 2. There are no edges emanating from the vertices (4a), (4b), (4c), (7)
or (8) in Tn.

LEMMA 4. Let G and H be PDn-groups and <f> : G —• H a homomorphism such

that deg (j> ^ 0, and suppose that G/E(G) is virtually a PD2-group. Then

(i) if G is virtually a product of a solvable group with a PD2-group so is H.

(ii) G is virtually such a product if 4>\E(G) is a monomorphism and H is either

virtually abelian or virtually a product of a solvable group with a nonsolvable PD2-

group.

PROOF. Let G < G be a subgroup of finite index in G such that </>(G) is normal in
H and it = G/E{G) is a PZVgroup. Note that E(G/E(G)) = 1, so n, G and G are
not solvable.

If G = E(G) x n, where n is a PZVgroup, then E(G) is a /)Dn_2-group, and
hence is virtually poly-Z, by [1, Theorems 9.11 and 9.23], respectively. Hence 4>\E(G)

is a monomorphism, by Lemma 3. As <f>(G) = E(G) x (f>(n) has finite index in H
the latter group is also virtually a product, and <p(n) is a PZVgroup.

If H is virtually abelian then on passing to subgroups of finite index we may assume
that H is abelian, hence free of finite rank, and that <p(E(G)) is a direct factor of H.
If H has a subgroup H = S x a of finite index, with 5 solvable and a a nonsolvable
PO2-group, then 5 = E{H), S is virtually poly-Z and h(S) = n — 2. Moreover
<p(E(G)) < S. In either case composition of <j> with projection onto a factor splits the
inclusion of E(G) D <p~l(H) into <f>~l(H), and so G is virtually such a product. •

If a PDn-group is a nontrivial direct product its factors are PDm-groups for suitable
m < n.

COROLLARY 3. Assume thatn = 3 or 4. Then (5, 4c), (5, 8) and (6, 7) are the only
edges emanating from the vertices (5) and (6) in Vn.

PROOF. Let G and H be PDn-groups such that G/E{G) is virtually a PD2-group
and let 0 : G -*• H be homomorphism such that deg</> ^ 0. Then E(H) ^ 1, by
Lemma 3, so H is not in classes (1), (2) or (3).

If n = 3 then E(G) = Z and so #(G) is virtually nilpotent. Hence H is virtually
nilpotent. If n = 4 then h(E(G)) = 2, so E(G) = Z2 or Z x Z . Therefore if H is not
virtually nilpotent it is of Seifert type and not virtually a product with Z2. The other
exclusions follow easily from Lemma 4. •
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Groups in classes (7) and (8) are extensions of flat 2-orbifold groups by an infinite
cyclic normal subgroup. Given such a group G we may construct a group of type (6)
or (5), respectively, and a degree 1 homomorphism to G by pulling back the extension
over an epimorphism corresponding to a degree 1 map from a hyperbolic 2-orbifold.
(This construction could be paraphrased in purely algebraic terms, but at somewhat
greater length.)

If n > 4 then (4a), (4b), (4c), (7) and (8) are terminal vertices of Fn, but there are
also edges (5, 4b), (5, 8), (6, 4c) and (6, 7), and many groups in class (7) are degree
1 quotients of groups in class (5).

6. Endomorphisms and subgroups of finite index

A group G is hopfian if surjective endomorphisms of G are automorphisms, and
is cohopfian if injective endomorphisms are automorphisms. The volume condition
holds for G if whenever Hi and H2 are isomorphic subgroups of finite index then
[G : Hi] = [G : H2]- If G is a PDn-group and satisfies the volume condition then G
is cohopfian (since subgroups of infinite index in PDn -groups cannot be PDn -groups
[20]). On the other hand, finitely generated nonabelian free groups satisfy the volume
condition but are not cohopfian.

If n = Z2 or Z x Z then n is hopfian, by Lemma 3. The hopficity of the other PD2-
groups follows from the next lemma, which is based on a variation of the argument
given for [5, Theorem A].

LEMMA 5. Let n, a be PD2-groups with x(<?) 5 X(n) < 0 and let 6 : n ->• a be
a homomorphism. Then the following are equivalent:

(i) H\ (0; F2) is an epimorphism;
(ii) 0*wa = wn and deg 6 ^ 0;

(iii) 8 is an isomorphism.

PROOF. If Hi(9; F2) is an epimorphism it is an isomorphism, since x(n) ^ x(°0>
and so 0*wa — wn and deg# ^ 0, by the nondegeneracy of Poincare duality with
coefficients F2 and the Wu relation x2 = x U wG, for x e Hl(G; F2) and G = n and
G = a. In particular, a = n. Hence 9(jx) is not a free group, so [a : 9(n)] < oo and
6(n) is a PD2-group [20]. Since

A(0(w); h ) < A(TT; F2) = A(cr; F2) and
X(9(n)) = [a : 6(n)]x(a) < 0

it follows that [a : 0(n)] = 1, so 6 is onto.
If 0*wa = wn anddegfl £ Othen a = n,[a : 6(n)] < oo and0 is onto, as before.
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We shall henceforth fix an isomorphism a = n and view 0 as an endomorphism
of jr. If 9 is onto then H\(9\~l) is an isomorphism, since H\{n;I.) = n/n' is finitely
generated. The induced homomorphism 9' : n' -> n' is also onto, and induces an
onto endomorphism of n'/n". The latter group is finitely generated as a module over
the noetherian ring Z[n/n']. Since the kernel Kn of the endomorphism induced by 9"
is a normal subgroup of n/n" it is a Z[jr/7r']-submodule. The increasing sequence of
submodules Kn must stabilize, since TT'/TT" is noetherian. Hence Kn = 0 for all n and
so Hi(9'\Z) is also an isomorphism. Now c.d.Tt' < 1 [20] and so n' is free. Hence
the endomorphisms induced on the nilpotent quotients n'/n'M by 9 are isomorphisms
for all n > 1 [19]. Hence Ker(0) < P|n>1 7i'[nV Since 7r' is free it is residually a finite
p-group [15]. Therefore Ker(0) = Ker(0') = 1, so 6 is an automorphism. Thus (i)
and (ii) each imply (iii); the converse is clear. •

The fundamental groups of 3-manifolds with hyperbolic atoroidal parts are residu-
ally finite [9]. Hence they are hopfian, and so degree 1 self maps of such groups are
automorphisms.

The cohopficity of surface groups other than Z2 or Z x Z is an easy consequence
of the multiplicativity of the Euler characteristic in finite extensions. This extends to
all hyperbolic 2-orbifold groups.

Let p be a group which is virtually a PD2-group and which has no nontrivial
finite normal subgroup, and let K be the normal subgroup of p generated by all its
elements of finite order. Then p is the orbifold fundamental group of an aspherical
2-orbifold [6], and p = P/K is the fundamental group of the surface obtained by
deleting neighbourhoods of the singular points and replacing them with discs. Hence
X(p) < X(P)> with equality only if K = 1. (In particular, if x(P) < 0 then x(p) <
— 1.) We shall use this fact (for which we do not have a simple algebraic proof) in the
following lemma.

LEMMA 6. Let p,a be groups which are virtually PD2-groups and such that p has
no nontrivial finite normal subgroup. If x(°0 < x(p) < 0 and 9 : p ^ a is a
homomorphism such that [a : 0(p)] < oo then 6 is an isomorphism.

PROOF. We may assume that a is a /^-group and that 9 is an epimorphism. Let
K be the normal subgroup of p generated by all its elements of finite order. Then
9 factors through p = P/K, and x(°0 ^ X(P) 5 x(f>)> by the observation in the
above paragraph. Therefore 9 induces an isomorphism p = a, by Lemma 5. Hence
x(p) = x(p), so p is a P£>2-group and 9 is an isomorphism. •

In particular, p is both cohopfian and hopfian. Lemmas 3 and 5 together imply
that virtually poly-Z groups and PDn-groups of Seifert type are hopfian. On the other
hand, it is easy to see that many groups in classes (4), (5), (7) and (8) are not cohopfian.
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THEOREM 2. Let G be a PDn-group which is virtually poly-Z or is of Seifert
type, and let 6 : G —> G be an endomorphism such that deg 8 ^ 0. Then 0 is a
monomorphism.

PROOF. We may assume that G is of Seifert type and that 01 E<,G) is a monomorphism,
by Lemma 3. The quotient G = G/E(G) is virtually a PD2-group and has no
nontrivial finite normal subgroup, and the induced homomorphism 6 : G -> G has
image of finite index. Therefore 0 is an automorphism, by Lemma 6, and so 6 is a
monomorphism •

COROLLARY 4. An endomorphism 0 is an automorphism if and only if\ deg 9 \ = 1.

PROOF. If | deg 61 = 1 then 6 is onto, by Lemma 2, and hence is an automorphism,
by the theorem. The other implication is clear. •

In [18] it is shown that every sequence of degree 1 maps between geometric 3-
manifolds eventually becomes a sequence of homotopy equivalences. This remains
true for sequences of homomorphisms between PDn-groups which contain a term from
one of the classes (4)-(8), by Lemmas 3-4 and Corollary 4, and the fact that Euler
characteristics of hyperbolic 2-orbifolds are bounded above by —1. Rong handles the
other cases in dimension 3 using a measure of complexity based on the Gromov norm
and the number of Seifert parts.

Wang showed that every endomorphism of nonzero degree of the group of an
aspherical 3-manifold with hyperbolic atoroidal parts is a monomorphism, and es-
tablished the cohopficity of such groups in classes (1), (2), (3) and (6). He uses the
Gromov norm to handle classes (1) and (2); class (3) is the most demanding [22]. We
shall verify only that PD3-groups in class (6) are cohopfian.

THEOREM 3. Let G be a PD3-group such that */G = Z and which is not virtually
a product. Then G is cohopfian.

PROOF. Let <p : G -> G be a monomorphism and let G = G/*/G. Then the
induced endomorphism 4> '• G —*• G is an automorphism, by Theorem 2. Since
*/G = Z the quotient G has a normal subgroup H of finite index which is a PD\ -group
such that x(H) < 0, and such that */G is a central subgroup of the preimage H < G.
Since the automorphism ^ permutes the finitely many (torsion-free) subgroups of G
of index [G : H], there is an n > 1 such that 4>n{H) = H. Hence <pn(H) < H. Such
extensions are classified by elements e e H2(H\ 2) = Z, and it is not hard to see that
we must have

e = [VG : 0"(VG)1 e.
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Hence either */G = <j>(^/~G), so <f> is an automorphism, or e = 0, in which case H is
a product and G is in class (5). •

The Euler class e is used in a similar way in [7, 22, 23]. It is easy to see that no
PD3-group in class (4) is cohopfian, and a similar result is proven in [7] for classes
(5), (7) and (8). (See also [8] for cohopficity of groups of bounded 3-manifolds.)
In higher dimensions, it is not clear whether there are any cohopfian PDn groups in
classes (4)-(8). (Central extensions of PD2-groups by free abelian groups of rank > 1
are never cohopfian, and it is probable that no virtually poly-Z group is cohopfian.)

Groups of aspherical geometric 3-manifolds in classes (1), (2), (3) and (6) satisfy
the volume condition [24]. Again this may be verified using the Gromov norm for
classes (1) and (2), and class (3) presents the most difficulty. (Class (6) can be handled
as in Theorem 3.) Since PD3-groups in the other classes are not cohopfian they do not
satisfy the volume condition.

Groups G and H are commensurable if there are subgroups G\ < G and H\ < H
of finite index such that G\ = H\. All PD3-groups in any one of the classes (5),
(6), (7) or (8) are commensurable, while the commensurability classes of groups of
type (4) correspond to the real quadratic extensions of Q. The commensurability
classification of hyperbolic 3-manifolds and 3-manifolds with nontrivial geometric
decompositions (corresponding to classes (1), (2) and (3), with hyperbolic atoroidal
parts) is considerably more delicate. See [16] and [17].
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