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Introduction. It is well known (1, p. 162) that the lattice of subalgebras of 
a finite Boolean algebra is dually isomorphic to a finite partition lattice. In this 
paper we study the lattice of subalgebras of an arbitrary Boolean algebra. 
One of our main results is that the lattice of subalgebras characterizes the 
Boolean algebra. In order to prove this result we introduce some notions 
which enable us to give a characterization and representation of the lattices 
of subalgebras of a Boolean algebra in terms of a closure operator on the lattice 
of partitions of the Boolean space associated with the Boolean algebra. Our 
theory then has some analogy to that of the lattice theory of topological vector 
spaces. Of some interest is the problem of classification of Boolean algebras in 
terms of the properties of their lattice of subalgebras, and we obtain some 
results in this direction. 

The elements of the Boolean algebra 33 will be denoted by lower case Roman 
letters, and we shall use the symbols -, VJ, + to denote the meet, join, and 
symmetric differences respectively. The subalgebras of 33 will be denoted by 
lower case German letters, and the meet and join operations by • and + . 
Ideals in 33 will be denoted by capital German letters, and we shall use paren­
theses and braces to denote the subalgebras and ideals respectively, generated 
by elements in 33. The complement of an element z £ 33 will be denoted by zf. 
The lattice of subalgebras of 33 will be denoted by L. 

Structure. 

DEFINITION 1. A dual subalgebra of 33 is a subalgebra consisting of an ideal 
Ê and its dual (£'. (It is easily established that the set union of S and fë' is a 
subalgebra for any ideal (S.) 

LEMMA 1. Let a be a dual subalgebra, and let b be any subalgebra. Then 

a + b = b + a = [x;x = a + b,a <E a,b Ç b]. 

Proof. Evidently, if x Ç a + b, then 

x = aibi + a2&2 + • • • + anbn. 

Let a G a. Since a is a dual subalgebra, either every element < a is in a, 
or every element > a is in a. Thus 

x = a* + akbk + . . . + ambm 
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where the at lie in the dual ideal composing a. Therefore 

x = a* + (1 + ak)bk + . . . + (1 + a'm)bm 

= a* + (akbk + . . . + a'mbm) + (bk + . . . + bm) 

= a" + 6" with a" G a, 6" G b 

since a/6* G a for all i. 

DEFINITION 2. We write aM (a is dual modular) in L if (a + b)c = a + be 
/or e^ery c > a and (b + a)b = b + ab/or eyer^ b > b. 

LEMMA 2. If a is a dual subalgebra, then aM. 

Proof. If c > a, then (a + b)c > a + be. If c G (a + b)c, then c f ( , c = a + 6 
where a Ç a, K f). Thus b = c + a. Hence b G c since c > a, and therefore 
è G be. Hence c G a + be, and this implies a + be = (a + b)c. 

If b > b, then (b + a)b > b + ab. If d G (b + a)b, then d G b, d = b + a, 
a = 6 + d, and therefore a f b. Thus a G ab, d G b + ab, and the proof is 
complete. 

Our next aim is to show that subalgebras which are not dual are not M 
elements. Suppose now that b is not a dual subalgebra, and thus distinct from 
93. If $ is the set of all elements p in b such that [0, p] C b, then ^ is an ideal 
distinct from 53. Since b ^ ^ U ^ ' , there exist a, af in b such that a, a' # $ \J $''. 
Hence there exist 2, 5 $ b such that a > t, a' > s. Let t\J s = b. Since ab = / 
and a'b — s, ab, a'b and b are not in b. 

LEMMA 3. b + (b) > b + (a&). 

Proof. Since a G b, ab G b + (fr), and therefore b + (b) ^ b + (ab). Since 
b + (&) contains a'6, we shall complete the proof by showing that b + (ab) 
does not. Every element in b + (ab) is of the form abdx + d2. But abd\ + d2 — 
abdxd2' U (a7 U ô ' U d / ) ^ = a f o W W afd2 U i;d2 U di'A. If a'& = a f o W W 
a'd2 U Vd2 U d/^2, then a'& = a'd2 ^ d\d2. But then a'ft G b which is false. 

LEMMA 4. If aM and p is a point, then p + a = a 0 r p + a covers a. 

Proof. If p + a y£ a and p + a > t > a, then (a + p)t = t and a + pt = t 
since aM. But this is impossible since pt = p or pt = (0). 

THEOREM 1. The dual modular elements of L are precisely the dual subalgebras 
of®. 

Proof. The proof follows immediately from Lemmas 2, 3, and 4 once one 
observes that (b), (ab) are points in L and that b + (b) > b + (ab) > b. 

DEFINITION 3. A principal dual subalgebra (p. d. subalgebra) is a subalgebra 
consisting of the set union of a principal ideal and its dual. Observe that a 
point p in L is a subalgebra of the form [0, a, a', 1]. If pAf, then evidently a or 
a' is an atom and p must be a p. d. subalgebra. 
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LEMMA 5. If £ is a p. d. subalgebra i£ 93, (0) and not a point, then there exists 
a dual subalgebra p such that £ + p = 93, £p = p where p is a point which is not 
a dual subalgebra. 

Proof. Let £ be determined by b, that is, 

£ = [a; a < b or a > £/] where 6 ^ 1, 0. 
Define 

p == [c; c > b or £ < b']. 

Then £ + p = 93 since w = wb U wb'; £p = [0, b, V, 1]. 
Since £ is not a point, b and 5' are not atoms. Thus p)M is false. 

LEMMA 6. If £ is a dual subalgebra but not a p. d. subalgebra, then there does 
not exist an M element p such that £ + p = 93, £p = p where p is a point which 
is not an M element. 

Proof. If the lemma is false, then there exists tjM such that £p = [0, a, a', 1] 
where a and a' are not atoms. Since £ is a dual subalgebra, £ contains all the 
elements < a or a'. For convenience let us suppose a. Since p is a dual sub­
algebra, it contains all the elements < a or all the elements > a. If p contains 
all the elements < a, then £p ^ [0, a, a', 1] since a is not an atom. Thus p 
contains all the elements > a. Since £ is a dual subalgebra but not a p. d. sub­
algebra, there exists 6 Ç j , M 1 such that b > a. Since p contains &, £p ^ 
[0, a, a', 1] and the proof is complete. 

We shall now characterize the p. d. subalgebras completely in terms of the 
lattice L. -

THEOREM 2. If £ is a p. d. subalgebra of 93, then £ is an M element and 
(1) £ is a point, 93 or (0), or 
(2) £ is none of these and there exists an M element p such that £ + p = 93, 

£p = p where p is a £>0iw£ which is not an M element. 
Conversely, if £ is an M element satisfying (1) or (2), then £ is a p. d. subalgebra. 

Proof. Immediate from the previous remarks and lemmas. (Note that 
£ + p = 93 is not needed for sufficiency in (2).) 

We now establish a uniqueness theorem for representations of dual sub-
algebras. 

THEOREM 3. Let 331 and 31 be distinct ideals ^ 93 and let 3Rr and 5ft' be their 
duals. If 2ft U 2ft' = 5ft U 5ft', then 2ft KJ 2R; = 93, and so 2ft and 5ft are maximal 
ideals. 

Proof. If 2ft ^ 5ft, then 2K VJ 2ft' 9* 31 U 31'. Hence there exists n € 31 such 
that n Ç 9JÎ' and so n' £ 2ft. Now z — zn\J zn' for every s in 93. Since zn £ 5ft 
and sw' G 2ft, it follows that zn, zn' G 2ft \J 2ft' = 5ft U 5ft'', and therefore 
2 = 2w U 2»' is an element of the subalgebra 2ft \J 2ft'. Thus 2ft VJ 2ft' = 93 
and so 5£ft and 5ft are maximal ideals. 

We are now in position to prove the following uniqueness theorem: 
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THEOREM 4. If L is the lattice of subalgebras of 33, L* is the lattice of sub-
algebras of 33* and L is isomorphic to L*, then 33 is isomorphic to 33*. 

Proof. Let a be the isomorphism from L onto L*. The results of Theorem 2 
show that the p. d. subalgebras of 33 correspond to the p. d. subalgebras of 33* 
under a. Let a(l) = 1*, a(0) = 0*. If tj = [x; x < y or x > y'] where y ^ 0, 
1 is not a dual atom, then c(t)) = [x*; x* < 3>* or x* > y*'] for some element 
y* -£ Q*̂  j * which is not a dual atom. We define a(y) = y*. The results of 
Theorem 3 show that 3/* is uniquely defined. Finally, if y is a dual atom, then 
we define a(y) = (a(y'))'. (If both y and yf are dual atoms, then evidently 
33 and 33* are isomorphic to the Boolean algebra of four elements.) Using 
Theorem 3 and the fact that complementation is unique in a Boolean algebra, 
we see that our mapping a is one to one. Evidently, a maps 33 onto 33*. The 
order-preserving character of a and a~l is evident from the definition of the 
mapping and the fact that dual atoms contain all but one atom. 

Our next task is to show that every subalgebra of 33 is the meet of maximal 
subalgebras. Lemma 3 shows that all maximal subalgebras must be M-elements, 
that is, dual subalgebras. 

LEMMA 7. Let c be a proper subalgebra of 33 which is not maximal. If b is a 
proper subalgebra properly containing c, then c is contained in a dual subalgebra 
distinct from 33 which does not contain b. 

Proof. There exists z Ç b with z $ c. Let H be the set of elements x G c such 
that zx = 0, and let $ be the set of elements y £ c such that z'y = 0. Then 
X and g) are proper ideals in c since c contains 1. Moreover, the ideal in c gener­
ated by X and g) is a proper ideal in c. For {3Ê, §)} = the set of x VJ y, % £ X 
and y 6 §J. If x U y = 1, then zy = z, and therefore y = z since z'y = 0. 
But this is impossible since z $ c. Let Q be a maximal ideal in c containing 
{£,§)}. The ideal {O} generated by O in 33 cannot be maximal. For {Q} 
consists of all elements g in 33 such that g < g for some g in Q . If s < g (z' < g), 
than z' > g' (z > g'), and therefore g'z = 0 (gV = 0). Since g' Ç c, the last 
equations imply g' G Q and this is impossible for 1 $ Q . Thus z, z' $ {O}, 
and therefore {Q} is not maximal. Now c = Q \J Q ' (the dual of Q in c) 
C {Q} ^ {OK ^ 33 since {Q} is not maximal. We have already shown that 
z i {O} \J {£>}', and this proves that b <t {Q} \J {Q}' . 

We remind the reader that the lattice of ideals of a Boolean algebra is 
distributive. Thus the meet of two distinct maximal ideals is submaximal, 
that is, covered by a maximal ideal. 

LEMMA 8. Let Hbe a submaximal ideal. Then 36 \J H' is a maximal subalgebra. 

Proof. It is evident that ï U ï ' is a proper subalgebra. Let ^ j t ï U Ï ' . 
Then the ideal generated by H and p cannot be 33. For, if so, there exists 
x Ç Ï such that x^J p = I, xp = 0. Therefore p G #' which is false. Thus the 
ideal generated by p and ï is maximal. Since {{p}, £} covers #, ï P\ {/>} is 
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covered by {/>}. The ideal T£ C\ {p) consists of all elements of the form xp, 
x € X. Thus every element < p is of the form xp, x Ç ï o r ( l + xp)p = p + px 
since {p} P\X is a maximal ideal in the Boolean algebra {p\. Hence the 
subalgebra generated by X U X' and p contains every element < p. Similarly 
it contains every element < p' since p' { ï U X'. Therefore b = bp\J bp' is 
a member of the subalgebra generated by ï U ï ; and p for every b £ 33. Since 
this is true for every p $ 36 U X', X W X' is maximal. 

COROLLARY. EZ;^^ dz4a/ subalgebra is the meet of maximal subalgebras. 

Proof. This is vacuously true for 33. Let §) \J g)' be a proper dual subalgebra. 
Now (1, p. 161) every ideal is the meet of all maximal ideals containing it, 
and the same is true for dual ideals. Thus 

9 U 9 ' = n ï i U n n't 
it I it I 

where the X* are maximal and the set I has at least two elements. But 

(3) n ï i U n ï i = n (x, n x,) u (X{ n xj). 
it I it I i,j*I 

For obviously 

n ï . u n % < n @,n*,)u (i;n%). 
til HI i, jil 

i*S 

If 

y G n (x* n ïi) u (Xi n %) and y $ n *„ 

then for some k, y i X*. Since y £ (X* H X*) VJ (£/ P\ %k') for ail i ^ k} y Ç X/ 
for all i, and this proves (3). Since 

xi n Ï ; = (x« n x,y, $ U r = n (x, n x,) u (x, n x;y, 

and this proves the corollary. 

THEOREM 5. Every subalgebra is the meet of maximal subalgebras. 

Proof. This has already been shown for dual subalgebras. Let c be a sub­
algebra which is not dual. Lemma 7 and the corollary to Lemma 8 show that 
c is contained in maximal subalgebras. Let b be the meet for all maximal sub­
algebras containing c. If b > c, then by Lemma 7 there exists a dual subalgebra 
f > c which does not contain b. But by the corollary to Lemma 8, t is the meet 
of maximal subalgebras. Since t > c, it follows that I > b which is a contra­
diction. 

Representation. We shall deal with the lattice of partitions of a set 5 in 
this section, and we digress to discuss such lattices briefly. The reader can 
find a more complete discussion in (4). A block of a partition p is a set in S 
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which is a member of p, and a non-trivial block is a block with more than one 
element. A hyperplane in a lattice is an element which is covered by the maxi­
mum element (I), and a point is an element which covers the minimum element 
(0). A partition p is said to have finite dimension if there exists a finite maximal 
chain between it and the minimum partition, that is, the partition which does 
not identify unequal elements. The element p has finite codimension if there 
exists a finite maximal chain between it and the largest partition. 

Let S be the Boolean space associated with the Boolean algebra 33. Then 
we can consider 33 to be the field of closed and open (clopen) subsets of S. 
Let F be the family of partitions on 5 which divide 5 into two clopen sets. 
The collection of all intersections of members of F forms a complete lattice 
P of partitions of S. Since any two points of S can be separated, the intersection 
of all the elements in F is the minimum partition. 

THEOREM 6. The lattice P is dually isomorphic to L. 

Proof. This is evident if 5 consists of one or two points, so we assume that 
5 has at least three points. Every partition which identifies exactly two 
elements is in P , for given points p, q, r in 5 there exists a pair of clopen sets 
which separate p and q from r. From this it immediately follows that every 
element in P is a meet of hyperplanes and a join of points. To every hyperplane 
in P there corresponds the subalgebra generated by the two complementary 
clopen sets in 5. To every point p in P there corresponds a maximal subalgebra 
in B; namely the subalgebra consisting of the clopen sets containing the two-
element set of p and the clopen sets contained in the complement of this set. 
It is easily seen that the mapping is one to one and onto the points and hyper­
planes of L; moreover, it and its inverse are order-reversing. Since L and P 
are complete, it follows (3, p. 200) that they are dually isomorphic. 

Since every hyperplane in L is an ilï-element and every element is the meet 
of hyperplanes, it follows that in P if a covers ab then a + b covers b. Thus if 
there is one finite chain between two elements, all chains are finite and have 
the same length (2, p. 88). 

THEOREM 7. The lattice P contains all partitions having only a finite number 
of finite non-trivial blocks, that is, the partitions of finite dimension in the lattice 
of all partitions on S. P also contains all partitions consisting of one non-trivial 
block which is a closed set. 

Proof. Let g be a finite-dimensional partition 9^ 0. Since the clopen sets 
form a basis of the open sets of 5 , it is possible to enclose any non-trivial block 
of g in a clopen set which is disjoint from the other non-trivial blocks. This 
defines a partition of two clopen sets for each non-trivial block of q, a partition 
which contains q. Any point Si outside the non-trivial blocks can be enclosed 
in a clopen set which is disjoint from the blocks and any other point s2. Again 
a partition of two clopen sets is determined. The intersection of all those 
partitions previously defined is evidently q. 
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The second statement in Theorem 7 follows from the fact that a closed set 
is the intersection of the clopen sets containing it. The partitions consisting 
of one non-trivial closed block correspond to the dual subalgebras of B, and if 
the non-trivial block is clopen, the partition corresponds to a p. d. subalgebra. 
These partitions are M-elements in P (dualize the M conditions), and curiously 
enough they are Af-elements in the full partition lattice on S (see (4)). 

THEOREM 8. If pis a partition of P and a is a finite dimensional partition of P, 
then the join of p and ainP is the same as the join of p and a in the full partition 
lattice on S. 

Proof. By induction and the fact that P contains all the finite dimensional 
partitions, we need only consider the case where g is a partition which identifies 
two elements in 5, that is, where g is a point in P. The join of p and a in the 
full lattice of partitions is a partition in which two disjoint blocks of p have 
been identified (we assume q ;< p). Denote these two blocks by A, B. It is 
possible to enclose any pair of blocks of p distinct from A and B with a pair of 
complementary clopen sets such that A KJ B is in one of the clopen sets and 
any block in p is also in one of the pair. For if C and D are blocks in p, then 
there exists a pair of complementary clopen sets a, 0 with C C «, D C. 0, 
such that every block of p is in a or £. If, for instance, A C «» B C P, then 
there exist complementary clopen sets 7, 8 such that B C 7, D C 5 and every 
block of 5 is in 7 or 5. The pair a KJ (/3 P\ 7) and its complement have the 
desired properties. Similarly there exists a pair of complementary clopen sets 
separating any block in p from A \J B. It thus follows that the join of p and 
q in the full partition lattice lies in P , and this completes the proof. 

Theorem 6 shows that every lattice of subalgebras of a Boolean algebra is 
dually isomorphic to a certain kind of subsystem of a partition lattice. In 
order to construct this subsystem, we had to use the Boolean space associated 
with the Boolean algebra. What we would like to do now is to characterize 
those subsystems of a partition lattice which give rise to lattices of subalgebras 
of Boolean algebras without starting out with a Boolean space. Thus we shall 
construct the Boolean space from the subsystem of the partition lattice instead 
of the other way around as we did before. In the following we define a certain 
kind of subsystem of a partition lattice lattice-theoretically and show that 
this subsystem is dually isomorphic to the lattice of subalgebras of a Boolean 
algebra. 

DEFINITION 4. A $8-system of a partition lattice R is a subset Q of R which 
has the following properties: 

(4) it is meet-closed, hence a complete lattice; 

(5) Q contains the set N of all the finite-dimensional elements of R; hyper planes 
in Q are hyper planes of R; every element in the lattice Q is a join of points and a 
meet of hyperplanes; 

https://doi.org/10.4153/CJM-1962-035-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1962-035-1


458 DAVID SACHS 

(6) if p is a point, then p + b = borp + b covers b; hence if ab covers b in 
the lattice Q, then a + b covers a; 

(7) the finite-dimensional M-elements in Q are identical with the finite-dimen­
sional M-elements in R; 

(8) if a hyper plane contains the meet of a set H of hyper planes, then it contains 
the meet of a finite subset of H. 

REMARK. Actually, (6) is deducible from (7), and (7) is needed only for 
points and lines (elements which cover points). If a characterization of the 
lattice of the finite-dimensional elements of a partition lattice is given, then 
©-systems can be described as abstract lattices. It is thus possible to give an 
abstract characterization of the lattice of subalgebras of a Boolean algebra. 
We leave the details to the interested reader. 

THEOREM 9. A lattice is isomorphic to a lattice of subalgebras of a Boolean 
algebra if and only if it is dually isomorphic to a ©-system of a partition lattice. 

Proof. The necessity of conditions (4), (5), (6), and (7) has already been 
shown. The necessity of (8) follows from the fact that every subalgebra contains 
a minimal subalgebra and the fact that lattices of abstract algebras are meet 
continuous (see (1; p. 64) and (2; p. 269)). 

Suppose that we have a ©-system of a partition lattice T on a set 5. We 
shall first show that the blocks of the hyperplanes of the ©-system together 
with the empty set and the space 5 form a field $F of sets. Evidently the 
complement of any block in J ^ i s also in JT If A\ and A2 ^ 6, 5 are in Ĵ ~ 
then the partition p = [ ( 5 - ^ i ) H (S~A2)] [(S-AJ O A2] [(S~A2) n Ax] 
[Ai C\ A2] lies in the ©-system Q as Q is meet closed. The partitions > p must 
also be in Q. To prove this we select an element from each block in p and form 
an Âf-element p which is complementary to p. The partitions contained in 
the If-element p are in one-to-one correspondence with the partitions greater 
than p under the mapping x —» p + x. Since Q contains all the partitions 
< p, and since there are only a finite number of partitions > p, it follows that 
the partitions > p must be in Q. Thus Ai Pi A2 is in JT This proves that &~ is 
a field of sets. Since for any point p in the ©-system, there is a hyperplane h 
such that p < h, the field of sets separates any two points of S. 

We observe that the elements of finite codimension in a ©-system form a 
sublattice C. In view of condition (8) the ©-system is isomorphic to the lattice 
of dual ideals of C. What we intend to show now is that every submaximal 
filter of the field of sets J^ is determined by a two-element set in 5. The union 
of a submaximal filter G with its dual is a maximal subfield j f of JT To every 
set and its complement in the subfield J ^ (S excluded), there corresponds a 
hyperplane partition. Let iVbe the dual ideal in C generated by these partitions. 
N consists of the finite meets of the hyperplane partitions corresponding to 
sets in j f and the partitions in C > these meets. If A and 5—^4 do not lie 
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in the subfield K, then the partition [A] [S — .1] cannot lie in N; for, if other­
wise, then evidently A would be a union of sets in the subfield jfc the sets 
determined by a partition in N < [A] [S — A]. Thus N ^ C. Suppose now 
we adjoin to N the partition [D] [S — D] where D lies in J£~ but not in ê T 
Since J^ is a maximal subfield of Ĵ ~ every set F\ in & can be written as F\ = Ki 
+ K2D, Ki, K2 £ J ^ where + denotes symmetric difference. If we use ' to 
denote the complements of sets in 5, then the last equation can be written as 
Fi = K^KzD U KJtt' \J KiD'. Using De Morgan's rule, we obtain TV = 
K^K2' \J Kx'D' U K^D. It follows immediately that the partition [FJ [TV] 
is > the meet of the partitions [Kx] [K^], [K2] [K2'\ and [D] [D']. Thus N 
is a maximal dual ideal in C, and the meet of the elements in N must be of 
the form [au a2] [a3] [a4] • • •. Evidently N contains all the hyperplanes in the 
33-system > [ai, a2] [a3] [a4] • • • since the elements in the 33-system correspond 
to dual ideals of C. It therefore follows that for every set Z in G, either Z 
contains [ai, a2] or its complement does. Moreover, if a set in ^F contains 
[au a2], then it or its complement must lie in G. Thus the field of sets consisting 
of the sets in ^con ta in ing [au «2] and their complements must be equal to Ĵ T 
In view of Theorem 3, J f can be written in only one way as the union of a 
filter and its dual. Since the sets in ^con ta in ing [au a2] form a filter whose 
union with its dual is equal to J ^ it follows that G consists of precisely those 
sets in $F which contain [au 02]. 

It is readily seen that a field of sets in which every submaximal filter is 
determined by a two-point set is perfect, that is, every maximal filter is deter­
mined by a point in the space. For the lattice of filters is distributive, and 
therefore any submaximal filter can be contained in only two maximal filters. 
In our case every submaximal filter is contained in two maximal filters deter­
mined by points since the field is separating (reduced). Since the intersection 
of two maximal filters is submaximal, the result follows. Hence the field J^ is 
reduced and perfect, and therefore (see (5; p. 19)) the field of clopen sets of a 
Boolean space. In view of Theorem 6, the proof is complete. 

Classification. We now proceed to study the role of complementation in 
the lattices of subalgebras of Boolean algebras. Our first result characterizes 
the finite lattices in a way which avoids the mention of cardinality. 

THEOREM 10. A Boolean algebra S3 is finite if and only if its lattice L of sub-
algebras has the following property: 

(9) for every iM and for every t) < S, there exists icM such that £ + ty = h 

f» = (0). 

Proof. If S3 is finite, then its lattice of subalgebras is dually isomorphic to a 
partition lattice. The result then follows mutatis mutandis from (4, p. 336). 
If S is infinite, then the corresponding Boolean space has a non-isolated point 
au By our representation theorem, we can consider elements of L to be 
partitions and dualize. Let 1 = [ai] [a2l a3] [a4] [05] • • • and let ï} = [au «2, a3] 
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[ai] [a$] • • •, the only identifications being in the blocks shown. If x + t) = 3 
and ft) = (0), then £ must be a partition of two blocks, one block identifying 
a2 and a3 but not a,\. Since fikf, y must have exactly one non-trivial block 
which must be a closed set. Since a\ must lie in the trivial block and yet is a 
non-isolated point, we have a contradiction. 

THEOREM 11. The Boolean space of a Boolean algebra 93 has at most one non-
isolated point if and only if its lattice L of subalgebras satisfies the following 
condition: 

(10) for every f there exists tjM such that f + t) = 93, ft) = (0). 

Proof. Suppose that the Boolean space of 93 has two non-isolated points 
ai, a2. Let f = [ah a2] [a3] [a4] • • • . If f + t) = 93 and ft) = (0). then t) must 
be a partition of two blocks, neither block containing [ai, a2]. Since t)Af, it 
follows that t) contains exactly one trivial block which must contain a\ or a2. 
Consequently, the non-tri vial block of t) is not closed, and we have a contra­
diction. 

Suppose that the Boolean space of 93 has at most one isolated point, say a\. 
If f = [ai, . . .] [a2, . . .] [a3, . . . ] . . . [a«, . . .], then we let t) = [au «2, a3, . . . , 
aw], [ ] [ ] • • * • The block containing ai is closed. Hence t) G L, t)M and 
f + t) = 93, ft) = (0). 
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