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THE SMOOTH VARIATIONAL PRINCIPLE
AND GENERIC DIFFERENTIABILITY

PANDO GRIGOROV GEORGIEV

A modified version of the smooth variational principle of Borwein and Preiss is
proved. By its help it is shown that in a Banach space with uniformly Gateaux
differentiable norm every continuous function, which is directionally differentiable
on a dense G5 subset of the space, is Gateaux differentiable on a dense G5 subset
of the space.

The question of generic differentiability (that is, on a dense Gj subset of the do-
main) of non-convex functions has been considered by many authors. First results in
this direction were obtained by Kenderov in [7] where he proved that in a separable
Banach space a continuous and quasi-differentiable in the sense of Pshenichniy function
as well as a locally Lipschitz and directionally differentiable function is generic Gateaux
differentiable. Later, Lau and Weil [9], Fabian [4], Lebourg [10] have obtained generali-
sations of Kenderov’s results in several directions, but only in the separable case. In the
non-separable case analogous extensions are proved by Zhivkov {13, 14]. Other types
of results about generic Frechet differentiability of non-convex functions are obtained
by Ekeland and Lebourg [3], Zajicek [12], Fabian [4], de Barra, Fitzpatrick and Giles
[1], Georgiev [5], et cetera.

In this paper, by a modification of the smooth variational principle of Borwein and
Preiss (2], we establish a result stating that in a Banach space with uniformly Gateaux
differentiable norm, every continuous, directionally differentiable on a dense G5 subset
of its domain, function is generic Gateaux differentiable.

Let E be a Banach space. The function f: E — R is said to be directionally
differentiable at z, if for every h € E the one-sided directional derivative f'(zo;h) =
ltiﬁ)l (f(zo + th) — f(zo))/t exists. The function f is Gateaux differentiable at zo if the

operator f'(z¢;.) is continuous and linear. In this case f'(z¢;.) is denoted by V f(z,).
The following assertion is a slight modification of the Borwein-Preiss smooth vari-
ational principle [2] and is essential in the sequel.
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THEOREM 1. Let E be a Banach space, X C E be a closed non-empty subset,
f: X —» RU {400} be a lower semicontinuous function and € > 0, A > 0, p > 1 be
given. Suppose that z, satisfies the condition

inf {£(z) + 55 llo - 20l’} < f(z0) < inf f(X) +e.

Then there exists r1 > 0 such that for every r > 0 there exist a point v € X, a
sequence {z,}32, C X converging to v, a sequence {n}3, C [0, 1] with ) p,=1
n=0

such that

(1) f()+ (e/XAP)A(v) < f(2) + (e/AP)A(z) Vz € X, where

(@) A@)= § pnle =2l

() llv—=oll <A,

(4) llzn—vll <7 Vr 21,

(8) llza —2oll 2

ProoF: Choose €' < € such that f(zo) < inf f(X)+¢' and put g, = (1 — ¢1)q7,

n = 0,1,2..., where ¢ € (0, min{l, (e —¢€')/e}). For fixed
5 € (0, f(zo) — zlg}'{{f(z) + po €/AP ||z — z4||7}) denote

xs={zex £(e) + oy lle = zalP < inL{F(2) + oy uz—zon"}+6}

The set X; is closed (because f is lower semicontinuous) and since zq ¢ X5 we have
T 1= dist(:co, Xg) := inf ||:l:o — z|| > 0.
z€Xg

Let 7, > 0 be fixed. Choose g2 € (0, min{q,, §/¢'}) such that for ¢ := (qz/ql)l/p
to be fulfilled:

(l+a 1/r 4 e\ /7
(6) 5:= (l—ql) Tog \% <1 and Asg < rs.

Define inductively the functions {f,}22, and the points {z,}3%, b
€

(7 fn41(z) = falz) + ek |z - zall”, fo:=f;

z, is such that

(8) fn(zn) <inf fo(X) + €, where e, =¢'g7,n=0,1,2,....

Since z; € Xg, we have ||z¢ — z1|| > dist(zo, X5) = r1, which is (5).
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Using (7) and (8) we can write

£
Pnip lZn+1 — Zall® = fat1(znt1) — fal(@ns1)

= fat+1(Zn+1) = fat1(Zn) + fa(zn) — fa(Zn+1) < €ns1 +€n.

Hence

| ’ P 1/p s 0\ 1/P
€n + Eq n + 1 e
I Zas1 — znll < A (_ﬂ__) _ ('1:(‘12 )) (_)

Eptn (1 —q) €
1/p s 1\ 1/p

= (£5) 7 (%)

1—-q1 €

and having in mind the notion in (6), for m > n we obtain

(9) lZm — zall < As(1 —¢™")q"

This shows that {z,}22, is a fundamental sequence, therefore there exists a point v

such that z,, — v. Now assertions (3) and (4) follow by (9).
To establish (1), let v > 0 be given. Since f is lower semicontinuous and A
(defined by (2)) is continuous, there exists § > 0 such that

(1) f(0)+ 5 A0) < f(2) + 35 A(z) +7/3 whenever [z —v]| < &.

Choose n sufficiently large such that e, < /3, |en—v|| < 6 and
(e/X?) 3 pillzn — zx||” < 7/3. For every z € X, using (10), (7) and (8), we can
k=n

write
F(0) + 35 8(0) < f(2n) + 35 8(2a) +7/3
= falzn) + 35 gm lzn — zul +v/3
< fal@) + n+ /34 7/3 < f(2) + 15 0(2) + 7
and (1) is proved. 1]

THEOREM 2. Let the Banach space E have a uniformly Giteaux differentiable
norm (this means that the norm is Gateaux differentiable on E \ {0} and the limit
1:{(1)1(”2 + th|| — ||z||)/t is uniform with respect to z € S := {z € E: ||z|| = 1} ). Then

every continuous function defined on an open subset D C E, which is directionally
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differentiable on a dense Gs subset of D, is Gateaux differentiable on a dense Gj;
subset of D.

PROOF: By Proposition 2.1 of [14], f is locally Lipschitzian on a dense and open
subset D; of D. Let U C D; be an open subset such that f is Lipschitz on U. If we
prove that f is Gateaux differentiable on a dense G5 subset of U, then the theorem
would be proved, having in mind the localisation principle (see [8], Chapter I, Section
10, V) stating that a subset P of a topological space is of first Baire category if for
every point p € P there exists an open set H 5 p such that PN H is of first Baire
category in H .

Define the sets:

: 1) 7T
Xi=feetidpmew, Hme(0(3)77), 3ennlzocy,

oo
3{/"11,171}:::0 - [0’ 1j, Z Bnm =1,32, CU: zpmm — Zy, ""’ - z,,,” < tzn

m=0
B(2n;2tn) CU, ||Znm — 2ol < 2Vm 2 1, 2t, < ||Zno — Zn, l|2 < 1/n? and
f(z) +2A,(2) < eB(infz ){f(z) + 20,(2)} + 12, where
z Zn;2tn

Do)=Y pngmlly — zn,mn’"} ,

m=0

" 1 p"l_ 2
X, ={z€U:3p,€(1,2), 3t,€ |0 = yJe, CU: ||z -z, < 82,

Blewi2ta) U, f2)< il {6) 42l = o7} 42

Since f is continuous, the sets X, and X are open. We shall prove that the set
X, =X, UX] isdensein U.

Let n 2 2, 2,0 € U be fixed. Choose € € (0, 1/n) in such a way that B[z, ;€] C
U. For p, € (1, (In e/2)/(In €)) we put A = (5/2)1/7". So we have A < 2APn = ¢,
Having in mind that if af for some a > 0 is Giteaux differentiable at a point z then
f is also Gateaux differentiable at z, we may assume without loss of generality that
the Lipschitz constant of f is less than 1. We can write

f(zno) < _ inf ]{f(Z) +L||zno — z[} < _ inf ]f(Z) +e.

zEB[z, 05 zEB[zp 0ie

If f(zno) < f(2) +2||z — zn || for every z € Blzn;€], then z,0 € X! for t, €
(0, min{e/2, (l/n)ll(p"-l)}) . If this is not true, we apply Theorem 1 with A, ¢,
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Pn defined above and X = B[zno;€]. So there exists r; > 0 such that for r; = 154
where ¢, € (0, min {(e - A)/2, (l/n)l/(p"—l) , r'f/2}) we obtain a point z,, sequence

oo
{zﬂ,‘m}:=0 cX, Zanm 7 ZTn, {I"n,m}:_:o C [0, l], 2 Hoam = 1 with the following
m=0

properties:
(11) f(@n) + 28n(2n) = inf {(2) + 28n(2)}
where An(y) = E HBnm ”y _ zn'm”Pn ,
m=0
(12) |2 — znoll <A < 2XP =,
(13) ”zn,m - zn” < ti Vm > 1,
(14) lzno — 2aall = 1 > (2ta)"2.

Regarding the proof of Theorem 1 we can see that ||zn0 — zn1f| <A <€ <1/n. Also
by the choice of t, and by (12) we have B(z,;2t,) C X. Now by (11), (12), (13) and
(14) the denseness is proved. -

By the Baire category theorem the set Xy = (| X, is dense and G5 in U. We

n=2

shall prove that f is Gateaux differentiable on Xy. Let zy € Xy. Consider the cases:

CASE 1. z; belongs to infinitely many X, . Without loss of generality, we can assume
that zo € X, forevery n > 2. Let p,, tn, Tn, {Zn,m} 0, {En,m}o—o be the elements
from the definition of X, corresponding to z,. It is easy to check that zg # 2, for
n 2 2. Let t], =t,/||z0 — Zno|l and 2z, = (20 — Zn,0)/ ||Zo — Zn,0||- Since

lzo — Znall € [0 — zall + |20 — Zaall < 23
< Zny = znoll* /2 < |Zng — zapll /2,

we have

t 2t
t’ < n < n
® = Nzag — znoll = 12na — 2ol ~ l2ny — Znoll

<||zag - Znoll < 1/n.

Since ||.||?, p > 1, is a convex function, it is locally Lipschitz. From the proof of
this fact (see for instance [11], p.4) we can see that the functions ||.||?, p € (1, 2) are
Lipschitz on the unit ball with one and the same Lipschitz constant L. Without loss

of generality we may assume that V||z,|| = z;, where V||z|| denotes the Gateaux
derivative of the norm at z (choosing a convergent subsequence if it is necessary) because
the closed dual unit ball is sequentially w*-compact (see [8]) and |V| z. || ||" = 1.
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Since the norm is uniformly Giteaux differentiable, it is a routine matter to prove
that for every ¢ > 0 and h € S there exists § > 0 such that

llz + th)l” — |=|I”
t
For every € > 0 and such §, for n > 1/, h € S, since zo + t,h € B(zn;2t,), using

(15), we can write

f(zo + tah) — f(=z0) S _28n(z0 +tah) — 204(20)

(15)

~p(Vz|l,h)<e Vze€S§,Vte(0,8),Vpell,2.

i
tn tn "
[~
||T«o +t,h—2z, m||p" — "30 —Zn m”pn
=2 ) [} -t
’; Kn,m t. n
> —2um0 lzo + tnk — zn o™ — |20 — zno ™
Z 7, ‘.
oo
tahllP™ + L |lzo — Zn,ml]
-2 — —
"IZ::I Knm tn n
t' h Pn __ Pn _
> —2pn0 “zﬂ ti, ” ”z'l»“ "30 _ 3n,0”p" 1_ Ztﬁ"—l —4Lt, —t,

t,
> —2p,(V||zall, h) —2¢ —2/n —4L/n - 1/n
> —4(V||zn]|, h) — 2¢ — 3/n — 4L/n.
Hence, for 27 = —4z], after passing to limits, we obtain
F(zoih) > (21, h) — 2¢
and since this is valid for every € > 0 and h € S, we have
f'(zo;h) 2 (21, h) VhE€ES.

CASE 2. If Case 1 is not fulfilled, then z, belongs to infinitely many X} . Without
loss of generality we may assume that zo € X! for every n > 1. Let t,,, p, and zy be
the elements from the definition of X!/ corresponding to zo. We can write

f(zo + tah) — f(=0) > _¢pn-1
tn Zom

- tn > —2/11.

Hence, after passing to limits, we get f'(zo;h) 2 0.

Repeating this reasoning for the function —f, we obtain a dense G5 subset in
U at every point z of which it is fullfilled: there exist z}, z; € E* such that
(z3, B) 2 f'(z;h) =2 (21, k) for every h € S. Hence zi = z; = Vf(z) and the
proof is completed.

The proof of Theorem 2 shows that a Banach space with uniformly Giteaux dif-
ferentiable norm is a A-space in the terminology of [14].
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