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Summation Formulae for Coefficients of

L-functions

Dedicated to the memory of F. V. Atkinson

John B. Friedlander and Henryk Iwaniec

Abstract. With applications in mind we establish a summation formula for the coefficients of a general

Dirichlet series satisfying a suitable functional equation. Among a number of consequences we derive

a generalization of an elegant divisor sum bound due to F. V. Atkinson.

1 Introduction

Let a(n), n > 1, denote a sequence of complex numbers, that is an arithmetic func-
tion. One of the most basic goals of number theory is the establishment of asymptotic
formulae, as accurate as possible, for the summatory function

A(x) =

∑

n6x

a(n).

It is a happy fact, exemplified over and over again, that when the sequence a(n) is
of great arithmetic interest, the generating series

(1.1) A(s) =

∞
∑

1

a(n)n−s

is endowed with valuable analytic properties which offer tools to help achieve this
goal. An important early example of such a tool is the well-known summation for-

mula of Voronoi in the case of a(n) = τ (n), the divisor function. See the recent sur-
vey by Miller and Schmid [MS] for an excellent modern account of this and more re-
cent developments. In this paper we shall establish a summation formula à la Voronoi
for the coefficients of a general Dirichlet series which satisfies a suitable functional

equation.
Suppose the coefficients of the series (1.1) have a bound a(n) ≪ nε for any ε > 0

so that A(s) is holomorphic in Re s > 1. Suppose A(s) has analytic continuation to
the whole complex plane, where it is holomorphic except possibly for a pole at s = 1

(not necessarily a simple pole). Assume we have a functional equation

(1.2) A(1 − s) = wγ(s)B(s) if Re s > 1,
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where w is a complex number, the root number, with |w| = 1 where B(s) is given by
a series

(1.3) B(s) =

∞
∑

1

b(n)n−s

with b(n) ≪ nε, and γ(s) is holomorphic in Re s > 1
2
.

Here, although our results are more general, we have in mind products of the
Riemann zeta function and the Dirichlet L-functions, as well as automorphic L-

functions of any degree. In such cases the resulting series A(s) is known to satisfy
the above conditions with γ(s) having the shape

(1.4) γ(s) =
(

π−mD
) s− 1

2

m
∏

j=1

Γ

( s + κ j

2

)

Γ

( 1 − s + κ j

2

)−1

,

where D is a positive integer called the conductor, and the “spectral parameters” κ j

are complex numbers having Re κ j > 0. Here

(1.5) k = Re

m
∑

j=1

κ j

is an integer, the weight. We call m the degree of A(s). By Stirling’s formula

Γ(σ + it) =
√

2π(it)σ− 1

2 e−
π
2

t
( t

e

) it{

1 + O
( 1

t

)}

with t > 0 and any real σ (the implied constant depending on σ), one derives

(1.6) γ(σ + it) = ω(Qt)m(σ− 1

2 )(Qt/e)imt
{

1 + O
(

t−1
)}

,

γ(σ − it) = ω(Qt)m(σ− 1

2 )(e/Qt)imt
{

1 + O
(

t−1
)}

,

if σ >
1
2

and t > 1, where ω is a complex number of modulus |ω| = 1 and 2πQ > 1.
Specifically,

ω = e
( 2k − m

8

)

where e(u) = e2πiu,(1.7)

Q =
m
√

D/2π .(1.8)

Hence one gets

(1.9) γ(s) ≪ (Q|s|)m(σ− 1

2
), if σ >

1
2

.

We do not really require γ(s) to be exactly as in (1.4)—essentially the estimates (1.6)
are sufficient.
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As for our goal, the evaluation of the sum

A(x) =

∑

n6x

a(n),

one expects by contour integration that the main term should be

(1.10) R(x) = res
s=1

A(s)xs/s.

Indeed we show the following result.

Proposition 1.1 For x > D
1

2 we have

(1.11) A(x) = R(x) + O
(

D
1

m+1 x
m−1

m+1
+ε

)

,

with any ε > 0, where the implied constant depends only on ε and the spectral parame-

ters κ1, κ2, . . . , κm.

However, we wish to make the error term smaller. This goal is possible in full
generality provided the main term is appended by a dual sum

(1.12) B(x, N) =

∑

n6N

b(n)n−
m+1

2m cos
(

2πm
( nx

D

)
1

m

+
πℓ

4

)

.

Here ℓ = m−3−2k and N is at our disposal. The cosine factor in the dual sum (1.12)
depends slightly on the weight k; more precisely it depends only on ℓ = m − 3 − 2k

modulo 8. The longer the dual sum which is used, the stronger the error term that is
possible. Our main result is

Theorem 1.2 Let A(s) be a Dirichlet series of degree m > 2 satisfying the functional

equation (1.2) with gamma factors given by (1.4). Then for x > D
1

2 we have

(1.13) A(x) = R(x) + w(πm)−
1

2 D
1

2m x
m−1

2m B(x, N) + O
(

D
1

m N−
1

m x
m−1

m
+ε

)

,

where N is any number with 1 6 N 6 x. The implied constant depends only on ε and

the spectral parameters κ1, κ2, . . . , κm.

Proof of Proposition 1.1 This follows from (1.13) by the trivial estimation

(1.14) B(x, N) ≪ N
m−1

2m
+ε

on choosing N = D
1

m+1 x
m−1

m+1 .
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2 Proof of Main Theorem

By [T, Lemma 3.12] we have

(2.1) A(x) =
1

2πi

∫ α+iT

α−iT

A(s)
xs

s
ds + O

( x1+2ε

T

)

for any 1 6 T 6 x, where α = 1 + ε. Here we move the integration to the parallel
segment with Re s = 1 − α = −ε. We pass poles at s = 1 with residue R(x) and at

s = 0 with residue A(0) satisfying

(2.2) A(0) ≪ Q
m
2 .

We estimate the integrals over the horizontal segments−ε 6 Re s 6 1+ε, Im s = ±T

using (1.2), (1.6) and the convexity principle. We obtain

(2.3) A(x) = R(x) + I(x) + O
(

Q
m
2 + T−1

(

x +
(

QT
)

m
2

)

x2ε
)

where I(x) is the integral from (2.1) but with α replaced by 1 − α. Changing the

variable s into 1 − s and applying the functional equation (1.2) we return I(x) to the
original segment on the line Re s = α = 1 + ε, namely

I(x) =
w

2πi

∫ α+iT

α−iT

γ(s)B(s)
x1−s

1 − s
ds.

Next we introduce the series (1.3) and integrate termwise obtaining

(2.4) I(x) = wx

∞
∑

1

b(n)c(nx)

where

(2.5) c(y) =
1

2πi

∫ α+iT

α−iT

γ(s)

1 − s
y−s ds.

First we estimate c(y) for y > 2(QT)m. Introducing (1.6) to (2.5) we derive by

partial integration (there is no stationary point in this region) the following bound:

(2.6) c(y) ≪ y−αT−1(QT)m(α− 1

2
), α = 1 + ε.

This bound for y = nx shows that the terms of (2.4) with nx > 2(QT)m contribute
O(T−1(QT)

m
2 xε), a quantity which is already present in the error term of (2.3).

Now there remains the finite sum

(2.7) I0(x) = wx
∑

nx62(QT)m

b(n)c(nx).

https://doi.org/10.4153/CJM-2005-021-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-021-5


498 J. B. Friedlander and H. Iwaniec

Here we are going to evaluate c(nx) more precisely by the stationary phase method.
For technical simplifications we move the integration in (2.5) from Re s = α = 1 + ε
to Re s = β =

1
2

+ 1
m

. Actually, to avoid a pole at s = 1 we only move the segments
with 1 6 |t| 6 T. We obtain

c(y) =
1

2πi
−
∫ β+iT

β−iT

γ(s)

1 − s
y−s ds

+ O
(

y−αT−1(QT)m(α− 1

2
) + y−βT−1(QT)m(β− 1

2
)
)

.

Here the error term comes from a trivial estimation of the relevant integrals over the

horizontal segments Im s = ±T and Im s = ±1. The symbol
∫

− indicates that the
segment β + it with |t| < 1 is removed from the integration. Note that the second
part of the above error term is absorbed by the first one, because y 6 2(QT)m. Now
we use the approximation (1.6) together with (1 − s)−1

= it−1 + O(t−2) to derive

(2.8) c(y) = π−1 y−βQ Re iω

∫ T

1

(Qt/e)imt y−it dt + O
(

(yT)−1(QT)
m
2 xε

)

.

Lemma 2.1 If 2 6 z 6 2T then

(2.9)

∫ T

1

( t

ez

) imt

dt =

√

2πz

m
e

πi
4
−imz + O

(( 1√
T

+
∣

∣

∣
log

z

T

∣

∣

∣

)−1)

where the main term exists only if z 6 T.

Proof This follows from [T, Lemma 4.6].

Applying Lemma 2.1 for z = Q−1 y
1

m we find by (2.8) that

(2.10) c(y) =

( 2Q

πm

)
1

2

y−
m+1

2m Re
(

ω e
3πi
4
−

im
Q

y
1

m
)

+ O
(

∆(y) + (yT)−1(QT)
m
2 xε

)

where

(2.11) ∆(y) = Qy−β

(

1√
T

+
∣

∣

∣
log

(QT)m

y

∣

∣

∣

)−1

and the main term exists only if y 6 (QT)m. Recall that we assumed 2 6 z 6 2T, so
that we have (2.10) only for (2Q)m 6 y 6 (2QT)m. But the integral (2.9) is bounded

if 0 < z < 2, and so is the integral in (2.8) if 0 < y < (2Q)m. Therefore (2.8) yields

(2.12) c(y) ≪ Qy−β + (yT)−1(QT)
m
2 xε.

This bound shows that (2.10) also holds for y < (2Q)m because, in this range,
(yT)−1(QT)

m
2 is the dominating term.
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Applying (2.10) with y = nx to all terms of the sum (2.7) we get

I0(x) = w
( 2Q

πm

)
1

2

x
m−1

2m B0(x, T) + O
((

E + T−1(QT)
m
2

)

xε
)

where

B0(x, T) =

∑

nx6(QT)m

b(n)n−
m+1

2m Re
(

ωe
3πi

4
−

im
Q

(nx)
1

m
)

,

E = xQ
∑

nx62(QT)m

(nx)−β
( 1√

T
+

∣

∣

∣
log

(QT)m

nx

∣

∣

∣

)−1

.

It remains to estimate the error term E. We proceed as follows:

∑

n62N

n−β
( 1

M
+

∣

∣

∣
log

n

N

∣

∣

∣

)−1

≪
∫ 2N

0

u−β
( 1

M
+

∣

∣

∣
log

u

N

∣

∣

∣

)−1

du + N−βM + 1

= N1−β

∫ 2

0

u−β
( 1

M
+ | log u|

)−1

du + N−βM + 1

≪ N−β(M + N log 2M).

Hence

E ≪ xQ
√

T(QT)−βm + Q(QT)(1−β)m log x

= xT−
1

2 (QT)−
m
2 + T−1(QT)

m
2 log x.

Gathering the above results we find that

A(x) = R(x) + w
( 2Q

πm

)
1

2

x
m−1

2m B0(x, T) + O
((

x + (QT)
m
2

)

T−1xε
)

for all 1 6 T 6 x. For ω, Q given in (1.7), (1.8) we have B0(x, T) = B(x, N) where
N = x−1(QT)m. Under the assumption N 6 x the above error term is O(T−1x1+ε)
and the proof of Theorem 1.2 is complete.

3 Special Cases, General Conjectures, Another Method

In the case of degree two the main theorem becomes the following.

Proposition 3.1 If A(s) has degree m = 2 then

(3.1)
∑

n6x

a(n) = R(x) + O
(

(Dx/N)
1

2 xε
)

+
w√
2π

(Dx)
1

4

∑

n6N

b(n)n−
3

4 cos
(

4π

√

nx

D
− π

4
(2k + 1)

)
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where R(x) is given by (1.10). Hence

(3.2)
∑

n6x

a(n) = R(x) + O
(

D
1

3 x
1

3
+ε

)

.

The implied constant depends only on ε and κ1, κ2.

In the case of degree three the main theorem becomes the following.

Proposition 3.2 If A(s) has degree m = 3 then

(3.3)
∑

n6x

a(n) = R(x) + O
(

(Dx2/N)
1

3 xε
)

+
w√
3π

D
1

6 x
1

3

∑

n6N

b(n)n−
2

3 cos
(

6π 3

√

nx

D
− πk

2

)

.

Hence

(3.4)
∑

n6x

a(n) = R(x) + O
(

D
1

4 x
1

2
+ε

)

.

The implied constant depends only on ε and κ1, κ2, κ3.

In real life A(s) and B(s) are L-functions associated with automorphic forms. In
this world one should expect a considerable cancellation of the terms in B(x, N) to
take effect, improving the trivial bound (1.14) to the best possible extent.

Conjecture 1 For any automorphic series B(s) we have

(3.5) B(x, N) ≪ (DNx)ε.

This conjecture would imply the following. (Ignore the condition N 6 x in (1.13)
since this can be relaxed by more work.)

Conjecture 2 For any automorphic series A(s) we have

(3.6)
∑

n6x

a(n) = R(x) + O
(

D
1

2m x
m−1

2m
+ε

)

.

Note that the Riemann hypothesis for A(s) yields (3.6) with inferior error term

O(x
1

2 (Dx)ε).

Our technology, based solely on the functional equation, does not allow one to
improve the trivial bound for the dual sum B(x, N) (the functional equation is invo-
lutary). Indeed, the exponent m−1

m+1
in the error term of (1.11) is so far the best known
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in general. In particular for m = 2 it remains a great open problem to improve the
bound

∑

n6x

a(n) ≪ x
1

3 ,

when A(s) is a Hecke L-function associated to a cusp form.
Fortunately, one can achieve improvements in a few of the most basic cases, which

although quantitatively slight, are important for applications, including those in [FI]

which originally motivated this work. These may be achieved by employing estimates
for exponential sums and/or bounds for bilinear forms.

In principle, such ideas can be exercised for any A(s) which factors into L-func-
tions of lower degree. However, in this case another method which uses the mean-

value theorem for squares of the factors of A(s) also yields interesting results. Sup-
pose that

A(s) = A1(s)A2(s)

where A1(s), A2(s) are series of degree m1, m2 respectively, satisfying m1 + m2 =

m > 3. The mean value theorem yields

∑

n6x

a(n) = R(x) + O
(

D
1

2 xθ(m1,m2)+ε
)

.

Here we have
θ(0, m) =

m

m + 1
,

which is worse than our exponent m−1
m+1

in general,

θ(1, m − 1) =
m − 1

m + 1
,

which agrees with our exponent, and

θ(m1, m2) =
m − 2

m
if m1, m2 > 2,

which is better than our exponent.

4 Improvements for Products of Three L-Functions

We desire to have

(4.1) A(x) = R(x) + O
(

Dϑxθ+ε
)

with some ϑ > 0 and, to surpass the Riemann hypothesis slightly, with some θ < 1
2
.

This is already achieved with θ =
1
3

for general series of degree two. Therefore we
consider only A(s) of degree three (all cases of higher degree seem hopelessly diffi-
cult). As we mentioned in the previous section we must assume that A(s) factors. We
shall consider in detail A(s) which factors completely into degree one L-functions.
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The other case of factors having degree one and two can also be successfully treated,
but only with additional arguments.

Specifically we assume that

(4.2) A(s) = L(s, χ1)L(s, χ2)L(s, χ3)

where χ j(mod D j) are primitive characters. In this case

(4.3) a(n) =

∑

n1 n2 n3=n

χ1(n1)χ2(n2)χ3(n3).

Clearly our basic conditions are satisfied. By the functional equation for each L(s, χ j)

separately, we get the functional equation (1.2) with b(n) = a(n) and the conductor

D = D1 D2 D3. The root number w is the product of normalized Gauss sums

w = i−kτ (χ1)τ (χ2)τ (χ3)D−
1

2 ,

while the weight k is the number of odd characters

k =
1

2

3
∑

j=1

(

1 − χ j(−1)
)

.

We come back to (1.13) or, more specifically, (3.3). Our problem reduces to a
non-trivial estimation of the dual sum

(4.4) B(x, N) =

∑

n6N

a(n)n−
2

3 cos(6π(nx/D)
1

3 − πk/2),

where a(n) is given by (4.3). First we estimate the triple sums

(4.5)
∑′ ∑ ′ ∑ ′

n1 n2 n36N

χ1(n1)χ2(n2)χ3(n3)e
(

3
( n1 n2 n3 x

D

)
1

3

)

where
∑

′
restricts the variable n j to an interval N j < n j 6 N ′

j with N j < N ′

j 6 2N j

and N1 N2 N3 6 N . We lock two of the variables and apply to a single sum in the free

variable the following quite general result.

Lemma 4.1 Let F be a smooth function on the interval [L, 2L] with derivatives satis-

fying |F(r)| ≍ FL−r for r = 2, 3, 4. Then, for any subinterval I of [L, 2L], we have

(4.6)
∑

ℓ∈I

e
(

F(ℓ)
)

≪ F
1

14 L
5

7 + F−
1

2 L.

Proof This is essentially Theorem 2.9 for q = 2 in [GK]; see also [T, Theorem 5.13]
for k = 4.
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Note that we do not require |F ′| ≍ FL−1 as assumed in [GK] so we get the term

F−
1

2 L in (4.6) rather than F−1L. This suffices for our applications and, because the
first derivative estimate is not required, we can add to F(ℓ) any linear term αℓ with α
real without changing the result. This feature allows us to derive the bound

(4.7)
∑

ℓ∈I

χ(ℓ)e(F(ℓ)) ≪
√

DL
(

F
1

14 L−
2

7 + F−
1

2

)

for any primitive character χ(mod D) (just expand χ into additive characters by
means of the Gauss sum τ (χ) and use |τ (χ)| =

√
D). By (4.7) we obtain

∑′

n j

χ j(n j)e
(

3
( n1 n2 n3 x

D

)
1

3

)

≪
√

D j N j

{

N
−

2

7

j

( xN1 N2 N3

D

)
1

42

+
( D

x N1 N2 N3

)
1

6

}

.

Hence, summing trivially over the remaining two variables we bound the triple sum,
say C(N1, N2, N3), given by (4.5) as

C(N1, N2, N3) ≪
√

D N1N2N3

{

N
−

2

7

j

( x N1 N2 N3

D

)
1

42

+
( D

x N1 N2 N3

)
1

6

}

.

Clearly the best result is obtained if N j is chosen to be the largest of N1, N2, N3, so

that N j > (N1 N2 N3)
1

3 . In the normal case that x > D, this gives

(4.8) C(N1, N2, N3) ≪ D
10

21 (N1 N2 N3)
13

14 x
1

42 .

Using (4.8) we derive by (4.4) that

(4.9) B(x, N) ≪ (D20N11x)
1

42 (log x)3.

This together with (1.13) or (3.3) yields

A(x) = R(x) + O(D
1

6 x
1

3 (D20N11x)
1

42 (log x)3 + (Dx2/N)
1

3 xε).

Choosing N = (x/D)
13

25 we arrive at (4.1) with ϑ =
38
75

and θ =
37
75

. Note that the

condition x > D is no longer needed because the result is trivial (just) if x < D.
For easy reference we state the established asymptotic as a self-contained theorem.

Theorem 4.2 Let χ j(mod D j) be primitive characters and denote D = D1 D2 D3. For

any x > 1 we have

(4.10)
∑

n1 n2 n36x

χ1(n1)χ2(n2)χ3(n3) = R(x) + O
(

D
38

75 x
37

75
+ε

)

,

where the main term is given by

(4.11) R(x) = ress=1 L(s, χ1)L(s, χ2)L(s, χ3)xs/s

and the implied constant depends only on ε.
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Our Theorem 4.2 is a direct generalization of the elegant result of F. V. Atkinson
[A] for τ3(n) which is the case D = 1. In this particular case the result has since been

improved, the record small error term being O(x
43

96
+ε) due to G. Kolesnik[K].

If χ2 = χ3 = 1 are the trivial characters so that D2 = D3 = 1, L(s, χ2) =

L(s, χ3) = ζ(s) and χ1 = χ is primitive of conductor D1 = D > 1, then

(4.12) R(x) = L(1, χ)x log x +
(

L ′(1, χ) + (2γ − 1)L(1, χ)
)

x,

where γ is the Euler constant.

5 Some Generalizations

The most essential ingredient in our arguments in the general case is the functional

equation (1.2) which connects our primary Dirichlet series A(s) with its unique dual
series B(s). There are, however, situations where the dual side of A(s) (the right
side of (1.2) contains more than one Dirichlet series. Think of the matrix func-
tional equation derived from the Eisenstein series for congruence groups with several

parabolic subgroups. An important case of multiple duals appears for derivatives of
L-functions. Here one gets a relevant functional equation, say for L ′(s, χ), by differ-
entiating that for L(s, χ):

L ′(1 − s, χ) = −wγ(s)L ′(s, χ) − wγ ′(s)L(s, χ).

Note that γ ′(s) is not a product of gamma functions, nevertheless it does satisfy a Stir-

ling type asymptotic formula very similar to that for γ(s) (the main term for γ ′(s) is
obtained by differentiating the main term for γ(s) with respect to t). Our arguments
with the stationary phase method still work, but of course producing slightly different
dual sums. Estimating these various dual sums trivially (or alternatively, estimating

earlier the relevant integrals before computing them by the stationary phase method),
we find that the crude formula (1.11) remains valid without change.

We conclude this paper by stating one result of this kind.

Theorem 5.1 Let χ1(mod D1) and χ2(mod D2) be primitive characters. Let a(n) be

the coefficients of A(s) = −L(s, χ1)L ′(s, χ2), that is

(5.1) a(n) =

∑

n1 n2=n

χ1(n1)χ2(n2) log n2.

For x > 1 we have

(5.2)
∑

n6x

a(n) = R(x) + O
(

(D1 D2 x)
1

3 xε
)

,

where

(5.3) R(x) = ress=1 −L(s, χ1)L ′(s, χ2)xs/s.

The implied constant depends only on ε.

If χ2 is the trivial character so D2 = 1 and L(s, χ2) = ζ(s), and if χ1 = χ is
primitive of conductor D1 = D > 1 then

(5.4) R(x) = L(1, χ)x log x +
(

L ′(1, χ) − L(1, χ)
)

x.
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