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1. Introduction
There have been several recent accounts of a theory dual to the well-known

theory of primary decomposition for modules over a (non-trivial) commutative
ring A with identity: see (4), (2) and (9). Here we shall follow Macdonald's
terminology from (4) and refer to this dual theory as " secondary representation
theory ". A secondary representation for an /4-module M is an expression
for M as a finite sum of secondary submodules; just as the zero submodule of
a Noetherian /4-module X has a primary decomposition in X, it turns out, as
one would expect, that every Artinian /4-module has a secondary representation.

In the first part of this note, we shall show that, when the ring A is Noetherian,
the class of /4-modules which possess a secondary representation is more
extensive than the class of Artinian /4-modules by proving that every injective
/4-module has a secondary representation. The second part of the note will
show how the ideas of the first part are essentially a particular case of a more
general functorial argument which gives a procedure for transforming primary
decompositions into secondary representations (and vice versa).

We shall use the following notation and terminology. Let a be an ideal
of A and Nbe a submodule of the /4-module M. The radical of a will be denoted
by r(a); also, (N: Ma) will denote the submodule {x e M: ax s N} of M; and
(N:M) will denote the ideal {aeA: aM c N} of A, so that, in particular,
(0: M) denotes the annihilator of M.

As mentioned earlier, we shall follow Macdonald's terminology concerning
secondary representation. Thus an /4-module S is secondary if S # 0 and,
for each aeA, the /4-endomorphism of M produced by multiplication by a
is either surjective or nilpotent. If this is the case, then p = r(0:S) is prime,
and we say that S is p-secondary. A secondary representation for an /4-module
N is an expression for N as a finite sum of secondary submodules, say

with Sj p (-secondary (for i = 1, ..., r). If such a representation exists, we shall
say N is representable. Such a representation is said to be minimal if p l, p2, • • -, pr

are all different and none of the summands St is redundant. The reader is
referred to sections 2, 5 of Macdonald (4) (or to sections 2, 3 of Kirby (2))

https://doi.org/10.1017/S0013091500010658 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500010658


144 RODNEY Y. SHARP

for proofs of the following facts. Any Artinian ,4-module is representable,
and any secondary representation can be refined to a minimal secondary
representation. The prime ideals which occur in a minimal secondary repre-
sentation for a representable ^-module N (as the radicals of the annihilators
of the secondary terms) are uniquely determined^ by N and are independent
of the choice of minimal secondary representation: these prime ideals will be
called the attached primes of N, and the set which they form will be denoted
by Att (N).

The identity mapping of an ,4-module X onto itself will be denoted by
Id*-

2. Secondary representations for injective modules over a commutative Noetherian
ring

The (non-trivial) commutative ring A with identity will only be assumed
to be Noetherian when this is explicitly stated.

Lemma 2.1. Let q be a ^-primary ideal of A, and let E be an injective A-
module. Then (0:Eq), if non-zero, is ^-secondary.

Proof. Let ae A. If a e p, then a" e q for some positive integer n, so that
a" annihilates (0:£q). On the other hand, if a $ p, then we can see that

(0:£q) = a(0:£q)

as follows. Let xe(Q:Eq). Using ~ to denote the natural homomorphism
from A to A/q, there is a homomorphism <f>: A/q-*E for which <j>(6) = bx
for all 5 e Alq.

As the diagram

I*
E

has exact row, it can be completed with a homomorphism ty: A/q-*E which
makes the extended diagram commute. Thus x = <£(T) = (̂flT) = a\p(I).
Hence (since 1̂ (1) e (0:£q)) we have (0:£q) = a(0:Eq), and the result follows.

Lemma 2.2. Let a1; a2, ..., an be ideals of A and E an injective A-module.
Then

t (O:£a,.)=(o:£ f] a).

( " \ I "
Proof. Let x e 0:£ f) a, I. Let n: A->A f\ a.and, for each i = 1, ...,n,

\ i= I J I i= 1
7r;: A-*A/ah be the natural homomorphisms. There is a monomorphism

£: A 0
i = 1

https://doi.org/10.1017/S0013091500010658 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500010658


SECONDARY REPRESENTATIONS FOR INJECTIVE MODULES 145

for which £(n(a)) = (n^a), n2(a), ..., nB(a)) for all aeA. Also, there is a
/ "homomorphism r\: AI C\ at-+E for which rj{n{a)) = ax for all a e A.

/ i = 1

As E is injective, we may extend the diagram

i = 1 i =

I'
£

n

(which has exact row) by a homomorphism £: © (/4/a,)->£ which makes
i = 1

the extended diagram commute. Now x = rj(n(\)) e Im ((), and it is clear

t h a t l m ( C ) s j \ (0:£a,). It follows that (0 : E H a;) £ Y (0:£of). Since
i = 1 \ 4=1 / 1=1

the reverse inclusion is clear, the result follows.
Before we state the main theorem of this section, recall (10, p. 46) that an

injective /4-module E is said to be an injective cogenerator of A if, for every
/4-module X and every non-zero xeX, there is a homomorphism <j>: X->E
such that (j>(x) # 0.

Theorem 2.3. Assume A is Noetherian, and denote by Ass (.4) the set of
prime ideals of A which belong to the zero ideal {for primary decomposition).
Let E be an injective A-module. Then E has a secondary representation, and
Att (£) s Ass {A).

More precisely, let 0 = q 1 n q 2 n . . . n q n be a normal primary decomposition
for the zero ideal of A, with (for i = 1, ..., «) qta ^(-primary ideal. Then

and {for i = 1, ..., n) (0:£q;) is either zero or prsecondary.
Moreover, ifj is an integer such that 1 ^j^n, and

J = {1, ...,7-1,7+1, ...,«},

then E = Y (0 :£qf) if and only if f\ q; annihilates E; consequently, if E is an
ieJ ieJ

injective cogenerator of A, then (*) is a minimal secondary representation for E,
and Att (E) = Ass (A).

Proof. 2.1 shows that (O:Eqj) is either zero or prsecondary, and 2.2 shows

( » \ n
0;£ ( l 9*) =

 YJ (Q'-E&I)- The same Lemma also provides
• = 1 / • = I

the information that, if the integer j satisfies 1 ^j^n, then

ieJ ieJ

the latter module is clearly equal to E if and only if f] q; annihilates E.
ieJ

E.M.S.—20/2—K
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Now assume E is an injective cogenerator of A. To prove the final assertions
of the Theorem, it is enough to show that, for each j = 1, ..., n, the ideal
f) q, does not annihilate E; it is therefore sufficient to show that, if b is an

arbitrary non-zero ideal of A, then b does not annihilate E.
To this end, let y be a non-zero element of b. Since E is an injective co-

generator of A, there exists a homomorphism <j>: A-*E such that </>(y) # 0.
Then ycj>(l) = 4>(y) ^ 0, so 4>(1) is an element of E which is not annihilated
by y, and so not annihilated by b. This completes the proof.

In the notation of 2.3, we can give a more precise description of Att (E)
by using the very satisfactory direct decomposition theory for injective modules
over a commutative Noetherian ring. Listed below are some of the main
facts of this theory; for more details of the theory the reader is referred to
(5), (1) and (10). If M is an ^4-module, we shall use E(M) to denote the injective
envelope for M.

Proposition 2.4. (Matlis; Gabriel.) Assume A is Noetherian.

(i) A direct sum of a family of A-modules is injective if and only if each of
the summands is injective. (See (1), § 4.)

(ii) There is a bijective correspondence between the prime ideals p of A
and the isomorphism types of (non-zero) indecomposable injective A-modules
given by p<r-*E(A/p). (See Proposition 3.1 of (5).)

(iii) Every injective A-module can be expressed essentially uniquely as a direct
sum of indecomposable injective A-modules. (See Theorem 2.5 of (5) and
§4of(l) .)

If follows from this decomposition theory that, if E is an injective module
over the Noetherian ring A, then there is a family (pa)aeA of prime ideals of
A for which E = © E(A/pa), and that if (qp)fi e & is a second family of prime

a e A

ideals of A for which E s @ E(A/qfi), then there is a bijection y: A->O such

that pa = qy(a) for all a e A. The set {pa: a e A} is thus uniquely determined
by E; we shall denote this set by Occ (E), and refer to its members as the
prime ideals which occur in the direct decomposition of E.

Our next aim is to describe, in the notation of 2.3, Att (E) in terms of
Ass (A) and Occ (E). To do this, we shall require information about the
structure of the indecomposable injective modules over a commutative
Noetherian ring.

Lemma 2.5. (Matlis.) Assume A is Noetherian, and p is a prime ideal
of A.
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(i) Every element ofE(A/p) is annihilated by some power of p. (See Theorem
3.4(1) of (5).)

(ii) Multiplication by an element ae A — p provides an automorphism of
E(A/p). (See Lemma 3.2 (2) of (5).)

00

(iii) The annihilator of E(A/p) is f] p(l) where (for each i) p(l) denotes
i = 1

the ith symbolic prime power of p. (See Theorem 3.4 (1) and (2) of (5).)

Theorem 2.6. Assume that A is Noetherian and E is an injective A-module.
Then

Att (E) = {p' e Ass (A): p' c pfor some p e Occ (£)}.
Proof. It was shown in 2.3 that if 0 = q!nq2n...nqn is a normal primary

decomposition for the zero ideal of A, with (for i = 1, ..., ri) q; a prprimary
ideal, then

and (for i = 1, ..., ri) (0:Eq,) is either zero or prsecondary. A minimal
secondary representation for E can be achieved from (*) by first removing
any zero terms on the right-hand side, and then removing any redundant
terms. We shall establish the Theorem by showing (a) that (0:£qf) = 0 for
any i for which pf is not contained in any p in Occ (E) and (b) that if j is an
integer (with 1 ^j^ri) for which p7- is contained in some p belonging to
Occ(£), then £ (0:£qf)#£, where / = {1, ..., j-l, j+l, ..., «}, so that

(O:£qj) cannot be omitted from (*) at any stage of the reduction procedure.
(a) Suppose, then, that i is an integer (with 1 ^ i ^ ri) such that pt £ p

for all p e Occ (£)• Now if (p^)x e A is a family of prime ideals of A for which
E ^ © £(4/pJ, then (0:£q;) s ©(O:^, , , .^ ; ) . Thus, in order to show that

a e A ae \

(0:£q,) = 0, it is enough to show that (O:£Wp)qj) = 0 for all p e Occ (E).
But, for such a p, we have qf £ p (since r(q,) = p,), so let a e q;—p. Then

multiplication by a on E(A/p) provides an automorphism of E(A/p) (by 2.5 (ii)),
and so (0:EiA/p)qi) = 0, as required.

(b) Now suppose j is an integer (with 1 ^j^n and / defined as before)
for which Pj c p for some p e Occ (£). We shall show that £ (0:£q;) # E.

Suppose this is not the case; then, by 2.3, E is annihilated by r ; = f] qh and
16/

00

therefore E(AJp) is annihilated by r,-. Hence, by 2.5(iii), tj £ f] p(k\
4 = 1

oo

Now r- £ q-; let aetj — q.-. Then a e f] p w , which is the kernel of the
* = I

natural ring homomorphism from A to Ap. Hence there exists se A — p such
that sa = 0 e q;. Since aeA — c\j and (as p} £ p) s e A — pp this is in contra-
diction to the fact that q̂  is p^-primary.

This completes the proof.
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3. More general arguments of a functorial nature
In this section (in which we shall again assume only that A is a (non-trivial)

commutative ring with identity) we shall show that the argument which led
to Theorem 2.3 is essentially a particular case of a more general functorial
argument. Let ^(A) denote the category of all ^-modules and ,4-homo-
morphisms. Let E be an injective ,4-module; then there is a natural iso-
morphism between E and HomA (A, E) under which the submodule (0:Eq)
of E (for an ideal q) corresponds to the image of the homomorphism

Hom^/q, E)-*HomA (A, E)
induced by the natural epimorphism A-*Ajq. Now Hom/4( , E) is a contra-
variant exact additive ^-linear (7, § 3.7) functor from #(/4) to itself. In this
section, T will denote a contravariant exact additive ^4-linear functor from ^(A)
to itself; we shall indicate how T transforms primary decompositions into
secondary representations. As it should become clear that the first part of
Section 2 is essentially a special case of the argument of this section, we shall
only give indications of proof in this section: the interested reader should be
able to fill in the details for himself.

3.1. The theory of primary decomposition for ,4-modules is so well docu-
mented that it is only necessary to specify the terminology which is to be used.
We shall assign to the terms primary submodule, p-primary submodule, and
(normal) primary decomposition in an ^4-module M (of a submodule of M)
the same meanings as they have in sections 2.8 and 2.9 of Northcott (8). When
we say that an ,4-moduIe M has (p-)primary (resp. decomposable) zero sub-
module, then the qualification " in M " is to be understood.

Let M be an >4-module. It is clear that the study of primary decompositions
in M of a submodule N of M is effectively the same as the study of primary
decompositions of the zero submodule of M/N. Note that M has primary
zero submodule if and only if M # 0 and, for all a e A, the endomorphism of
M produced by multiplication by a is either injective or nilpotent.

If M has decomposable zero submodule, the prime ideals of A which
belong (8, p. 106) to the zero submodule of M will be called the associated
primes of M; the set which they form will be denoted by Ass (M).

3.2. Suppose Q is an .^-module having p-primary zero submodule. For
a e A and each integer />0, we have T(al.IdQ) = a'.T(IdQ) = a'.IdT(c).
Now if a e p, there is an integer n > 0 for which a". IdQ is the zero endomorphism
of Q, so that a".Idr ( Q ) is the zero endomorphism of T(Q). On the other
hand, if a $ p, then a . Ide is monomorphic, so that the properties of T ensure
that a.Idr ( Q ) is epimorphic. Thus T(Q), if non-zero, is p-secondary.

In a similar manner, one can show that, if S1 is a p-secondary y4-module,
then T(S) is either zero or has p-primary zero submodule.

3.3. Suppose M is an /4-module having decomposable zero submodule;
let 0 = Qir\Q2n...nQn be a normal primary decomposition for the zero
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submodule of M, with (for i = 1, ..., n) Qt a p.-primary submodule of M.
For each / = 1, ..., n, let 7r,-: M-*MIQt be the natural epimorphism;

will be monomorphic, and since M/Q, has prprimary zero submodule, 3.2
shows that St = T(n^)T(M/Qi) is either zero or p,-secondary.

n

Next, let X = © (M/Qj) and let / : M-+X be the homomorphism for
i = 1

which/(/M) = (n^m), n2(m), ..., nn(m)) for all me M. Since/is monomorphic,
T(f): T(X)-*T(M) must be epimorphic. It is easy to see from this that

this argument therefore shows that, whenever M is an /4-module having
decomposable zero submodule, then T(M) is representable with

Att (T(M)) <= Ass (Af).
3.4. Here, we use the same notation as in 3.3. Suppose j is an integer

such that 1 £j ^ «, define j as before, and let y, = 0 (M/g,). There is
ieJ

a natural homomorphism hji M->Yj which has kernel Kj = f] Qt. It is
ieJ

straightforward to show that T(hj): T(Yj)-*T(M) has ^ St for its image.

Applying T to the exact sequence

now shows that T(M) = ^ St if and only if T(Kj) = 0. Note that, as we
ieJ

began with a normal primary decomposition of the zero submodule of M,
each Kj (j = 1, ..., n) is non-zero.

Now suppose that T has the additional property of being faithful, i.e.
whenever g: Z-* W is a non-zero homomorphism of /4-modules, then

T(g): T(JV)-+T(Z)

is non-zero also, or, equivalently, whenever V is a non-zero ^4-module, then
T(V) # 0 also. (An example of such a functor would be HomA ( , E'), where
E' is an injective cogenerator of A.) It follows easily from the preceding
paragraph and 3.3 that

is actually a minimal secondary representation, so that

Thus, when T is faithful and M is an /4-module having decomposable zero
submodule, then not only is T(M) representable, but also

Att (T(M)) = Ass (M).
3.5. An application. Let R be a commutative Noetherian local ring (with

identity) and E be the injective envelope of the residue field of R. It is well
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known that, whenever N is a finitely generated /J-module, then HomR (N, E)
is an Artinian i?-module (10, § 3.4 and Theorem 4.30) and so is certainly
representable. Since N, being Noetherian, has decomposable zero submodule,
it is natural to look for connections between Ass (N) and Att(HomR (N, £)).
In the special case in which R is complete, one can use Matlis's duality in
conjunction with alternative characterisations of Ass (N) and Att(HomK (N, £))
to show that these two sets are equal: see 2.3 of (3). However, 3.4 above deals
with the general, not necessarily complete, case, because E is an injective
cogenerator of R: it follows not only that Att(HomR (N, E)) = Ass (N), but
also that a normal primary decomposition of the zero submodule of N gives
rise in a natural way to a secondary representation of HomR (N, E).

3.6. Concluding remarks. In 3.1-3.4, we were principally concerned with
the transformation by our contravariant functor T of primary decompositions
into secondary representations. There are three parallel families of results,
one concerning the transformation by T of secondary representations into
primary decompositions, and the others concerning the manner in which a
covariant exact additive y4-linear functor transforms primary decompositions
into primary decompositions, and secondary representations into secondary
representations.

However, in connection with these parallel results, it should be pointed
out that the ideas of Moore (6) enable us to interpret a secondary representation
for a module X in ^(A) in terms of a primary decomposition for the null
subobject of X when X is considered as an object in ^(A)*, the dual category of
<&(A). Indeed, Moore's work and the essentially categorical flavour of the
above arguments in Section 3 suggest that the most natural setting for studying
the various parallel families of results might be provided by Abelian categories
over A, for the situations of all the results mentioned above are all special
cases of the following more general situation: 3d and £d are both Abelian
categories over A, a primary decomposition of the null subobject of an object
Y of 38 is given, and one considers the effect of a covariant exact additive
y4-linear functor V: 38-+Q). However, these ideas are superfluous to the main
aim of this note, and so we shall not discuss them further here.
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