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Abstract We equate various Euler classes of algebraic vector bundles, including those of [12] and one
suggested by M. J. Hopkins, A. Raksit, and J.-P. Serre. We establish integrality results for this Euler
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1. Introduction

For algebraic vector bundles with an appropriate orientation, there are Euler classes and

numbers enriched in bilinear forms. We will start over a field k and then discuss more

general base schemes, obtaining integrality results. Let GW(k) denote the Grothendieck–
Witt group of k, defined to be the group completion of the semi-ring of nondegenerate,

symmetric, k -valued, bilinear forms (see, e.g., [53]). Let 〈a〉 in GW(k) denote the class of

the rank 1 bilinear form (x,y) �→ axy for a in k∗.
For a smooth, proper k -scheme f :X → Speck of dimension n, coherent duality defines

a trace map ηf : Hn(X,ωX/k) → k, which can be used to construct the following Euler

number in GW(k). Let V → X be a rank n vector bundle equipped with a relative

orientation, meaning a line bundle L on X and an isomorphism

ρ : detV ⊗ωX/k →L⊗2.

For 0≤ i,j ≤ n, let βi,j denote the perfect pairing

βi,j : H
i
(
X, ∧j V ∗⊗L

)
⊗Hn−i

(
X, ∧n−j V ∗⊗L

)
→ k (1)
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given by the composition

Hi
(
X, ∧j V ∗⊗L

)
⊗Hn−i

(
X, ∧n−j V ∗⊗L

) ∪→Hn
(
X, ∧n V ∗⊗L⊗2

) ρ→Hn(X,ωX/k)
ηf→ k.

For i = n− i and j = n− j, note that βi,j is a bilinear form on Hi
(
X, ∧j V ∗⊗L

)
.

Otherwise, βi,j ⊕ βn−i,n−j determines the bilinear form on Hi
(
X, ∧j V ∗⊗L

)
⊕

Hn−i
(
X, ∧n−j V ∗⊗L

)
. The alternating sum

nGS(V ) :=
∑

0≤i,j≤n

(−1)i+jβi,j

thus determines an element of GW(k), which we will call the Grothendieck–Serre duality
or coherent duality Euler number. Note that βi,j ⊕ βn−i,n−j in GW(k) is an integer

multiple of h, where h denotes the hyperbolic form h= 〈1〉+ 〈−1〉, with Gram matrix

h=

[
0 1

1 0

]
.

This notion of the Euler number was suggested by M. J. Hopkins, J.-P. Serre, and A.
Raksit, and developed by M. Levine and Raksit for the tangent bundle in [56].

For a relatively oriented vector bundle V equipped with a section σ with only isolated

zeros, an Euler number nPH(V ,σ) was defined in [49, Section 4] as a sum of local indices:

nPH(V ,σ) =
∑

x:σ(x)=0

indPH
x σ.

The index indPH
x σ can be computed explicitly with a formula of Scheja and Storch [67] or

of Eisenbud and Levine/Khimshiashvili [29] (see §§2.4 and 2.3) and is also a local degree

[48] (this is discussed further in §7). For example, when x is a simple zero of σ with
k(x) = k, the index is given by a well-defined Jacobian Jacσ of σ,

indPH
x σ = 〈Jacσ(x)〉,

illustrating the relation with the Poincaré–Hopf formula for topological vector bundles.

(For the definition of the Jacobian, see the beginning of §6.2.) In [49, Section 4, Corollary
36], it was shown that nPH(V ,σ) = nPH(V ,σ′) when σ and σ′ are in a family over A1

L

of sections with only isolated zeros, where L is a field extension with [L : k] odd. We

strengthen this result by equating nPH(V ,σ) and nGS(V ); this is the main result of §2.

Theorem 1.1 (see §2.4). Let k be a field and V → X be a relatively oriented, rank n

vector bundle on a smooth, proper k-scheme of dimension n. Suppose V has a section σ
with only isolated zeros. Then

nPH(V ,σ) = nGS(V ).

In particular, nPH(V ,σ) is independent of the choice of σ.

Remark 1.2 Theorem 1.1 strengthens [15], removing its hypothesis (2) entirely. It also

simplifies the proofs of [49, Theorem 1] and [72, Theorems 1 and 2]: it is no longer

necessary to show that the sections of certain vector bundles with nonisolated isolated
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zeros are of codimension 2, as in [49, Lemmas 54, 56, and 57] and in [72, Lemma 1],

because nPH(V ,σ) is independent of σ.

1.1. Sketch proof and generalizations

The proof of Theorem 1.1 proceeds in three steps:

(0) For a section σ of V, we define an Euler number relative to the section using coherent

duality and denote it by nGS(V ,σ,ρ). If σ=0, we recover the absolute Euler number

nGS(V ,ρ), essentially by construction.

(1) For two sections σ1,σ2, we show that nGS(V ,σ1,ρ) = nGS(V ,σ2,ρ). To prove this, one

can use homotopy invariance of Hermitian K -theory or show that nGS(V ,σ1,ρ) =

nGS(V ,ρ) by showing an instance of the principle that alternating sums, like Euler
characteristics, are unchanged by passing to the homology of a complex.

(2) If a section σ has isolated zeros, then nGS(V ,σ,ρ) can be expressed as a sum of local

indices indZ/S(σ), where Z is (a clopen component of) the zero scheme of σ.

(3) For Z a local complete intersection in affine space–that is, in the presence of
coordinates – we compute the local degree explicitly and identify it with the Scheja–

Storch form [2, 67].

Taken together, these steps show that nGS(V ,ρ) is a sum of local contributions given by
Scheja–Storch forms, which is essentially the definition of nPH(V ,ρ).

These arguments can be generalized considerably, replacing the Grothendieck–Witt

group GW by a more general cohomology theory E. We need E to admit transfers along
proper lci morphisms of schemes, and an SLc-orientation (see §3 for more details). Then

for step (0) one can define an Euler class e(V ,σ,ρ) as z∗σ∗(1), where z is the zero section.

Step (2) is essentially formal; the main content is in steps (1) and (3). Step (1) becomes

formal if we assume that E is A1-invariant. In particular, steps (0)–(2) can be performed
for SL-oriented cohomology theories represented by motivic spectra; this is explained in

§§3, 4, and 5.

It remains to find a replacement for step (3). We offer two possibilities: in §7 we
show that, again in the presence of coordinates, the local indices can be identified with

appropriate A1-degrees. On the other hand, in §8 we show that for E =KO the motivic

spectrum corresponding to Hermitian K -theory, the local indices are again given by
Scheja–Storch forms. This implies the following:

Corollary 1.3 (see Corollary 8.2 and Definition 3.10). Let S = Spec(k), where k is a

field of characteristic 
= 2.1 Let π :X → k be smooth and V/X a relatively oriented vector

bundle with a nondegenerate section σ. Write � :Z =Z(σ)→ k for the vanishing scheme
(which need not be smooth). Then

nPH(V ,σ) =�∗(1) ∈KO0(k) = GW(k).

1Here and many times in the text, we restrict to bases S with 1/2∈OS in order for the classical
constructions of Hermitian K -theory to be well behaved. Forthcoming work by other authors
is expected to produce well-behaved Hermitian K -theory spectra in all characteristics, and
then all our assumptions on the characteristic can be removed.
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Here we have used the lci push-forward

�∗ : KO
0(Z)

ρ�KOL� (Z)→KO0(k)

of Déglise, Jin, and Khan [26]. If, moreover, X is proper, then �∗(1) also coincides
with π∗z

∗z∗(1), where z : X → V is the zero section (see Corollaries 5.18 and 5.21 and

Proposition 5.19). This provides an alternative proof that nPH(V ,σ) is independent of

the choice of σ (under our assumption on k).
Another important example is when E is taken to be the motivic cohomology theory

representing Chow–Witt groups. This recovers the Barge–Morel Euler class eBM(V ) in

C̃H
r
(X, detV ∗) [12], which is defined for a base field of characteristic not 2. Suppose that

ρ is a relative orientation of V and π :X → Speck is the structure map.

Corollary 1.4. Let k be a field of characteristic 
= 2. Then π∗e
BM(V ,ρ) = nGS(V ,ρ) in

GW(k).

Proof. We have eBM(V ,ρ) = e
(
V ,ρ,HZ̃

)
; indeed, by Proposition 5.19, e

(
V ,ρ,HZ̃

)
can

be computed in terms of push-forward along the zero section of V, and exactly the same

is true for eBM by definition [12, §2.1]. We also have nGS(V ,ρ) = n(V ,ρ,KO); indeed, the
right-hand side is represented by the natural symmetric bilinear form on the cohomology

of the Koszul complex by Example 8.1, and this is essentially the definition of nGS(V ,ρ).

It thus suffices to prove that n
(
V ,ρ,HZ̃

)
= n(V ,ρ,KO) ∈ GW(k). Consider the span

of ring spectra HZ̃ ← f̃0KO → KO as in the proof of Proposition 5.4. It induces an

isomorphism on π0(−)(k), namely with GW(k) in all cases. The desired equality follows

from the naturality of the Euler numbers.
(An alternative argument proceeds as follows: It suffices to prove that π∗e

BM(V ,ρ)

and nGS(V ,ρ) have the same image in W(k) and Z. The image of nGS(V ,ρ) in W(k) is

given by n(V ,ρ,KW); for this we need only show that e(V ,ρ,KW) is represented by the
Koszul complex, which is Example 5.20. It will thus be enough to show that n(V ,ρ,HZ) =

n(V ,ρ,KGL) and n(V ,ρ,W [η±]) = n(V ,ρ,KW); this follows as before by considering the

spans HZ← kgl→KGL and W [η±]←KW≥0 →KW.)2

The left-hand side is the Euler class studied by M. Levine in [55]. We do not compare
these Euler classes with the obstruction-theoretic Euler class of [61, Chapter 8]. Asok and

Fasel show that the latter agrees with π∗e
BM(V ,ρ) up to a unit in GW(k) [3].

1.2. Applications

It is straightforward to see that Euler numbers for cohomology theories are stable under

base change (see Corollary 5.3). This implies that in considering vector bundles on
varieties which are already defined over, for example, Spec(Z[1/2]), the possible Euler

numbers are constrained to live in GW(Z[1/2]) = Z[〈−1〉,〈2〉] ⊂ GW(Q). Using novel

results on Hermitian K -theory [18] allows one to use the base scheme SpecZ as well.

2We include this alternative argument because we feel that Example 5.20 is more fully justified
in this paper than Example 8.1.
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Proposition 5.4 contains both of these cases, and the Z[1/2] case is independent of [18]. It

follows that for relatively oriented bundles over Z the Euler numbers can be read off from

topological computations (Proposition 5.9). Over Z[1/2] the topological Euler numbers
of the associated real and complex vector bundles, together with one further algebraic

computation over some field in which 2 is not a square, determine the Euler number (and

this is again independent of [18]); see Theorem 5.11.
We use this to compute a weighted count of d -dimensional hyperplanes in a general

complete intersection

{f1 = · · ·= fj} ↪→ Pn
k

over a field k. This count depends only on the degrees of the polynomials fi and not on

the fi themselves: it is determined by associated real and complex counts, for any d and

degrees such that the expected variety of d -planes is 0-dimensional and the associated real

count is defined. This is Corollary 6.9. For example, combining with results of Finashin
and Kharlamov over R [34], we have that 160,839〈1〉+160,650〈−1〉 and

32,063,862,647,475,902,965,720,976,420,325〈1〉
+32,063,862,647,475,902,965,683,320,692,800〈−1〉

are arithmetic counts of the 3-planes in a 7-dimensional cubic hypersurface and in a 16-

dimensional degree 5 hypersurface, respectively (see Example 6.13). This builds on results

of Finashin and Kharlamov [34], J. L. Kass and the second author of the present paper

[49], M. Levine [54], S. McKean [58], Okonek and Teleman [62], S. Pauli [66], J. Solomon
[70], P. Srinivasan and the second author [72], and M. Wendt [74].

1.3. Notation and conventions

1.3.1. Grothendieck duality. We believe that if f :X → Y is a morphism of schemes

which is locally of finite presentation, then there is a well-behaved adjunction

f! :Dqcoh(X)�Dqcoh(Y ) : f !

between the associated derived (∞-)categories of unbounded complexes of OX -modules

with quasi-coherent homology sheaves. Unfortunately, we are not aware of any references

in this generality. Instead, whenever mentioning a functor f !, we implicitly assume that X
and Y are separated and of finite type over some Noetherian scheme S. In this situation,

the functor f ! is constructed for homologically bounded-above complexes in [73, Tag

0A9Y] (see also [ 24, 40]), and this is all we will use.

1.3.2. Vector bundles. We identify locally free sheaves and vector bundles covari-

antly, via the assignment

E ↔ Spec(Sym(E∗)).

While it can be convenient to (not) pass to duals here (as in, e.g., [26]), we do not do

this, because it confuses the first author terribly.
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1.3.3. Regular sequences and immersions. Following, for example, [14], by a

regular immersion of schemes we mean what is called a Koszul-regular immersion in

[73, Tag 0638]–that is, a morphism which is locally a closed immersion cut out by a
Koszul-regular sequence. Moreover, by a regular sequence we will always mean a Koszu-

regular sequence [73, Tag 062D], and we reserve the term strongly regular sequence for the

usual notion. A strongly regular sequence is regular [73, Tag 062F], whence a strongly
regular immersion is regular. In locally Noetherian situations, regular immersions are

strongly regular [73, Tags 063L].

1.3.4. Cotangent complexes. For a morphism f : X → Y , we write Lf for the

cotangent complex. Recall that if f is smooth, then Lf � Ωf , whereas if f is a regular
immersion, then Lf � Cf [1], where Cf denotes the conormal bundle.

1.3.5. Graded determinants. We write d̃et :K(X)→Pic(D(X)) for the determinant

morphism from Thomason–Trobaugh K -theory to the groupoid of graded line bundles.
If C is a perfect complex, then we write d̃etC for the determinant of the associated

K -theory point. We write detC ∈ Pic(X) for the ungraded determinant.

Given an lci morphism f, we set ωf = detLf and ω̃f = d̃etLf .

We systematically use graded determinants throughout the article; for example, we
have the following compact definition of a relative orientation:

Definition 1.5. Let π :X → S be an lci morphism and V a vector bundle on X. By a

relative orientation of V/X/S we mean a choice of line bundle L on X and an isomorphism

ρ : Hom
(
d̃etV ∗,ω̃X/S

)
�−→L⊗2.

Note that if π is smooth, this just means that the locally constant functions x �→
rank(Vx) and x �→ dimπ−1(π(x)) on X agree, and that we are given an isomorphism

L⊗2 � ωX/S ⊗detV . Hence we recover the definition from [49, Definition 17].

2. Equality of coherent duality and Poincaré–Hopf Euler numbers

We prove Theorem 1.1 in this section.

2.1. Coherent-duality Euler Number

Let f :X → Speck be a smooth, proper k -scheme of dimension n, and let V be a rank

n vector bundle, relatively oriented by the line bundle L on X and the isomorphism

ρ : detV ⊗ωX/k → L⊗2. Let σ : X → V be a section, and let K(σ)• denote the Koszul
complex

0→∧nV ∗ →∧n−1V ∗ → ·· · → V ∗ →O → 0,

with O in degree 0 and differential of degree +1 given by

d(v1∧v2∧·· ·∧vj) =

j∑
i=1

(−1)i−1vi(σ)v1∧·· ·∧vi−1∧vi+1∧·· ·∧vj .
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This choice of K(σ)• is HomO(−,O) applied to the Koszul complex of [27, 17.2]. K(σ)•

carries a canonical multiplication

m :K(σ)•⊗K(σ)• →K(σ)• (2)

defined in degree −p by m = ⊕i+j=p1∧iV ∗ ∧ 1∧jV ∗ . Composing m with the projection
p :K(σ)• → detV ∗[n] defines a nondegenerate bilinear form

β(V ,σ) :K(V ,σ)⊗K(V ,σ)→ detV ∗[n],

β(V ,σ) = pm.

Tensoring β(V ,σ) by L⊗2 and reordering the tensor factors of the domain, we obtain

a nondegenerate symmetric bilinear form on K(V ,σ)⊗L valued in
(
detV ∗⊗L⊗2

)
[n].

The orientation ρ determines an isomorphism
(
detV ∗⊗L⊗2

)
[n]→ ωX/k[n]. Composing

β(V ,σ)⊗L⊗2 with this isomorphism produces a nondegenerate bilinear form

β(V ,σ,ρ) : (K(V ,σ)⊗L)⊗ (K(V ,σ)⊗L)→ ωX/k[n].

Let D(X) denote the derived category of quasi-coherent OX -modules. Serre duality

determines an isomorphism Rf∗ωX/k[n] ∼= Ok [41, III Corollary 7.2 and Theorem 7.6].

Since Rf∗ is lax symmetric monoidal (being right adjoint to a symmetric monoidal
functor), we obtain a symmetric morphism

Rf∗β(V ,σ,ρ) : [Rf∗(K(V ,σ)⊗L)]⊗2 →Rf∗ωX/k[n]�Ok

in D(k), which is nondegenerate by Serre duality.

The derived category D(k) is equivalent to the category of graded k -vector spaces, by

taking cohomology.3 If V is a (nondegenerate) symmetric bilinear form in graded k -vector
spaces, denote by V (n) = Vn ⊕V−n (for n 
= 0) and V (0) = V0 the indicated subspaces;

observe that they also carry (nondegenerate) symmetric bilinear forms.

Definition 2.1. For a relatively oriented rank n vector bundle V → X with section

σ and orientation ρ, over a smooth and proper variety f : X → k of dimension n, the

Grothendieck–Serre-duality Euler number with respect to σ is

nGS(V ,σ,ρ) =
∑
i≥0

(−1)i
[(
Rf∗β(V ,σ,ρ)

)(i)] ∈GW(k).

Remark 2.2. In order not to clutter notation unnecessarily, we also write Definition
2.1 as

nGS(V ,σ,ρ) =
∑
i

(−1)i
[(
Rf∗β(V ,σ,ρ)

)
i

]
.

We shall commit to this kind of abuse of notation from now on.

3In this section, we treat all categories as 1-categories – that is, we ignore the higher structure
of D(k) as an ∞-category.
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Recall that nGS(V ,ρ) ∈ GW(k) was defined in the introduction in terms of the

symmetric bilinear form on
⊕

i,jH
i
(
X,ΛjV ∗⊗L

)
.

Proposition 2.3. For any section σ, we have nGS(V ,σ,ρ) = nGS(V ,ρ) ∈GW(k).

To prove Proposition 2.3, we use the hypercohomology spectral sequence Ei,j
r (K•)

associated to a complex K• of locally free sheaves on X :

Ei,j
1 (K•) := Hj

(
X,Ki

)
⇒Ri+jf∗K

•.

Let Fi denote the resulting filtration on R∗f∗K
•, such that

· · · ⊇ Fi = Im
(
H∗ (X,K•≥i

)
→H∗(X,K•)

)
⊇ Fi+1 ⊇ ·· · .

Given a perfect symmetric pairing of chain complexes β : K• ⊗K• → ωX/k[n], the cup

product induces pairings

β′ :R∗f∗K
•⊗R∗f∗K

• →R∗f∗ωX/k[n]→ k

and

β1 : E
∗,∗
1 (K•)⊗E∗,∗

1 (K•)→ k.

The following properties hold:

(1) Placing the k in the codomain of β1 in bidegree (−n,n), β1 is a map of bigraded

vector spaces and satisfies the Leibniz rule with respect to d1. It thus induces
β2 : E

∗,∗
2 (K•)⊗E∗,∗

2 (K•) → k. Then β2 satisfies the Leibnitz rule with respect to

d2 and hence induces β3, and so on.

(2) All the pairings βi are perfect.

(3) The pairing β′ is compatible with the filtration in the sense that β′(Fi,Fk) = 0 if
i+k >−n.

(4) It follows that β′ induces a pairing on gr•R
∗f∗K

•. Under the isomorphism gr• �E∞,

it coincides with β∞.

(5) β′ is perfect in the filtered sense: the induced pairing Fi⊗R∗f∗K
•/F−n−i+1 → k is

perfect. (In particular, the pairing β′ is perfect.)

Remark 2.4. We do not know a reference for these facts, and proving them would take

us too far afield. The main idea is that we have a sequence of duality-preserving functors

Cperf(X)
σ•−→D(X)fil

π∗−→D(k)fil.

Here Cperf(X) denotes the category of bounded chain complexes of vector bundles,
D(X)fil is the filtered derived category [39], and σ• is the ‘stupid truncation’ functor (com-

posed with forgetting to the filtered derived category). The first duality is with respect to

Hom(−,ω[n]), the second with respect to Hom(−,σ•(ω[n])) = Hom(−,ω[n](−n)), and the
third with respect to Hom(−,k[0](−n)). There are further duality-preserving functors

(−)gr :D(k)fil →D(k)gr and U :D(k)fil →D(k),
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where D(X)gr = Fun(Z,D(X)), with Z viewed as a discrete category. Hence any perfect

pairing C ⊗ C → k[0](−n) ∈ D(k)fil induces a perfect pairing on H∗C
gr ⊗H∗C

gr →
k(−n,n), satisfying property (1), and a pairing H∗UC⊗H∗UC → k, satisfying properties
(3) and (5). Moreover there is a spectral sequence E1 = H∗C

gr ⇒ H∗UC, satisfying

properties (1) and (4). Property (2) is obtained from the fact that passage to homology

is a duality-preserving functor.
We apply this to K• ∈ Cperf(X); then griσ•K

• = Ki[i] and hence gri(π∗σ•K
•) =

π∗K
i[i].

Lemma 2.5. Let X be a graded k-vector space with a finite decreasing filtration

X ⊃ ·· · ⊃X• ⊃X•+1 ⊃ ·· · .

Suppose that X⊗X → k is a perfect symmetric bilinear pairing, which is compatible with

the filtration in the sense of properties (3) and (5). Let Xi denote the ith graded subspace
of X and Xi

• denote the ith graded subspace of X•. Then in GW(k), there is an equality∑
i

(−1)i
[
Xi
]
=
∑
i

(−1)i
[
gr•X

i
]
.

Proof. Note that property (5) implies that the pairing gr•X is nondegenerate, so the

statement makes sense (recall Remark 2.2). On any graded symmetric bilinear form, the

degree i and −i parts for i 
= 0 assemble into a metabolic space, with Grothendieck–Witt
class determined by the rank (see Lemma B.2). It is clear that the ranks on both sides of

our equation are the same; hence it suffices to prove the lemma in the case where Xi = 0

for i 
= 0. We may thus ignore the gradings.

Let N be maximal with the property that XN 
= 0. We have a perfect pairing

XN+1⊗X/X−n−N → k.

Since XN+1 = 0, we deduce that X−n−N =X and hence Xj =X for all j ≤ −n−N . If

−n−N ≥N , then X =XN (N) and there is nothing to prove; hence assume the opposite.

We have the perfect pairing

XN/XN+1⊗X−n−N/X−n−N+1 �XN ⊗X/X−n−N+1 → k.

Pick a sequence of subspaces X ⊃ X ′
−n−N+1 ⊃ ·· · ⊃ X ′

N−1 such that X ′
i ⊂ Xi and the

canonical projection X ′
i →Xi/XN is an isomorphism. Extend the filtration X ′ by 0 on

the left and constantly on the right. By construction, X ′gr
i = Xgr

i for i 
= N, −n−N ,
and the pairing on X ′ ⊂ X is perfect in the filtered sense. By [59, Lemma I.3.1], we

have X = X ′ ⊕ (X ′)⊥. By induction on N, we have [X ′] = [gr•X
′]. It thus suffices to

show that
[
(X ′)⊥

]
= [grNX ⊕ gr−n−NX]. This holds because both sides are metabolic

of the same rank: X−n−N is an isotropic subspace of half rank on either side (see again

Lemma B.2).

Lemma 2.6. Let E• be a chain complex with a nondegenerate, symmetric bilinear form

E•⊗E• → k[0]. Then ∑
i

(−1)i
[
Hi(E)

]
=
∑
i

[
Ei
]
∈GW(k).
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Proof. Since passing to homology is a duality-preserving functor, the statement makes
sense. Both sides have the same rank, so it suffices to prove equality in W(k) (see Lemma

B.2). We have a perfect pairing Ci ⊗C−i → k, and similarly for homology. Both are

metabolic unless i= 0. We can choose a splitting

C0 =H⊕C ′,

where H ⊂ ker
(
C0 → C1

)
maps isomorphically to H0(C). The restriction of the pairing

on C0 to H is perfect by construction, and hence C0 =H⊕H⊥. It suffices to show thatH⊥

is metabolic. Compatibility of the pairing with the differential shows that d
(
C−1

)
⊂ C0

is an isotropic subspace. Self-duality shows that

Im
(
d : C−1 → C0

)
� Im

(
d∨ :

(
C1
)∨ →

(
C0
)∨)� Im

(
d : C0 → C1

)∨
,

which implies that d
(
C−1

)
⊂H⊥ is of half rank. This concludes the proof.

Proof of Proposition 2.3. Let K• =K(V ,σ)•⊗L. We compute

nGS(V ,ρ)
def.
=
∑

(−1)i+j
[
Ei,j

1 (K•)
]

Lemma 2.6
=

∑
(−1)i+j

[
Ei,j

∞ (K•)
]

Lemma 2.5
=

∑
i

(−1)i
[
Rif∗K

•]
def.
= nGS(V ,σ,ρ).

This is the desired result.

Remark 2.7. Admitting a version of Hermitian K -theory which is A1-invariant on

regular schemes and has proper push-forwards, one can give an alternative proof of

Proposition 2.3 by considering the Koszul complex with respect to the section tσ on
A1×X. While we believe such a theory exists, at the time of writing there is no reference

for this in characteristic 2, so we chose to present our argument instead.

2.2. Local indices for nGS(V ,σ,ρ)

Suppose that σ is a section with only isolated zeros. Let i denote the closed immersion

i : Z = Z(σ) ↪→X given by the zero locus of σ. We express nGS(V ,σ,ρ) as a sum over the

points z of Z of a local index at z. To do this, we use a push-forward in a suitable context
and show that β(V ,σ) is a push-forward from Z.

For a line bundle L on a scheme X, denote by BLnaive(D(X),L[n]) the set of isomorphism

classes of nondegenerate symmetric bilinear forms on the derived category of perfect
complexes on X, with respect to the duality Hom(−,L[n]). For a proper, lci map f :X ′ →
X, coherent duality supplies us with a trace map ηf,L : f∗f

!(L)→L. We can use this [21,

Theorem 4.2.9] to build a push-forward
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f∗ : BLnaive

(
D(X ′),f !L

)
→ BLnaive(D(X),L),[

E⊗E
φ−→ f !L

]
�→
[
f∗E⊗f∗E → f∗(E⊗E)

f∗φ−−→ f∗
(
f !L
) ηf,L−−−→L

]
.

Remark 2.8. There is a canonical weak equivalence f !L� f !OX⊗f∗L, and ηf,L is given
by the composition

f∗
(
f !L
)
� f∗

(
f !OX ⊗f∗L

)
� f∗f

!OX ⊗L ηf⊗idL−−−−−→L,

where ηf = ηf,OS
[73, Lemma 47.17.8].

Example 2.9. Consider the case of a relatively oriented vector bundle V on a smooth,
proper variety f :X → Spec(k). Note that elements of BLnaive(k) are just isomorphism

classes of symmetric bilinear forms on graded vector spaces. The orientation supplies us

with an equivalence

f !(Ok)� ωX/k[n]� detV ∗[n]⊗L⊗2.

Under the induced push-forward map we have

f∗
[
β(V ,σ,ρ)

]
= nGS(V ,σ,ρ) ∈ BLnaive(k),

where β(V ,σ,ρ) ∈ BLnaive
(
X, detV ∗[n]⊗L⊗2

)
is the form on K(V ,σ)⊗L defined in §2.1.

Remark 2.10. A symmetric bilinear form φ on the derived category D(S) is usually not
a very sensible notion. We offer three ways around this:

(1) If 1/2 ∈ S, we could look at the image of φ in the Balmer–Witt group of S.

(2) If φ happens to be concentrated in degree 0, it corresponds to a symmetric bilinear

form on a vector bundle on S, which is a sensible invariant.

(3) If S = Spec(k) is the spectrum of a field, then D(S) is equivalent to the category of

graded vector spaces, and we can split φ into components by degree and consider

cl(φ) :=
[
H0(φ)

]
+
∑
i>0

(−1)i
[
Hi(φ)⊕H−i(φ)

]
∈GW(k).

Let 1Z denote the element of BLnaive(D(Z),OZ [0]) represented by OZ ⊗OZ →OZ .

Proposition 2.11. Let X be a scheme, V a vector bundle, and σ ∈ Γ(X,V ) a section
locally given by a regular sequence. Write i : Z = Z(σ) ↪→X for the inclusion of the zero

scheme. Proposition B.1 yields a canonical equivalence i!det(V ∗)[n] �OZ [0], where n is

the rank of V; under the induced map

i∗ : BLnaive(D(Z),OZ [0])→ BLnaive(D(X), det(V ∗)[n]),

we have i∗(1Z) = β(V ,σ), where

β(V ,σ) :K(V ,σ)⊗K(V ,σ)→ det(V ∗)[n]

is the canonical pairing on the Koszul complex as in §2.1.
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Proof. Because σ locally corresponds to a regular sequence, the canonical map r :
K(V ,σ)• → i∗OZ is an equivalence in D(X). The canonical projection i∗OZ �K(V ,σ)→
det(V ∗)[n] induces by adjunction a map OZ → i!det(V ∗)[n]. We claim that this is the

equivalence of Proposition B.1. The proof of that proposition shows that the problem
is local on Z, so we may assume that V is trivial. Then this map is precisely the

isomorphism constructed in [40, Proposition III.7.2 and preceeding pages], which is also

the isomorphism used in the proof of Proposition B.1.

Now we prove that i∗(1Z) = β(V ,σ). Consider the following diagram:

K(V ,σ)⊗K(V ,σ)
r⊗r−−−−→ i∗OZ ⊗L i∗OZ

mK

⏐⏐� mZ

⏐⏐�
K(V ,σ)

r−−−−→ i∗OZ � i∗i
!det(V ∗)[n]

tr−−−−→ det(V ∗)[n].

The map mK : K(V ,σ)⊗K(V ,σ) → K(V ,σ) is the canonical multiplication (see §2.1,
property (2)) and mZ : i∗OZ ⊗L i∗OZ → i∗OZ ⊗ i∗OZ → i∗OZ is equivalently given by
either multiplication in OZ or the lax monoidal witness transformation of i∗. The former

interpretation shows that the left-hand square commutes. The pairing i∗(1) is given by

the composite from the top right corner to the bottom right corner. To prove the claim,

it suffices to show that the bottom-row composite K(V ,σ)→ det(V ∗)[n] is the canonical
projection. This follows by adjunction from our choice of equivalence OZ � i!det(V ∗)[n].
This concludes the proof.

Proposition 2.11 is an example of a more general phenomenon given in Meta-

Theorem 3.9.

Lemma 2.12 ([21]). Let g : Z → Y and f : Y →X be proper maps.4 Given equivalences

f !L � M[n] and g!M[n] � N , the canonical equivalence (fg)! � g!f ! produces a weak
equivalence (fg)!L �N , and consequently push-forward maps

g∗ : BLnaive(D(Z),N )→ BLnaive(D(Y ),M[n]),

f∗ : BLnaive(D(Y ),M[n])→ BLnaive(D(X),L),

(fg)∗ : BLnaive(D(Z),N )→ BLnaive(D(X),L).

There is a canonical equivalence (fg)∗ � f∗g∗.

Proof. The main point is that ηf,L ◦ f∗
(
ηg,M[n]

)
= ηfg,L. The categorical details are

worked out in the reference.

Now we get back to our Euler numbers. Let X/k be smooth and proper, V a relatively
oriented vector bundle, and σ a section of V with only isolated zeros. Write i :Z =Z(σ) ↪→

4Recall our convention that since we are invoking a functor f !, then Z,Y ,X are also of finite
type and separated over a Noetherian base S. Without this we should add the hypothesis that
f,g are locally (so globally) of finite presentation.
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X for the inclusion of the zero scheme of σ. Let � :Z → Speck and f :X → Speck denote
the structure maps, so that � = fi.

The weak equivalence i!det(V ∗)[n] � OZ [0] of Proposition 2.11, with Remark 2.8,

produces a weak equivalence i!
(
detV ∗[n]⊗L⊗2

) ∼= i∗L⊗2. The orientation ρ gives an
isomorphism detV ∗[n]⊗L⊗2 ∼= ωX/k[n]. Combining, we have a chosen weak equivalence

i!(ωX/k[n])∼= i∗L⊗2.

Since also f !Ok � ωX/k[n] (see, e.g., Proposition B.1), we therefore obtain a canonical
equivalence

�!Ok � i∗L⊗2.

We use this equivalence to define

�∗ : BL
naive

(
Z,i∗L⊗2

)
→ BLnaive(k).

Corollary 2.13. With this notation, we have

nGS(V ,σ,ρ) =�∗
(
i∗L⊗ i∗L→ i∗L⊗2

)
.

Proof. By Lemma 2.12 we have �∗ = f∗i∗. Proposition 2.11 and the projection formula
imply that i∗

(
i∗L⊗ i∗L→ i∗L⊗2

)
= βV ,σ,ρ. We conclude by Example 2.9.

Suppose that σ has isolated zeros, or in other words that the support of σ is a disjoint
union of points. Then nGS(V ,σ,ρ) can be expressed as a sum of local contributions.

Namely, for each point z of Z, let iz : Zz ↪→X denote the chosen immersion coming from

the connected component of Z given by z. Let �z :Zz → Speck denote the structure map.
Then

nGS(V ,σ,ρ) =
∑
z∈Z

�z∗
(
i∗zL⊗ i∗zL→ i∗zL⊗2

)
.

In light of this we propose the following:

Definition 2.14. For a relatively oriented vector bundle with a section as described, and

z ∈ Z(σ), we define

indz(σ) = indz(V ,σ,ρ) =�z∗
(
i∗zL⊗ i∗zL→ i∗zL⊗2

)
∈ BLnaive(k).

The previous formula then reads

nGS(V ,σ,ρ) =
∑
z∈Z

indz(V ,σ,ρ). (3)

In the next two subsections, we compute the local contributions indz(σ) as an explicit
bilinear form constructed by Scheja and Storch [67], appearing in the Eisenbud–Levine–

Khimshiashvili signature theorem [29] and used as the local index of the Euler class

constructed in [49, Section 4].
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2.3. Scheja–Storch and coherent duality

Let S be a scheme, π :X → S a smooth scheme of relative dimension n, and Z ⊂X closed

with � : Z → S finite. Suppose the following data:

(1) sections T1, . . . ,Tn ∈O(X) such that Ti⊗1−1⊗Ti generate the ideal ofX ⊂X×SX;

(2) sections f1, . . . ,fn ∈ O(X) such that Z = Z(f1, . . . ,fn).

Remark 2.15. Since Z →X is quasi-finite, Lemma B.5 shows that f1, . . . ,fn is a regular

sequence and Z →X is flat, so finite locally free (being finite and finitely presented [73,

Tag 02KB]).

Choose aij ∈ O(X×S X) such that

fi⊗1−1⊗fi =
∑
j

aij (Tj ⊗1−1⊗Tj) .

Let Δ ∈ O(Z×S Z) be the image of the determinant of aij . Since � is finite locally free,

Δ determines an element Δ̃ of

HomOS
(OS,(�×S �)∗OZ×SZ)�HomOS

(OS,�∗OZ ⊗�∗OZ)�HomOS
((�∗OZ)

∗,�∗OZ).

Remark 2.16. We can make Δ̃ explicit: if Δ =
∑

i bi⊗ b′i, then

Δ̃(α) =
∑
i

α(bi)b
′
i.

Remark 2.17. By construction, the pullback of Δ along the diagonal δ : Z → Z×S Z is

the determinant of the differentiation map CZ/X → ΩX |Z with respect to the canonical
bases. In other words,this is the Jacobian:

δ∗(Δ) = JacF := det

(
∂fi
∂Tj

)n

i,j=1

.

Theorem 2.18. Under the foregoing assumptions, the map

Δ̃ : (�∗OZ)
∗ →�∗OZ

is a symmetric isomorphism and hence determines a symmetric bilinear structure on

�∗OZ . This is the same structure as �∗(1)–that is,

�∗(OZ)⊗�∗(OZ)→�∗(OZ)��∗
(
�!OS

) η�−−→OS .

Here the isomorphism �!OZ �OZ arises from

�!(OZ)� d̃etL� � ωZ/X ⊗ωX/S �O,

with the first isomorphism given by Proposition B.1 and the third given by the sections

(Ti) and (fi).

Remark 2.19. The theorem asserts in particular that the isomorphism Δ̃, and hence

the section Δ, is independent of the choice of the aij .
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We begin with some preliminary observations before delving into the proof. The problem
is local on S, so we may assume that S = Spec(A); then Z = Spec(B). Since � is finite,

there is a canonical isomorphism [40, III §8 Theorem 8.7 (3), or Ideal Theorem (3) p. 6]

�! �HomA(B,−) :D(A)→D(B).

In particular,

�!(A)�HomA(B,A)

and the trace map takes the form [40, Ideal theorem 3) pg 7]

�∗�
!A�HomA(B,A)→A,η �→ η(1).

Proof of Theorem 2.18. The isomorphisms

B∗ =HomA(B,A)��!(A)�B

determine an element Δ′ ∈ HomA(B
∗,B). The theorem is equivalent to showing that

Δ̃ = Δ′.
We thus need to make explicit the isomorphism

HomA(B,A)��!(OA)� i!π!(OA)� ωZ/X ⊗ωX �O.

Tracing through the definitions (including the proof of [40, III Proposition 8.2]), one finds
that this isomorphism arises by computing

ExtnX(B,OX)

in two ways. One the one hand, the kernel of the surjection OX → B is generated

by f1, . . . ,fn, which is a regular sequence by Remark 2.15; let KA(f)
• denote the

corresponding Koszul complex. On the other hand, we can consider the embedding
Z ↪→ X ×Z; its ideal is generated by the strongly regular sequence Ti − ti, where ti
is the image of Ti in B. We thus obtain a resolution KB(T − t)• → B over X×Z. Since

p :X×Z →X is finite, p∗KB(T − t)• → p∗B = B is still a resolution. We shall conflate

KB(T − t) and p∗KB(T − t) notationally. We can thus compute

ExtnX(B,OX)� coker
(
HomX

(
KB(T − t)n−1,OX

)
→HomX(KB(T − t)n,OX)

)
.

Since HomX(B⊗OX,OX)�HomA(B,OX)�HomA(B,A)⊗AOX, there is a natural map
ξ : HomA(B,A) → HomX(KB(T − t)n,OX) (sending α to α⊗ 1). One checks that this

induces HomA(B,A)� coker(. . . )� ExtnX(B,OX).

We can write down a map of resolutions ζ :KA(f)→KB(T −t) as follows: The kernel of
B⊗OX →B is by construction generated by {Ti− ti}i, but it also contains fi. Note that

fi =
∑

j āij (Tj − tj), where we write āij for the image of aij in OX ⊗B. Letting KA(f)

be the exterior algebra on {e1, . . . ,en} and KB(T − t) the exterior algebra on {e′1, . . . ,e′n},
the map ζ is specified by ζ(ei) =

∑
j āije

′
j . The isomorphism

HomA(B,A)� hnHomX(KB(T − t)•,OX)� hnHomX(KA(f)
•,OX)�B
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is thus given by

HomA(B,A)
ξ−→HomX(KB(T − t)n,OX)

det(aij)
∗

−−−−−−→HomX(KA(f)
n,OX)

�HomX(OX,OX)�OX →B.

Write the image of det(aij) in B⊗B as
∑

k bk ⊗ b′k. Tracing through the definitions, we

find that this composite sends α ∈ HomA(B,A) to
∑

kα(bk)b
′
k. By Remark 2.16, this is

precisely Δ̃.
This concludes the proof. �

Definition 2.20. If X =U ⊂An
S , (Ti) are the standard coordinates, and F = (f1, . . . ,fn),

we denote the symmetric bilinear form already constructed by

〈−|−〉SS = 〈−|−〉SS(U,F,S).

This form was first constructed, without explicitly using coherent duality, by Scheja

and Storch [2, 67].

Example 2.21. Suppose that Z → S is an isomorphism (where Z = Z(F ) as before, so

that the diagonal δ :Z →Z×S Z is also an isomorphism. Then 〈−|−〉SS is just the rank 1
bilinear form corresponding to multiplication by δ∗(Δ) ∈OZ �OS . In other words, using

Remark 2.17, 〈−|−〉SS identifies with (x,y) �→ (JacF )xy.

2.4. The Poincaré–Hopf Euler number with respect to a section

In this subsection, we recall the Euler class defined in [49, Section 4] and prove Theorem

1.1. To distinguish this Euler class from the others under consideration, here we call it the
Poincaré–Hopf Euler number, because it is a sum of local indices as in the Poincaré–Hopf

theorem for the Euler characteristic of a manifold. It is defined using local coordinates.

Let k be a field, and let X be an n-dimensional smooth k -scheme. Let z be a closed
point of X.

Definition 2.22 (compare [49, Definition 17]). By a system of Nisnevich coordinates

around z we mean a Zariski open neighborhood U of z in X, and an étale map ϕ :U →An
k

such that the extension of residue fields k(ϕ(z))⊆ k(z) is an isomorphism.

Proposition 2.23. When n > 0, there exists a system of Nisnevich coordinates around

every closed point z of X.

Proof. When k is infinite, this follows from [52, Chapter 8. Proposition 3.2.1]. When

k(z)/k is separable, for instance when k is finite, this is [49, Lemma 18].

As before, let V be a relatively oriented, rank n vector bundle on X. Let σ be a section

with only isolated zeros, and let Z ↪→X denote the closed subscheme given by the zero
locus of σ. Let z be a point of Z. The Poincaré–Hopf local index or degree

indPH
z σ ∈GW(k)

was defined in [49, Definition 30] as follows: Choose a system of Nisnevich coordinates

ϕ : U → An
k around z. After possibly shrinking U, the restriction of V to U is trivial
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and we may choose an isomorphism ψ : V |U → On
U of V. The local trivialization ψ

induces a distinguished section of detV (U). The system of local coordinates ϕ induces

a distinguished section of detTX(U), and we therefore have a distinguished section of
(detV ⊗ωX)(U). As in [49, Definition 19], the local coordinates � and local trivialization

ψ are said to be compatible with the relative orientation if the distinguished element is

the tensor square of a section of L(U). By multiplying ψ by a section in O(U), we may
assume this compatibility.

Under ψ, the section σ can be identified with an n-tuple (f1, . . . ,fn) of regular functions,

ψ(σ) = (f1, . . . ,fn) ∈ ⊕n
i=1OU . Let m denote the maximal ideal of OU corresponding to

z. Since z is an isolated zero, there is an integer n such that mn = 0 in OZ,z. For any

N, it is possible to choose (g1, . . . ,gn) in ⊕n
i=1m

N such that (fi+gi)|U is in the image of

ϕ∗ : OAr
S
→ ϕ∗OU after possibly shrinking U [49, Lemma 22]. For N = 2n, choose such

(g1, . . . ,gn) and let Fi in OAd
k

(
Ad

k

)
be the functions such that ϕ∗(Fi) = fi+ gi. Then ϕ

induces an isomorphism OZ,z
∼= k[t1, . . . ,tn]mϕ(z)

/(F1, . . . ,Fn) [49, Lemma 25], and indPH
z σ

is defined to be the associated Scheja–Storch form 〈−|−〉SS(ϕ(U),F,k) (see §2.3 and

Definition 2.20 for the definition of 〈−|−〉SS(ϕ(U),F,k)). The local index indPH
z σ is well

defined by [49, Lemma 26]. Then the Poincaré–Hopf Euler number is defined to be the
sum of the local indices:

Definition 2.24. The Poincaré–Hopf Euler number nPH(V ,σ) of V with respect to σ is

nPH(V ,σ) =
∑

z:σ(z)=0 ind
PH
z σ.

Proof of Theorem 1.1. By Proposition 2.3 we have nGS(V ) = nGS(V ,σ), where the
orientation has been suppressed from the notation but is indeed present. Using equation

(3), it is thus enough to show that indz(σ) = indPH
z (σ). This follows from Theorem 2.18.

One needs to be careful about the trivializations used in defining the various push-
forward maps; this is ensured precisely by the condition that the tautological section

is a square. The details of this argument are spelled out more carefully in the proof of

Proposition 3.13. �
One can extend the comparison of local degrees indPH

z σ = indzσ to work over a more

general base scheme S. This was done for S =A1
k with k a field in [49, Lemma 33], but in

more generality, it is useful to pick the local coordinates using knowledge of both σ and

X, as follows:

Definition 2.25. Let X be a scheme, V a vector bundle on X, and σ a section of V.

(1) We call σ nondegenerate if it locally corresponds to a regular sequence.

(2) Given another scheme S and a morphism π :X → S, we call σ very nondegenerate

(with respect to π) if it is nondegenerate and the zero locus Z(σ) is finite and locally
free over S.

Remark 2.26. Suppose that X is smooth over S and rk(V ) = dimX/S.

(1) If S = Spec(k) is the spectrum of a field, then Z(σ)→ Spec(k) is quasi-finite if and

only if it is finite locally free, if and only if σ is locally given by a regular sequence.
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In other words, σ is nondegenerate if and only if it is very nondegenerate, if and
only if Z(σ)→ Z is quasi-finite.

(2) In general, σ is nondegenerate as soon as Z(σ) → S is quasi-finite, and very

nondegenerate if and only if Z(σ)→ S is finite (see Lemma B.5).

Example 2.27. If σ is a nondegenerate section, then precomposition with σ induces an

isomorphism Hom(V ,O)� CZ/X . In particular, NZ/X � V and LZ/X � V ∗[1].

Definition 2.28. Let X be a smooth S -scheme and let V → X be a vector bundle,

relatively oriented by ρ. Let σ be a very nondegenerate section of V and let Z be a

closed and open subscheme of the zero locus Z(σ) of σ. By a system of coordinates for
(V ,X,σ,ρ,Z) we mean an open neighborhood U of Z in X, an étale map ϕ : U → An

S ,

a trivialization ψ : V |U � On
U , and a section σ′ ∈ On

An
S
(ϕ(U)), such that the following

conditions hold:

(1) Z = Z(σ|U )∼= Z(σ′),

(2) det(σ|Z) = det(ϕ∗σ′|Z) ∈ detNZ/X , and

(3) the canonical section of ωX/S⊗detV |Z ∼=L⊗2|Z determined by ψ and ϕ corresponds

to the square of a section of L|Z .

Here for conditions (2) and (3) we used Example 2.27.

Suppose that X has dimension n over S, so that the rank of V is also n. Let Z ⊂ Z(σ)

be a clopen component and write � : Z → S for the structure map. The local index

generalizes straightforwardly from Definition 2.14:

Definition 2.29. We call

indZ(σ) = indZ(V ,σ,ρ) =�∗
(
i∗L⊗ i∗L→ i∗L⊗2

)
∈ BLnaive(S)

the local index at Z.

Remark 2.30. Since � is finite locally free, �∗ preserves vector bundles. In particular,

indZ(σ) ∈BLnaive(S) is a symmetric bilinear form on a vector bundle, as opposed to just

on a complex up to homotopy. (See also Remark 2.10.)

A system of coordinates for (V ,X,σ,ρ,Z) determines a presentation Z = Z(σ|U ) =
Z(σ′) ⊂ An

S , where σ′ : An
S ⊃ φ(U) → An. Hence Definition 2.20 supplies us with a

symmetric bilinear form 〈−|−〉SS(ϕ(U),σ,S) ∈ BLnaive(S).

Proposition 2.31. The form 〈−|−〉SS(ϕ(U),σ′,S) coincides (up to isomorphism) with
indZ(σ). In particular, its isomorphism class is independent of the choice of coordinates.

Proof. The argument is the same as in the proofs of Theorem 1.1 and
Proposition 3.13.

In contrast, our proof that the Euler number (sum of indices) is independent of the

choice of section (i.e., Proposition 2.3) does not generalize immediately; in fact, this will

not hold in BLnaive(S) but rather in some quotient (like GW(k) in the case of fields). As

https://doi.org/10.1017/S147474802100027X Published online by Cambridge University Press

https://doi.org/10.1017/S147474802100027X


700 T. Bachmann and K. Wickelgren

indicated in Remark 2.7, one situation in which it is easy to see this independence is if
the quotient group satisfies homotopy invariance. This suggests studying Euler numbers

valued in more general homotopy-invariant cohomology theories for algebraic varieties,

which is what the remainder of this work is concerned with.

3. Cohomology theories for schemes

3.1. Introduction

In order to generalize the results from the previous sections, we find it useful to introduce
the concept of a cohomology theory twisted by K-theory. We do not seek here to axiomatize

all the relevant data, just to introduce a common language for similar phenomena.

Definition 3.1. Let S be a scheme and C ⊂ SchS a category of schemes. Denote by CL

the category of pairs (X,ξ), whereX ∈ C and ξ ∈K(X) (i.e., a point in the K -theory space

of X ), and morphisms those maps of schemes compatible with the K -theory points.5 By
a cohomology theory E over S (for schemes in C) we mean a presheaf of sets on CL–that

is, a functor

E :
(
CL
)op → Set,(X,ξ) �→ Eξ(X).

To illustrate the flavor of cohomology theory we have in mind, we begin with two

examples.

Example 3.2. We can set either of the following:

(1) Eξ(X) =CHrk(ξ)(X), the Chow group of algebraic cycles up to rational equivalence

of the appropriate codimension, or

(2) Eξ(X)=GW
(
X,d̃etξ

)
, the Grothendieck–Witt group of symmetric bilinear perfect

complexes for the duality Hom
(
−,d̃etξ

)
(see, e.g., [68]).

Warning 3.3. For cohomology theories with values in a 1-category (like sets), in this

definition we can safely replace K(X) by its truncation K(X)≤1–that is, the ordinary
1-groupoid of virtual vector bundles. However, we can in general not replace it by just the

set K0(X). In other words, if (say) V is a vector bundle on X and φ an automorphism

of V, then there is an induced automorphism

E(φ) : EV (X)→ EV (X)

which may or may not be trivial. For example, in the case E =GW as before, if V =O
is trivial and φ corresponds to a ∈ O×(X), then E(φ) is given by multiplication by 〈a〉 ∈
GW(X).

5Technically speaking, this means ‘coherently compatible’, so CL is an ∞-category. However,
we will only need its homotopy 1-category, so for us ‘compatible’ means ‘together with a
homotopy class of paths joining the two K -theory points’.
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3.2. Features of cohomology theories

Many cohomology theories that occur in practice satisfy additional properties beyond the

basic ones of our definition, and many come with more data. We list here some of those

relevant to this paper.

Morphisms of theories: Cohomology theories form a category in an evident way,

with morphisms given by natural transformations.

Trivial bundles: We usually abbreviate EOn

(X) to En(X).

Additive and multiplicative structure: Often, E takes values in abelian groups.

Moreover, often E0(X) is a ring and Eξ(X) is a module over E0(X). Typically all

of this structure is preserved by the pullback maps.

Disjoint unions: Usually E converts finite disjoint unions into products–that is,

E(∅) = ∗ and E(X
∐

Y ) =E(X)×E(Y ). If E takes values in abelian groups, this is

usually written as E(X
∐

Y ) = E(X)⊕E(Y ).

Orientations: In many cases, the cohomology theory E factors through a quotient of
the category CL, built using a quotient q :K(X)→K ′(X) of the K -theory groupoid.

In other words, one has canonical isomorphisms Eξ(X) � Eξ′(X) for certain K -

theory points ξ,ξ′. More specifically:
GL-orientations: If K ′(X) = Z and q is the rank map, then we speak of a

GL-orientation. In other words, in this situation we canonically have Eξ(X) �
Erk(ξ)(X). In particular, Warning 3.3 does not apply: all automorphisms of vector
bundles act trivially on E. This happens, for example, if E = CH (see Example

3.2(1)).

SL-orientations: If instead K ′(X) = Pic(D(X)) via the determinant, then we

speak of an SL-orientation. In other words, in this situation Eξ(X) depends only
on the rank and (ungraded) determinant of ξ. We write Erk(ξ)(X, det(ξ)) for this

common group. This happens, for example, if E =GW (see Example 3.2(1)).

SLc-orientations: This is a further strengthening of the concept of an SL-

orientation, where in K ′(X) = Pic(D(X)) we mod out (in the sense of groupoids)
by the squares of line bundles. In other words, if L1,L2,L3 are line bundles on X,

then any isomorphism L1 � L2⊗L⊗2
3 induces

En(X,L1)� En(X,L2).

Note that then, in particular, En(X,L) � En(X,L∗). This also happens for E =

GW, essentially by construction.

Supports: Often, for Z ⊂ X closed there is a cohomology with support, denoted
Eξ

Z(X). It enjoys further functorialities which we do not list in detail here.

Transfers: In many theories, for appropriate morphisms p :X → Y and ξ ∈K(Y ),

there exists tw(p,ξ) ∈K(X) and a transfer map

p∗ : E
tw(p,ξ)(X)→ Eξ(Y ),
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compatible with composition. Typically p is required to be lci, and

tw(p,ξ) = p∗ξ+Lp,

where Lp is the cotangent complex [46]. Furthermore, typically p is required to be
proper, or else we need to fix Z ⊂ X closed and proper over Y and obtain p∗ :

E
tw(p,ξ)
Z (X)→Eξ(Y ). Finally, usually E takes values in abelian groups and satisfies

the disjoint union property, and transfer from a disjoint union is just the sum of the

transfers.

Remark 3.4.

(1) We have defined a morphism of cohomology theories as a natural transformation of

functors valued in sets. Whether or not such a transformation respects additional
structure (abelian group structures, orientations, transfers, etc.) must be investi-

gated in each case.

(2) In many cases (in particular in the presence of homotopy invariance), SL-oriented

theories are also canonically SLc-oriented (see Proposition 4.19).

3.3. Some cohomology theories

We now introduce a number of cohomology theories that can be used in this context.

Hermitian K -theory GW: This is the theory from Example 3.2(2). It is SLc-
oriented. We believe that it has transfers for (at least) smooth, proper morphisms

and regular immersions, but we are not aware of a reference for this in adequate

generality. If X is regular and 1/2 ∈X, one can use the comparison with KO-theory
(see later).

Naive derived bilinear forms BLnaive: See §2.2.
Cohomology theories represented by motivic spectra: Let SH(S) denote the

motivic stable ∞-category. Then any E ∈ SH(S) defines a cohomology theory on
SchS , automatically satisfying many good properties; for example, they always have

transfers along smooth and proper morphisms, as well as regular immersions. For a

lucid introduction, see [31]. We recall some of the main points in §4.
Orthogonal K -theory spectrum KO: This spectrum is defined and stable under
arbitrary base change if 1/2∈ S [ 71, 65]. Over regular bases, it represents Hermitian

K -theory GW; in general it represents a homotopy-invariant version.

Generalized motivic cohomology HZ̃: This can be defined asπeff
0 (1) (see, e.g.,

[5]). Over fields (of characteristic not 2) it represents generalized motivic cohomology

in the sense of Calmès and Fasel [20, 9, 20]; it is unclear whether this theory is useful

in this form over more general bases.

3.4. The yoga of Euler numbers

Let E be a cohomology theory.
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Definition 3.5. We will say that E has Euler classes if, for each scheme X over S and
each vector bundle V on X, we are supplied with a class

e(V ,E) ∈ EV ∗
(X).

Remark 3.6. The twist by V ∗ (instead of V ) in this definition may seem peculiar.
It ultimately comes from our choice of covariant (instead of contravariant) equivalence

between locally free sheaves and vector bundles, whereas a contravariant equivalence is

used in the motivic Thom spectrum functor and hence in the definition of twists.

Typically, the Euler classes will satisfy further properties, such as stability under base

change; we do not formalize this here.

Now suppose that π :X → S is smooth and proper, V is relatively oriented, and E has
transfers for smooth proper maps and is SLc-oriented. In this case we have a transfer map

EV ∗
(X)� En(X, detV )

ρ� En(X,ωX/S)� ELπ (X)
π∗−→ E0(S).

Definition 3.7. In the foregoing situation, we call

n(V ,ρ,E) = π∗e(V ,E)

the Euler number of V in E with respect to the relative orientation ρ.

Example 3.8. Let E =GW. We can define a family of Euler classes by

e(V ) = [K(V ,0)] ∈GW
(
X,d̃etV

)
�GWV ∗

(X);

here we use the Koszul complex from §2.1. This depends initially on a choice of section,
but we shall show that the Grothendieck–Witt class often does not. In any case, here we

chose the zero section for definiteness. Assuming that GW has transfers (of the expected

form) in this context, we find that

n(V ,ρ,GW) = nGS(V ,0,ρ).

Now let σ be a nondegenerate section of V (in the sense of Definition 2.25) and write

i : Z = Z(σ) ↪→X for the inclusion of the zero scheme. Thus i is a regular immersion. In

this case one has (see Example 2.27)

[Li]�−
[
N∗

Z/X

]
�−[V ∗|Z ],

and consequently, if E has push-forwards along regular immersions, there is a transfer
map

i∗ : E
0(Z)� E[V ∗]|Z−[V ∗|Z ](Z)� Ei∗V ∗+Li(Z)→ EV ∗

(X).

The following result is true in all cases that we know of; but of course it cannot be proved

from the weak axioms that we have listed:

Meta-Theorem 3.9. Let σ be a nondegenerate section of a vector bundle V over a

scheme X. Let E be a cohomology theory with Euler classes and push-forwards along
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regular immersions, such that E0(S) has a distinguished element 1 (e.g., is a ring). Then

e(V ,E) = i∗(1),

where we use the identification from before for the push-forward.

Going back to the situation where X is smooth and proper over S, V is relatively

oriented, and E is SLc-oriented and has transfers along proper lci morphisms, we also

have the push-forward

�∗ : E
0(Z)� E0

(
Z,L⊗2

∣∣
Z

) ρ� E0
(
Z, detV ∗⊗ωX/S |Z

)
� EL� (Z)→ E0(S).

More generally, if Z ′ ⊂ Z is a clopen component, then we have a similar transfer

originating from E0(Z ′).

Definition 3.10. For V ,σ,X,E as before, for any clopen component Z ′ ⊂ Z we

denote by

indZ′(σ,ρ,E) =�′
∗(1) ∈ E0(S)

the local index of σ around Z ′ in E. Here �′ : Z ′ → S is the restriction of � to Z ′.

Meta-Corollary 3.11. Let σ be a nondegenerate section of a relatively oriented vector

bundle V over π :X → S. Let E be an SLc-oriented cohomology theory with Euler classes
and push-forwards along proper lci morphisms, such that Meta-Theorem 3.9 applies. Then

n(V ,ρ,E) =
∑
Z′

indZ′(σ,ρ,E).

Proof. By assumption, transfers are compatible with composition and additive along
disjoint unions. The result follows.

Example 3.12. If S = Spec(k) is the spectrum of a field, then Z is 0-dimensional and

hence decomposes into a finite disjoint union of ‘fat points’. In particular, the Euler num-
ber is expressed as a sum of local indices, in bijection with the zeros of our nondegenerate

section.

Recall the notion of coordinates from Definition 2.28. The following result states that

indices may be computed in local coordinates:

Proposition 3.13. Let E be an SLc-oriented cohomology theory with Euler classes and

push-forwards along proper lci morphisms. Let (ψ,ϕ,σ2) be a system of coordinates for

(V ,X,σ1,ρ1,Z). Then

indZ(σ1,ρ1,E) = indZ(σ2,ρ2,E),

where ρ2 is the canonical relative orientation of On
An/An.

Proof. Let � : Z → S denote the canonical map. Then both sides are obtained as �∗(1),
but conceivably the orientations used to define the transfer could be different; we shall
show that they are not. In other words, we are given two isomorphisms

d̃etL�
αi� L⊗2

i
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and we need to exhibit L1
β� L2 such that α−1

1 α2 = β⊗2. The isomorphisms αi

arise as

detL� � detNZ/X ⊗ωX/S |Z
σi� detV ⊗ωX/S |Z

ρi� L⊗2
i |Z,

where L2 = O and for i = 2 we implicitly use ϕ and ψ as well. We first check that the
two isomorphisms detNZ/X � detV |Z are the same. Indeed, V |U �On via ψ, and up to

this trivialization the isomorphism is given by the trivialization of CZ/X by σi; these are

the same by Definition 2.28. Now we deal with the second half of the isomorphism. By

construction, we have an isomorphism O�O⊗2
α−1

1 α2� L⊗2
1 ; what we need to check is that

the corresponding global section of L⊗2
1 is a tensor square. Unwinding the definitions,

this follows from Definition 2.28.

4. Cohomology theories represented by motivic spectra

We recall some background material about motivic extraordinary cohomology theories–
that is, theories represented by motivic spectra. We make essentially no claim to

originality.

4.1. Aspects of the six-functors formalism

We recall some aspects of the six-functors formalism for the motivic stable categories

SH(−), following the exposition in [31].

4.1.1. Adjunctions. For every scheme X, we have a symmetric monoidal,

stable category SH(X). For every morphism f : X → Y of schemes we have an
adjunction

f∗ : SH(Y )� SH(X) : f∗.

If no confusion can arise, we sometimes write EY := f∗E. If f is smooth, there is a further
adjunction

f# : SH(X)� SH(Y ) : f∗.

If f is locally of finite type, then there is the exceptional adjunction

f! : SH(X)� SH(Y ) : f !.

There is a natural transformation α : f! → f∗. If f is proper, then α is an equivalence.
The assignments f �→ f∗,f∗,f

!,f!,f# are functorial. In particular, given composable

morphisms f,g of the appropriate type, we have equivalences (fg)∗ � f∗g∗, and

so on.
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4.1.2. Exchange transformations. Suppose a commutative square of categories

C F←−−−− D

G

�⏐⏐ G′
�⏐⏐

C′ F ′
←−−−− D′,

which is a natural isomorphism γ : FG′ � GF ′. If the functors G′,G have right adjoints
H ′,H, then we have the natural transformation

F ′H ′ unit−−→HGF ′H ′ γ�HFG′H ′ counit−−−−→HF,

called the associated exchange transformation. Similarly, if G′,G have left adjoints K ′,K,

then we have the exchange transformation

KF
unit−−→KFG′K ′ γ�KGFK ′ counit−−−−→ FK ′.

Suppose we have a commutative square of schemes

X ′ f ′

−−−−→ Y ′

g′
⏐⏐� g

⏐⏐�
X

f−−−−→ Y.

(4)

Then we have an induced commutative square of categories

SH(X ′)
f ′∗

←−−−− SH(Y ′)

g′∗
�⏐⏐ g∗

�⏐⏐
SH(X)

f∗

←−−−− SH(Y ).

Passing to the right adjoints, we obtain the exchange transformation

Ex∗∗ : f
∗g∗ → g′∗f

′∗.

Similarly, there is Ex∗# : g′#f
′∗ → f∗g# (for g smooth; this is in fact an equivalence if

diagram (4) is cartesian), and so on.

4.1.3. Exceptional exchange transformation. Given a cartesian square of schemes
as in diagram (4), with g (and hence g′) locally of finite type, there is a canonical

equivalence

Ex∗! : f
∗g! � g′!f

′∗.

Passing to right adjoints, we obtain

Ex∗! : f ′∗g! → g′!f∗.

4.1.4. Thom transformation. Given a perfect complex E of vector bundles on X, the

motivic J-homomorphism K(X)→Pic(SH(X)) [10, §16.2] provides us with an invertible
spectrumΣE1∈SH(X). We denote byΣE : SH(X)→SH(X),E �→E∧ΣE1 the associated
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invertible endofunctor. If E is a vector bundle (concentrated in degree 0), thenΣE1 is the

suspension spectrum on the Thom space E∗/E∗ \0.6

Lemma 4.1. The functor f ! commutes with Thom transforms.

Proof. This follows from the projection formula [23, A.5.1(6)] and the invertibility

ofΣ(−)1:

f !
(
ΣV X

)
� f !Hom

(
Σ−V 1,X

)
�Hom

(
f∗Σ−V 1,f !X

)
� Σf∗V f !X.

4.1.5. Purity transformation. Let f : X → Y be a smoothable [31, §2.1.21] lci

morphism. Then the cotangent complex Lf is perfect, and there exists a canonical purity
transformation

pf : ΣLf f∗ → f !.

4.2. Cohomology groups and Gysin maps

4.2.1. Let S be a scheme and set E ∈ SH(S). Given (π : X → S) ∈ SchS , i : Z ↪→
X closed, and ξ ∈ K(Z), we define the ξ-twisted E-cohomology of X with support
in Z as

Eξ
Z(X) =

[
1,π∗i!Σ

ξi!π∗E
]
SH(S)

.

This assignment forms a cohomology theory in the sense of §3.1. It takes values in abelian

groups, has supports, and satisfies the disjoint union property. We shall see that it has

transfers for proper lci maps. It need not be orientable in general.

If Z = X, we may omit it from the notation and just write Eξ(X). As before, if
ξ is a trivial virtual vector bundle of rank n ∈ Z, then we also write En

Z(X) instead

of Eξ
Z(X).

Example 4.2. Suppose that ξ = i∗V , where V is a vector bundle on X. We have

Eξ
Z(X) =

[
1,π∗i!Σ

ξi!π∗E
]
SH(S)

�
[
1,i!Σξπ∗E

]
SH(Z)

�
[
i∗1,Σ

ξπ∗E
]
SH(X)

,

where we have used the fact that i∗ � i! and Lemma 4.1. Using the localization sequence

j#j
∗ → id→ i∗i

∗[44, Theorem 6.18(4)] to identifyi∗1�X/X \Z, we find that

Eξ
Z(X)�

[
X/(X \Z),Σξπ∗E

]
SH(X)

.

Remark 4.3. The final expression in Example 4.2 depends only on Z ⊂X as a subset,

not a subscheme. This also follows directly from the definition, since SH(Z)�SH(Zred);
this is another consequence of localization.

6Indeed, in [31, §2.1.2], the transformation ΣE is built out of Spec(Sym(E))–which is the vector
bundle corresponding to E∗ in our convention.
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4.2.2. Functoriality in E . If α : E → F ∈ SH(S) is any morphism, then there is an

induced morphism α∗ : E
ξ
Z(X)→ F ξ

Z(X). This just follows from the fact that π∗ and so

on are functors.

4.2.3. Contravariant functoriality in X . Define f :X ′ →X ∈ SchS . Then there is
a pullback map

f∗ : Eξ
Z(X)→ Ef∗ξ

f−1(Z)(X
′),

coming from the morphism

π∗i!Σ
ξi!π∗E

unit−−→ π∗f∗f
∗i!Σ

ξi!π∗E � π′
∗f

∗i!Σ
ξi!π∗E

Ex∗
!� π′

∗i
′
!f

′∗Σξi!π∗E

� π′
∗i

′
!Σ

f∗ξf ′∗i!π∗E
Ex∗!
−−−→ π′

∗i
′
!Σ

f∗ξi′∗f∗π∗E � π′
∗i

′
!Σ

f∗ξi′∗π′∗E.

Here the Ex∗! and Ex∗! come from the cartesian square

Z ′ f ′

−−−−→ Z

i′
⏐⏐� i

⏐⏐�
X ′ f−−−−→ X.

Lemma 4.4. Set f :X ′ →X ∈ SchX , Z ⊂X, ξ ∈K(Z), and α : E → F ∈ SH(S). The

following square commutes:

Eξ′

Z′(X ′)
α∗−−−−→ F ξ′

Z′(X ′)

f∗
�⏐⏐ f∗

�⏐⏐
Eξ

Z(X)
α∗−−−−→ F ξ

Z(X
′),

where ξ′ = f∗(ξ) and Z ′ = f−1(Z).

Proof. This is just an expression of the fact that the exchange transformations used to

build f∗ are indeed natural transformations.

4.2.4. Covariant functoriality in X . Suppose a commutative square in SchS ,

Z1
i−−−−→ X

g

⏐⏐� f

⏐⏐�
Z2

k−−−−→ Y ,

(5)

where f is smoothable lci, i,k are closed immersions, and g is proper. For every ξ ∈K(Z2),

there is a Gysin map

f∗ : E
g∗ξ+i∗Lf

Z1
(X)→ Eξ

Z2
(Y )
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coming from the morphism

f∗i!Σ
g∗ξ+i∗Lf i!f∗EY

pf−→ f∗i!Σ
g∗ξi!f !EY � k!g!Σ

g∗ξg!k!EY � k!g!g
!Σξk!EY

counit−−−−→ k!Σ
ξk!EY ,

where we used Lemma 4.1 to move ΣLf through i! and Σξ through g!, and also used

i∗ � i!,k∗ � k!,g∗ � g!.

Remark 4.5. In [31], the Gysin map is denoted by f!, to emphasize that it involves the

purity transform. We find the notation f∗ more convenient.

Lemma 4.6. The following hold:

(1) Suppose a square as in diagram (5) and α : E → F ∈ SH(S). Then the following
square commutes:

E
g∗ξ+i∗Lf

Z1
(X)

α∗−−−−→ F
g∗ξ+i∗Lf

Z1
(X)

f∗

⏐⏐� f∗

⏐⏐�
Eξ

Z2
(Y )

α∗−−−−→ F ξ
Z2
(Y ).

(2) Suppose a square as in diagram (5) and s :Y ′ →Y such that s,f are tor-independent.

Set X ′ =X×Y Y ′, Z ′
i =Zi×Y Y ′, i′,g′,k′,f ′ the induced maps, and so on. Then the

following square commutes:

E
g∗ξ+i∗Lf

Z1
(X)

s∗−−−−→ E
g′∗ξ′+i′∗Lf′

Z′
1

(X)

f∗

⏐⏐� f ′
∗

⏐⏐�
Eξ

Z2
(Y )

s∗−−−−→ Eξ′

Z′
2
(Y ′).

(3) Suppose a commutative diagram in SchS as follows

Z1
i−−−−→ X

g

⏐⏐� f

⏐⏐�
Z2

k−−−−→ Y

g′
⏐⏐� f ′

⏐⏐�
Z3

l−−−−→ W.
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Then given ξ ∈K(Z3), we have

f ′
∗f∗ = (f ′f)∗ : E

(g′g)
∗
ξ+i∗Lf′f

Z1
(X)→ Eξ

Z3
(W ).

Here we use the equivalence Lf ′f � f ′∗Lf +Lf ′ ∈ K(X), coming from the cofiber

sequence f ′∗Lf → Lf ′f → Lf ′ .

Proof. (1) Since f∗ : E
g∗ξ+i∗Lf

Z1
(X)→ Eξ

Z2
(Y ) is obtained as [1,ζE ], where ζ is a natural

transformation of endofunctors of SH(S), this is clear.

(2) Consider the following diagram:

f∗i!Σ
g∗ξ+i∗Lf i!f∗ f∗sX∗s

∗
X i!Σ

g∗ξ+i∗Lf i!f∗ f∗sX∗Σ
g′∗ξ′+i′∗Lf′ i′!f ′∗s∗

f∗i!Σ
g∗ξi!ΣLf f∗ f∗sX∗s

∗
X i!Σ

g∗ξi!ΣLf f∗ f∗sX∗in!Σ
g′∗ξ′i′!ΣLf′ f ′∗s∗

f∗i!Σ
g∗ξi!f ! f∗sX∗s

∗
X i!Σ

g∗ξi!f ! f∗sX∗i
′
!Σ

gn∗ξ′i′!f ′!s∗

s∗s
∗f∗i!Σ

g∗ξi!f ! s∗f∗i
′
!Σ

g′∗ξ′i′!f ′!s∗

k!g!Σ
g∗ξg!k! s∗s

∗k!g!Σ
g∗ξg!k! s∗k

′
!g

′
!Σ

g′∗ξ′g′!k′!s∗

k!g!g
!Σξk! s∗s

∗k!g!g
!Σξk! s∗k

′
!g

′
!g

′!Σξ′k′!s∗

k!Σ
ξk! s∗s

∗k!Σ
ξk! s∗k

′
!Σ

ξ′k′!s∗.

unitX

�

Ex

� �

unitX

pf

Ex

pf pf′(a)

unitX

unit

�

Ex

(b) �

Ex

� �

unit

� �

Ex

�

unit

counit counit

Ex

counit′(b)

unit Ex

Here sX : X ′ → X is the canonical map and ξ′ = (Z ′
2 → Z2)

∗
ξ. All the unlabeled

equivalences arise from moving Thom transforms through (various) pullbacks, the

compatibility of pullbacks and push-forwards with composition, and equivalences of the

form p∗ � p! for p proper. All the maps labeled ‘Ex’ are exchange transformations
expressing the compatibility of p∗,p!,p

! with base change. Denote the diagram by D.

Then [1,DEY ] yields a diagram of abelian groups. The outer square of that diagram

identifies with the square which we are trying to show commutes. It thus suffices to
show that D commutes. All cells commute for trivial reasons, except for (a), which

commutes by [31, Proposition 2.2.2(ii)] and (b), which commute by the stability of the

counit transformations under base change.
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(3) Consider the following diagram:

f ′
∗f∗i!Σ

g∗g′∗ξ+i∗Lf+i∗f ′∗Lf′ i!f∗f ′∗

l!g
′
!g!Σ

g∗g′∗ξi!ΣLf f∗ΣLf′ f ′∗ l!(g
′g)!Σ(g′g)∗ξi!Σ

Lf′f (f ′f)∗

l!g
′
!g!Σ

g∗g′∗ξi!f !Σ
Lf′ f ′∗

l!g
′
!g!g

!Σg′∗ξk!Σ
Lf′ f ′∗ l!g

′
!g!Σ

g∗g′∗ξi!f !f ′! l!(g
′g)!Σ(g′g)∗ξi!(f ′f)!

l!g
′
!Σ

g′∗ξk!Σ
Lf′ f ′∗ l!g

′
!g!g

!Σg′∗ξk!f ′!

l!g
′
!Σ

g′∗ξk!f ′! l!g
′
!g!g

!g′!Σξl! l!(g
′g)!(g′g)!Σξl!

l!g
′
!g

′!Σξl! l!Σ
ξl!.

�

�

pf

pf′f(a)

�
pf′

counitg
pf′

�

�

�

pf′
counitg

�

�
counitg

�

counitg′g

counitg′

(b)

All the unlabeled equivalences arise from moving Thom transforms through (various)

pullbacks, the compatibility of pullbacks and push-forwards with composition, and

equivalences of the form p∗ � p! for p proper. Denote the diagram by D. Then[1,DEW ]
yields a diagram of abelian groups. Going from the top to the bottom middle via the

leftmost path, we obtain f ′
∗f∗; going instead via the rightmost path we obtain (f ′f)∗.

It hence suffices to show that D commutes. All cells commute for trivial reasons, except

for (a), which commutes by [31, Proposition 2.2.2(i)], and (b), which commutes by the
compatibility of the counit transformations with composition.

Example 4.7. Consider a commutative square as in diagram (5), with X = Y and f = id,

so that g :Z1 ↪→Z2 is a closed immersion. Then f∗ :E
g∗ξ
Z1

(X)→Eξ
Z2
(X) is the ‘extension of

support’ map. In particular taking Z2 =X as well, we obtain the map Ei∗ξ
Z1

(X)→Eξ(X)

‘forgetting the support’. Lemma 4.6(3) now in particular tells us that given a proper map

f :X → Y , a closed immersion i :Z ↪→X, and ξ ∈K(Y ), the following diagram commutes:

Ei∗f∗ξ
Z (X) −−−−→ Ef∗ξ(X)

f∗

⏐⏐� f∗

⏐⏐�
Eξ

X(X) Eξ(X),

where the upper horizontal map forgets the support.

4.3. Orientations

4.3.1. Product structures. By a ring spectrum (over S ) we an object E ∈ SH(S)

together with homotopy classes of mapsu : 1 → E and m : E ∧E → E satisfying the
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evident identities. If E is a ring spectrum, then there are multiplication maps

Eξ
Z1
(X)×Eξ′

Z2
(X)→ Eξ+ξ′

Z1∩Z2
(X)

induced by (
ΣξE

)
∧
(
Σξ′E

)
� Σξ+ξ′E∧E

m−→ Σξ+ξ′E

and the diagonal7

X/X \ (Z1∩Z2)→X/X \Z1∧X/X \Z2.

Lemma 4.8. The multiplicative structure on E-cohomology is compatible with pullback:
given Z1,Z2 ⊂X, ξ,ξ′ ∈K(X), and f :X ′ →X, the following diagram commutes:

Eξ
Z1
(X)×Eξ′

Z2
(X) −−−−→ Eξ+ξ′

Z1∩Z2
(X)

f∗×f∗
⏐⏐� f∗

⏐⏐�
Ef∗ξ

f−1(Z1)
(X ′)×Ef∗ξ′

f−1(Z2)
(X ′) −−−−→ Ef∗ξ+f∗ξ′

f−1(Z1)∩f−1(Z2)
(X ′).

Proof. This is immediate from the definitions.

4.3.2. Thom spectra. Let G = (Gn)n be a family of finitely presented S -group

schemes, equipped with a morphism of associative algebras G→ (GLnk,S)n (for the Day

convolution symmetric monoidal structure on Fun(N,Grp(SchS))). Then there is a notion
of a (stable) vector bundle with structure group G, the associated K -theory spaceKG(X),

and the associated Thom spectrum MG, which is a ring spectrum [10, Example 16.22].

Example 4.9. If Gn =GLn, then KG(X) =K(X) and MGL is the algebraic cobordism

spectrum [10, Theorem 16.13]. If Gn = SLn (resp., Spn), then KG(X) is the K -theory of

oriented (resp., symplectic) vector bundles in the usual sense, and MSL (resp., MSp) is

the Thom spectrum as defined in [63].

In order to work effectively with MG, one needs to know that it is stable under base

change. This is easily seen to be true for MGL, MSL, and MSp [10, Example 16.23]. We
record the following more general result for future reference:

Proposition 4.10. The Thom spectrum MG is stable under base change, provided that

each Gn is flat and quasi-affine.

Proof. We have a presheaf KG ∈ P(SchS) and a map KG →K. For f :X → S ∈ SchS ,

denote by KG
X ∈ P(SmX) and jX : KG

X → K|SmX
the restrictions. Then by definition,

MGX = MX(jX), where MX : P(SmX)/K → SH(X) is the motivic Thom-spectrum

functor [10, §16.1]. Let LKG
S ∈ P(SchS) denote the left Kan extension of KG

S . We
claim that LKG

S → KG is a Nisnevich equivalence. Assuming this, we deduce that

f∗KG
S �

(
LKG

S

)∣∣
SmX

→ KG
X is a Nisnevich equivalence. Since MX inverts Nisnevich

7One easily checks that the diagonal X →X×X induces a map as indicated.
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equivalences [10, Proposition 16.9], this implies that f∗MGS �MGX , which is the desired

result.

To prove the claim, we first note that by [32, Lemma 3.3.9], we may assume S is
affine, and it suffices to prove that the restriction of KG to AffS is left Kan extended

from smooth affine S -schemes. By definition, KG =
(
VectG

)gp
, where VectG =

∐
n≥0BGn

(here the coproduct is as stacks i.e., fppf sheaves). The desired result now follows from
[32, Proposition A.0.4 and Lemma A.0.5] (noting that the coproduct of stacks is the same

as the coproduct of Σ-presheaves, and Kan extension preserves Σ-presheaves).

Now set ξ ∈KG(X). Then there is a canonical equivalence [10, Example 16.29]

ΣξMGX � Σ|ξ|MGX .

We denote by tξ ∈MGξ−|ξ|(X) the class of the map

1
u−→MGX � Σξ−|ξ|MGX .

4.3.3. Oriented ring spectra.

Definition 4.11. Let E ∈ SH(S) be a ring spectrum and G= (Gn)n a family of group
schemes as in §4.3.2. By a strong G -orientation of E we mean a ring map MG→ E.

Example 4.12. The spectrum KO is strongly SL-oriented (see Corollary A.3).

Note that if E ∈ SH(S) is strongly G-oriented, then there is no reason a priori why
EX should be strongly GX -oriented. This is true if MG is stable under base change, so

for most reasonable G by Proposition 4.10. We will not talk about strong G-orientations

unless MG is stable under base change, so assume this throughout.
Given ξ ∈KG(X), the map MG→ E provides us with tξ = tξ(E) ∈ Eξ−|ξ|(X).

Proposition 4.13. Let E be strongly G-oriented and set ξ ∈KG(X).

(1) The classes tξ(E) are stable under base change: for f :X ′ →X we have tf∗ξ(E) =

f∗tξ(E).

(2) Multiplication by tξ(E) induces an equivalence Σ|ξ|E � ΣξE and an isomorphism

t : E
|ξ|
Z (X)� Eξ

Z(X), called the Thom isomorphism.

(3) The Thom isomorphism is compatible with base change: f∗(t(x)) = t(f∗(x)).

In particular, E is G-oriented.

Proof. (1) follows from the same statement for MG, where it holds by construction. For

the first half of (2), it suffices to show that tξ(E) is a unit in the Picard-graded homotopy
ring of E. This follows from the same statement for MG. The second half of (2) follows.

(3) immediately follows from (1).

Example 4.14. Let E be strongly GL-oriented. Then for any ξ ∈ K(X) we obtain

Eξ(X)� Erk(ξ)(X), so E is oriented in the sense of §3.2.

https://doi.org/10.1017/S147474802100027X Published online by Cambridge University Press

https://doi.org/10.1017/S147474802100027X


714 T. Bachmann and K. Wickelgren

Definition 4.15. For X ∈ SchS and L a line bundle on X, put

En
Z(X,L) = En−1+L

Z (X).

Example 4.16. Let E be strongly SL-oriented and set ξ ∈K(X). Then ξ′ := ξ−(|ξ|−1+

detξ)∈K(X) lifts canonically to KSL(X), whence by Proposition 4.13 we get a canonical
(Thom) isomorphism Eξ(X)�E|ξ|(X, detξ). In particular, E is SL-oriented in the sense

of §3.2.

Remark 4.17. If E is strongly SL-oriented, then since det(L1 ⊕L2) � L1 ⊗L2, by

Example 4.16 the product structure on E -cohomology twisted by line bundles takes the

form En(X,L1)×Em(X,L2)→ En+m(X,L1⊗L2).

Remark 4.18. Strong G-orientations have better permanence properties than ordinary

ones (provided that MG is stable under base change): they are stable under base change

and taking (very) effective covers, for example.

4.4. SLc-orientations

A. Ananyevskiy has done important work on SL and SLc orientations. We shall make use
of the following result (see, e.g., [1, Theorem 1.1]):

Proposition 4.19 (Ananyevskiy). Let E ∈ SH(S) be SL-oriented and L1,L2,L3 be line
bundles on X. Suppose an isomorphism L1 � L2⊗L⊗2

3 .

(1) There is a canonical equivalence ΣL1E � ΣL2E, compatible with base change.

(2) There is a canonical isomorphism En
Z(X,L1) � En

Z(X,L2), compatible with base

change.

In particular, the cohomology theory represented by E is SLc-oriented.

Proof. Note that (2) follows from (1). Let L = L3. It suffices to exhibit a canonical

equivalence ΣL⊗2

E � ΣOE. We have canonical equivalences

ΣL+LE � ΣO+L⊗2

E, ΣL+L∗
E � ΣO2

E, ΣL+L � ΣL+L∗
,

by [1, Corollary 3.9, Lemma 4.1]. Consequently, ΣO+L⊗2

E �ΣO2

E, whence the claim.

5. Euler classes for representable theories

5.1. Tautological Euler class

Let E ∈ SH(S) be a ring spectrum, set X ∈ SchS , and let V be a vector bundle on X.

Definition 5.1. We denote by e(V ) = e(V ,E) ∈ EV ∗
(X) the tautological Euler class of

V, defined as the composite

1X � Σ∞
+ V → Σ∞V/(V \0)� ΣV ∗

1
u−→ ΣV ∗

E|X ∈ SH(X).

Lemma 5.2. Define f :X ′ →X ∈ SchS. Then

f∗e(V ,E) = e(f∗V ,E) ∈ Ef∗V (X ′).
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Proof. This is immediate.

If E is strongly SL-oriented in the sense of §4.3.3, and hence SLc-oriented in the sense of

§3.2, then for any relatively oriented vector bundle V over a smooth and proper scheme

X/S we obtain an Euler number n(V ,ρ,E) ∈ E0(S) (see §3.4).

5.2. Integrally defined Euler numbers

Corollary 5.3 (Euler numbers are stable under base change). Let E be a strongly SL-
oriented cohomology theory and let V be vector bundle V over a smooth and proper scheme

X/S, relatively oriented by ρ. Let f : S′ → S be a morphism of schemes. Then

f∗n(V ,ρ,E) = n(f∗V ,f∗o,f∗E) ∈ E0(S′).

Proof. This holds because all our constructions are stable under base change–see in

particular Lemma 4.6(2) (for the compatibility of Gysin maps with pullback, which applies

since X → S is smooth), Propositions 4.19 and 4.13(3) (ensuring that the identification
EV ∗

(X)�ELπ (X) is compatible with base change), and Lemma 5.2 (for the compatibility

of Euler classes with base change).

Proposition 5.4. Let d be even or d = 1, X/Z[1/d] smooth and proper, and V/X a

relatively oriented vector bundle. Then for any field k with 2d ∈ k×, we have

n
(
Vk,ρ,HZ̃

)
∈ Z[〈−1〉,〈2〉, . . . ,〈d〉]⊂GW(k).

In fact, there is a formula

n
(
Vk,ρ,HZ̃

)
=

∑
a∈Z[1/d!]×

na〈a〉,

which holds over any such field, with the coefficients na ∈ Z independent of k (and zero
for all but finitely many a).

Remark 5.5. If d = 1, Proposition 5.4 relies on the novel results about Hermitian K -

theory of the integers from [18]. In the following proof, this is manifested in the dependence

of [9, Lemma 3.38(2)] on these results. We will later use Proposition 5.4 for the d= 1 case

of Theorem 5.11, whence this result is also using [18] in an essential way. For d≥ 2, the
proof is independent of [18].

Note that here the assumption that the rank of V equals the dimension of X is included

in the hypothesis that V/X is a relatively oriented vector bundle (see Definition 1.5).

Proof. Recall the very effective cover functor f̃0 and the truncation in the effective

homotopy t-structure πeff
0 , for example from [5, §§3,4]. We have a diagram of spectra

KOk ← f̃0KOk → πeff
0 KOk ← πeff

0 MSLk �HZ̃;

see [10, Example 16.34] for the last equivalence. The functors f̃0 and πeff
0 are lax monoidal

in an appropriate sense, so this is a diagram of ring spectra. Moreover, all of the ring

spectra are strongly SL-oriented (via the ring map MSLk → πeff
0 MSLk; see also Remark
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4.18). Finally, all the maps induce isomorphisms on[1,−], essentially by construction. It

follows that n(Vk,ρ,KO) = n
(
Vk,ρ,HZ̃

)
∈ GW(k). We may thus just as well prove the

result for n(Vk,ρ,KO) instead.

If d is even, then we have KO ∈ SH(Z[1/d]), and by Corollary 5.3 we see that
n(Vk,ρ,KO) ∈ im(GW(Z[1/d]) → GW(k)). The result thus follows from Lemma 5.6. If

d= 1, we use the SL-oriented ring spectrum KO′ ∈ SH(Z) from [9, §3.8.3]. We find that

n(Vk,ρ,KO) is the image of n(V ,ρ,KO′) ∈ KO′0(Z). This latter group is isomorphic to

GW(Z) by [9, Lemma 3.38(2)], whence the result.

Lemma 5.6. Let d be even or d = 1. As a ring, GW(Z[1/d]) is generated by 〈−1〉 and

〈p〉, for the primes p | d.

Proof. Let A = Z[1/d] and U = SpecA. If d = 1, this is well known [59, Theorem

II.4.3]. Hence from now on, 1/2 ∈ A. Using Lemma B.2, it suffices to prove the
analogous statement for W (A). Let I ⊂ W be the fundamental ideal and denote by

I∗ its powers; we view these as presheaves on U. Consider the commutative graded ring

k∗ =H∗
Nis

(
U,I∗/I∗+1

)
. Of course k0 =Z/2. It follows from [11, Corollary 4.9], [7, Theorem

2.1, Lemma 2.7], and [71, Theorem 3.9] that k1 � O×(U)/2 and kn � Z/2{(−1)n} for
n≥ 2. We have the classes 〈a〉−1 ∈ I(U) (for a ∈O×(U)) showing that H0

Nis(U,I
n)→ kn

is surjective. The short exact sequences

0→H0
Nis

(
U,In+1

)
→H0

Nis(U,I
n)→ kn

thus show that H0
Nis(U,W ) is generated by the 〈a〉 together with H0

Nis(U,I
n), for any n.

For n sufficiently large, H0
Nis(U,I

n)� 2nH0
ret(U,Z)� 2nZ [7, Proposition 2.3] is generated

by (〈−1〉 − 1)n; thus H0
Nis(U,W ) is generated by the 〈a〉. It remains to observe that

H0
Nis(U,W ) = W (U). This follows from the descent spectral sequence for computing

W (U) = [U,KW], using the fact that the motivic spectrum KW has π∗KW = aNisW

for ∗ ≡ 0 (mod 4) and π∗KW= 0.

Notation 5.7. Set A ↪→ R and let V be a relatively oriented, rank n vector bundle on

a smooth, proper n-dimensional scheme X over A. We have GW(R)� Z⊕Z〈−1〉. There
are thus unique integers nR,nC ∈ Z such that

n
(
VR,ρ,HZ̃

)
=

nC+nR

2
+

nC−nR

2
〈−1〉.

The integers nR and nC are the Euler numbers of the corresponding real and complex

topological vector bundles, respectively, at least when X is projective, justifying the
notation. To show this, consider the cycle class map CH∗(X) → H∗(X(C),Z) from the

Chow ring of a smooth C-scheme X to the singular cohomology of the complex manifold

X(C) [37, Chapter 19]. Furthermore, there are real cycle class maps from oriented Chow
rings of R-smooth schemes X to the singular cohomology of the real manifold X(R),

discussed in [43] (as well as more refined real cycle class maps defined in [13]): for a

smooth R-scheme X and a line bundle L→X, consider the real cycle class map

C̃H
∗
(X,L)∼=Hn

(
X,KMW

n

(
ωX/k

))∼=HZ̃Lπ (X)→H∗(X(C),Z(L))
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from the oriented Chow groups twisted by L to the singular homology of the associated
local system on X(R). We use results on the real cycle class map due to Hornbostel,

Wendt, Xie, and Zibrowius [43], including compatibility with push-forwards. Since they

only had need of this compatibility in the case of the push-forward by a closed immersion,
we first extend it slightly:

Lemma 5.8. Let π :X → Speck be the structure map of a smooth, projective scheme X

of dimension n over the real numbers R. Then the following square commutes:

HZ̃Lπ (X) −−−−→ Hn
(
X(R),Z

(
ωX/k

))
π∗

⏐⏐� ⏐⏐�
GW(R) −−−−→ H0(∗,Z),

where the vertical maps are the canonical push-forwards and the horizontal maps are the
real cycle class maps.

Proof. We have π the composition of a closed immersion i :X ↪→ Pn
k and the structure

map p : Pn
k → Speck. The algebraic push-forward π∗ is the composition p∗ ◦ i∗, and

the analogous statement holds for the topological push-forward by classical algebraic
topology. By [43, Theorem 4.7], the push-forward i∗ commutes with real realization. We

may thus reduce to the case where X = Pn
k is a projective n-space over a field k. In

this case, π∗ is an isomorphism by [33, Prop 6.3, Theorem 11.7]. Let s : SpecK → Pn
k

be the closed immersion given by the origin. Since πs = 1, and the real realization

maps commute with the algebraic and topological push-forwards of s by [43, Theorem

4.7], the real realization maps also commute with the algebraic and topological push-
forwards of π.

Proposition 5.9. Set A ↪→ R and let V be a relatively oriented, rank n vector bundle

on a smooth projective n-dimensional scheme X over A. Then nR and nC are the Euler

numbers of the corresponding real and complex topological vector bundles, respectively–that
is, nR is the topological Euler number of the relatively oriented topological Rn-bundle V (R)

associated to the real points of V on the real n-manifold X(R), and nC is the analogous

topological Euler number on V (C)→X(C).

Proof. By [43, Proposition 6.1], the A1-Euler class e
(
V ,HZ̃

)
of VR in the oriented Chow

group HZ̃V ∗
(XR) maps to the topological Euler class of V (R) under the real cycle class

map. By Lemma 5.8, it follows that the image of the Euler number n
(
V ,HZ̃

)
under

the real cycle class map is the topological Euler number of V (R). Under the canonical
isomorphism H0(∗,Z) ∼= Z, the real cycle class map GW(R) → H0(∗,Z) ∼= Z is the map

taking a bilinear form over R to its signature. It follows that nR is the topological Euler

number of V (R).

Let γ : C̃H
∗
(X, detV ∗)∼=HZ̃V ∗

(XR)→CH∗(X)→CH∗(XC)→H∗(X(C),Z) denote the

composition of the canonical map to Chow followed by the (usual) cycle class map, and
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we similarly have

γ : GW(R)∼= C̃H
0
(SpecR)→H0(SpecR(C),Z)∼=H0(∗,Z)∼= Z,

which sends the class of a bilinear form in GW(R) to its rank. The cycle class map is

compatible with Chern classes ([37, Proposition 19.1.2]), whence the image of e
(
V ,HZ̃

)
under γ is the topological Euler class of V (C). The cycle class map commutes with the

relevant push-forwards and pullbacks [37, Corollary 19.2, Example 19.2.1], so we have

that γ
(
n
(
V ,HZ̃

))
= nC is the topological Euler number of V (C).

Remark 5.10. If proper push-forwards in algebra and topology commute with real
realization, as predicted by [43, 4.5 Remark], then Proposition 5.9 holds more generally

for smooth, proper schemes. It seems that proving this would take us too far afield,

however. Alternatively, if V ⊗R admits a nondegenerate section, then the results of §8
(showing that the Euler number can be computed in terms of Scheja–Storch forms) imply

that Proposition 5.9 holds for smooth, proper schemes, arguing as in [72, Lemma 5].

Theorem 5.11. Suppose X is smooth and proper over Z[1/2]. Let V be a relatively

oriented vector bundle on X and let Vk denote the base change of V to k for any field k.
Then one of the following is true:

nGS(Vk,ρ) =
nC+nR

2
+

nC−nR

2
〈−1〉 (6)

or

nGS(Vk,ρ) =
nC+nR

2
+

nC−nR

2
〈−1〉+ 〈2〉−1, (7)

where the same formula holds for all fields k of characteristic 
= 2.

If instead X is smooth and proper over Z, then equation (6) holds for any field k

(including fields k of characteristic 2).

Recall that for the last claim regarding X smooth and proper over Z, we rely on [18]
(see Remark 5.5).

Proof. First assume that char(k) 
= 2. By Corollary 1.4, we have nGS(Vk,ρ) =

n
(
Vk,ρ,HZ̃

)
. If the base is Z, then we learn from Proposition 5.4 that there exist

a,b ∈ Z (independent of k !) such that

n
(
Vk,ρ,HZ̃

)
= a+ b〈−1〉.

In GW(Z[1/2]) ↪→GW(Q) we have the relations

〈−2〉= 1+ 〈−1〉−〈2〉 and 2〈2〉= 2

(the former because 〈a〉+ 〈−a〉 = 〈1〉+ 〈−1〉 for any a, and see, e.g., [6, Lemma 42] for

the latter). Hence if the base is Z[1/2], there exist a,b ∈ Z,c ∈ {0,1} (independent of the

choice of field k !) such that

n
(
Vk,ρ,HZ̃

)
= a+ b〈−1〉+ c〈2〉.
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If the base is Z, let us put c= 0. By construction we have

nR = signn
(
VR,ρ,HZ̃

)
= (a+ c)− b

and

nC = rankn
(
VC,ρ,HZ̃

)
= (a+ c)+ b,

which determines a+ c and b, so that there remain only at most two possible values for

n
(
Vk,ρ,HZ̃

)
.

Now suppose that char(k) = 2 (so that in particular the base is Z). Since 〈1〉 = 〈−1〉
over fields of characteristic 2, we need to show that nGS(Vk,ρ) = nC. We may as well
assume that k = F2. The rank induces an isomorphism GW(F2)∼= Z (see, e.g., Corollary

B.4). Considering the canonical maps

GW(F2)→KGL0(F2)←KGL0(Z)→KGL0(Z[1/2])←GW(Z[1/2]),

in which all but the right-most one are isomorphisms, we get the string of equalities

n(VF2
) = n(VF2

,KGL) = n(VZ,KGL) = n
(
VZ[1/2],KGL

)
= rk

(
n
(
VZ[1/2],KO

))
.

The result follows.

Remark 5.12. The difference of the two values given in Theorem 5.11 is 〈2〉−1, so the

two possibilities can be distinguished by the value of discn(Vk) in k∗/(k∗)2 for any field

k in which 2 is not a square, such as F3 or F5. Such discriminants can be evaluated by a

computer, as shown to the second author by Anton Leyton and Sabrina Pauli.

5.3. Refined Euler classes and numbers

Definition 5.13 (refined Euler class). Let E ∈ SH(S) be a homotopy ring spectrum, set

X ∈ SchS , and let V →X be a vector bundle and σ :X → V a section with zero scheme

Z = Z(σ). We denote by e(V ,σ) = e(V ,σ,E) ∈ EV ∗

Z (X) the class corresponding to the
composite

X/X \Z σ−→ V/V \0� ΣV ∗
1

u−→ ΣV ∗
E|X ∈ SH(X)

(see Example 4.2).

Remark 5.14. It is clear by construction that refined Euler classes are stable under base

change.

Remark 5.15. In [56, Definition 3.9] the authors define for an SL-oriented ring spectrum

E and a vector bundle p : V →X the canonical Thom class th(V ) ∈Ep∗V
0 (V ), which one

can check coincides with e(p∗V ,σ0), where σ0 is the tautological section of p∗V . Since

e(V ,σ) = σ∗e(p∗V ,σ0), we deduce that

e(V ,σ) = σ∗th(V ).

Lemma 5.16. The ‘forgetting support’ map EV ∗

Z (X)→ EV ∗
(X) sends e(V ,σ) to e(V ).
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Proof. This follows from the commutative diagram

V −−−−→ V/V \0 −−−−→ ΣV ∗
E.

σ

�⏐⏐ σ

�⏐⏐
X −−−−→ X/X \Z

Indeed the composite from the bottom left to the top right along the top left represents

e(V ), by Definition 5.1 (note that σ is a homotopy inverse to the projection V → X),

whereas the composite along the bottom right represents e(V ,σ) with support forgotten,
by Definition 5.13 and Example 4.2.

Definition 5.17 (refined Euler number). Suppose that π : X → S is smoothable lci,
Z → S is finite, and V is relatively oriented (so in particular, rk(V ) = rk(Lπ)). Suppose

further that E is SL-oriented. Then we put

n(V ,σ,ρ) = n(V ,σ,ρ,E) = π∗e(V ,σ) ∈ E0(S).

Corollary 5.18. Suppose that additionally π : X → S is smooth and proper. Then

n(V ,σ,ρ) = n(V ,ρ) ∈ E0(S).

Proof. Combine Lemma 5.16 and Example 4.7.

5.4. Refined Euler classes and the six-functors formalism

We now relate our Euler classes to the six-functors formalism. The following result shows

that our refined Euler class coincides with the one defined by Déglise, Jin, and Khan [26,

Remark 3.2.10]:

Proposition 5.19. Let E ∈ SH(S) be a homotopy ring spectrum, set X ∈ SmS, and let

V be a vector bundle over X and σ a section of V. Then

e(V ,σ,E) = σ∗z∗(1),

where z : X → V is the zero section and we use the canonical isomorphism Nz � V to

form the push-forward z∗.

Proof. Let p : V → X be the projection and s0 : V → p∗V the canonical section. Then

σ∗(p∗V ,σ0) = (V ,s), and hence, using Remark 5.14, it suffices to show that z∗(1) =
e(p∗V ,σ0,E). By [31, last sentence of §2.1.1], we know that

z∗ : E
0(X)� Ez∗p∗V ∗+Lz → Ep∗V ∗

X (V )

is the purity equivalence. In the case of the zero section of a vector bundle, it just takes
the tautological form

[1,E]X � [V/V \0,V/V \0∧E]X � [V/V \0,p∗V/p∗V \0∧EV ]V ,

and hence indeed sends 1 to e(p∗V ,σ0).

It follows from the foregoing that Euler classes of vector bundles are determined by

Euler classes of vector bundles with nondegenerate sections.
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Example 5.20. Let V →X be a vector bundle and σ a section. Suppose 1/2 ∈ S. The

Euler class of V in KW = KO
[
η−1
]
is given by the Koszul complex with its canonical

symmetric bilinear form. Indeed, we may assume that V has a regular section, in which
case this follows from the existence of the morphism of cohomology theories BLnaive →KW

and Proposition 2.11.

We deduce that Meta-Theorem 3.9 holds in this setting, even in a slightly stronger form
with supports:

Corollary 5.21. If σ is a nondegenerate section (i.e., locally given by a regular sequence),

then i∗(1) = e(V ,σ) ∈EV ∗

Z (X). In particular, forgetting supports (taking the image along

EV ∗

Z (X)→EV ∗
(X)) we have i∗(1) = e(V ) ∈EV ∗

(X)–that is, Meta-Theorem 3.9 holds in
this situation.

Proof. The second statement follows from the first and Lemma 5.16; hence we shall prove

the first. Consider the following cartesian square:

Z
i−−−−→ X

i

⏐⏐� z

⏐⏐�
X

σ−−−−→ V.

A well-known consequence of regularity of σ is that this square is tor-independent.8

Since i∗ is compatible with tor-independent base change (Lemma 4.6(2)), we deduce

from Proposition 5.19 that

e(V ,σ,E) = σ∗z∗(1) = i∗i
∗(1) = i∗(1).

This was to be shown.

It follows that, as explained in §3.4, both the ordinary and refined Euler numbers in

E -cohomology can be computed as sums of local indices. The remainder of this paper is
mainly concerned with determining these indices, for certain examples of E.

Remark 5.22. These results can be generalized slightly. Fix a scheme S and an SL-

oriented ring spectrum E ∈ SH(S).

(1) Let X/S be smoothable lci and V/X a vector bundle, relatively oriented in the

sense of Definition 1.5. If X/S is in addition proper, then we can transfer the Euler

class along the structure morphism (see §4.2.4) as before to obtain an Euler number

n(V ,ρ,E)∈E0(S). More generally, without assuming X/S proper, given a section σ
with zero scheme Z proper over S, we obtain the refined Euler number n(V ,σ,ρ,E).

(2) Let X/S be arbitrary, V a vector bundle, and σ a section of V with zero scheme

i : Z → X, and suppose that i is a regular immersion (but σ need not be a

8To see this, note that z∗OX can be resolved by the Koszul complex K(p∗V ,σ0) for the
tautological section σ0 of the pullback p∗V of V along p : V → X. It follows now from the
projection formula that z∗OX ⊗L σ∗OX � σ∗σ

∗z∗OX � σ∗σ
∗K(p∗V ,σ0) � σ∗K(V ,σ). Since

by definition σ locally corresponds to a regular sequence (and σ is affine), the claim follows.
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nondegenerate section–i.e., Z could have higher dimension than expected). In this

case there is an excess bundle E = cok(NZ/X → V |Z).9 A straightforward adaptation

of the proof of Corollary 5.21, using the excess intersection formula [26, Proposition
3.3.4], shows that

e(V ,σ,E) = i∗(e(E,E)).

(3) Putting everything together, let X/S be proper smoothable lci, V a relatively

oriented vector bundle, and σ a section with zero scheme Z regularly immersed
in X. Then

n(V ,ρ,E) =
∑
Z′⊂Z

n(E|Z′,ρ′,E) .

Here the sum is over clopen components Z ′ of Z, and ρ′ denotes the induced relative
orientation of E . Note that if σ is nondegenerate on Z ′–that is, E|Z′ = 0–then

e(E|Z′,E) = 1 ∈ E0(Z ′) and n(E|Z′,ρ′,E) = indZ′(σ) as before.

6. d-Dimensional planes on complete intersections in projective space

6.1. Some Euler numbers of symmetric powers on Grassmannians

Grassmannians and flag varieties are smooth and proper over Z, and the Euler classes of
many of their vector bundles have interesting interpretations in enumerative geometry.

Computations over R and C are available in the literature in connection with enumerative

results or accessible with localization techniques in equivariant cohomology [4]. The

integrality of Euler classes, as in Theorem 5.11 and Proposition 5.4, can leverage such
results to all fields. We do this now using the Z[1/2] case of Theorem 5.11 and a

characteristic class argument. This is independent of recent work [18] on Hermitian K -

theory over Z, and the characteristic class argument may be of some independent interest.
One can alternatively deduce Corollary 6.3 from the Z case of Theorem 5.11 and [18].

Remark 6.1. Suppose X is a smooth, proper Z-scheme with geometrically connected
fibers and PicX torsion free–for example, X a Grassmannian or projective space. For

a relatively orientable vector bundle V → X defined over Z, there are at most two

isomorphism classes of relative orientations. Namely, by assumption, there is a line

bundle L → X and an isomorphism ρ : L⊗2
∼=−→ ωX/Z ⊗ detV . Since PicX is torsion

free, any relative orientation is an isomorphism L⊗2
∼=−→ ωX/Z ⊗ detV , whence two

such differ by a global section of Hom
(
L⊗2,L⊗2

) ∼= O(X)∗. By hypothesis on X, the

fibers of the push-forward of OX all have rank 1, whence this push-forward is OZ and
O(X)∗ ∼= Z∗ = {±1}. Thus any relative orientation is isomorphic to ρ or −ρ. We then

have n(V ,ρ) = 〈−1〉n(V ,−ρ).

Consequently we suppress the choice of orientation and just write n(V ). Beware that

this does not mean that every vector bundle is relatively orientable, though!

9The map NZ/X → V |Z is always injective, and is an isomorphism precisely if the section is
nondegenerate.
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Remark 6.2. There is a canonical relative orientation for certain classes of vector
bundles on Grassmannians X =Gr(d,n): a point p of X with residue field L corresponds

to a dimension d+1 subspace of Ln+1. A choice of basis {e0, . . . ,en} of Ln+1 such that the

span of {e0, . . . ,ed} is p defines canonical local coordinates for an affine chart isomorphic
to A(n−d)(d+1) with p as the origin (see, e.g., [49, Definition 42]). This defines local

trivializations of the tautological and quotient bundles on X, and therefore also of their

tensor, symmetric, exterior powers, and their duals. A vector bundle V formed from such

operations on the tautological and quotient bundles and which is relatively orientable
on X inherits a canonical relative orientation ρ such that the local coordinates and

trivializations just described are compatible with ρ in the sense of [49, Definition 21].

This is described in [49, Proposition 45] in a special case, but the argument holds in
the stated generality. (One only needs the determinants of the clutching functions to be

squares, which follows from the relative orientability of V. Together with the explicit

coordinates, this gives the relative orienation.) This relative orientation has the property
that it is defined over Z, and for any very nondegenerate section σ, the data just described

give a system of coordinates in the sense of Definition 2.28.

Corollary 6.3. Let d≤ n be positive integers, and let X =Gr(d,n) be the Grassmannian

of d-planes Pd in Pn. Let V = ⊕j
i=1Sym

ni S∗, where S denotes the tautological bundle

on X and n1, . . . ,nj are positive integers such that rankV = dimX and V is relatively

orientable–that is, such that
∑j

i=1

(
ni+d

d

)
= (d+1)(n−d) and

∑j
i=1

ni

d+1

(
ni+d

d

)
+n+1 is

even. Then

n(V ) =
nC+nR

2
+

nC−nR

2
〈−1〉

over any ring in which 2 is invertible (where we interpret n(V ) as n(V ,KO)) or any field

(where we interpret n(V ) as nGS(V )).

Proof. Let O(1) denote the generator of PicX given by the pullback of the tautological

bundle under the Plücker embedding. Then ωX/Z
∼= O(−n− 1) and detSymni S∗ ∼=

O
(

ni

d+1

(
ni+d

d

))
. Thus V is relatively orientable as a bundle over Z, and Remarks 6.1

and 6.2 apply.
By the Z[1/2] case of Theorem 5.11, it is enough to show that the discriminant of

n
(
VFp

)
is trivial for some prime p congruent to 1 mod 4 and such that 2 is not a square

(see Remark 5.12). Let EM(W) denote the Eilenberg–MacLane spectrum of the η-inverted

Milnor–Witt sheaves KMW
∗
[
η−1
]
(compare [54, Remark 3.1]), and consider the associated

Euler class e(V ,EM(W)). Then n(V ,EM(W)) determines the Witt class of n(V ), and

hence the discriminant of n(V ) as well.

d is even: Suppose that d is even. Let π denote the structure map of X.
Since n(V ,EM(W)) = π∗

∏j
i=1 e(Sym

ni S∗,EM(W)), it is enough to show that

e(Symn1 S∗,EM(W)) = 0. By the Jouanolou device, we may assume that any vector

bundle is pulled back from the universal bundle. It is therefore enough to show the
same for the dual tautological bundle on the universal Grassmannian BGLd+1–that

is, let S∗
d+1 denote the dual of the tautological bundle on BGLd+1; we show that

e
(
Symn1 S∗

d+1,EM(W)
)
= 0. By Ananyevskiy’s splitting principle [2, Theorem 6] and
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its extension due to M. Levine [54, Theorem 4.1], we may show the vanishing of the

EM(W)-Euler class of Symn1 S∗
d+1 after pullback to

BSL2×BSL2×·· ·×BSL2×BSL1

via the map classifying the external Whitney sum of the tautological bundles. Here we use

the fact that d+1 is odd. This pullback of Symn1 S∗
d+1 contains the odd-rank summand

Symn1 S∗
1 , and therefore its EM(W)-Euler class is 0 as desired (see [2, Lemma 3] and [54,

Lemma 4.3]).

d is odd: Let k be a finite field whose order is prime to 2
∏j

i=1(ni)!, congruent to 1

mod 4 (so −1 is a square), and such that 2 is not a square. By Theorem 5.11, it suffices
to show that the discriminant of n(V ,Gr(d,n)) ∈W(k)∼=GW(k)/Zh is trivial (compare

Remark 5.12).

Define r in Z such that d = 2r+1. Let S∗
d+1 denote the dual tautological bundle on

BSLd+1 and let p1, . . . ,pr,pr+1 and e in EM(W)∗ (BSLd+1) denote its Pontryagin and
Euler classes, respectively. (Often one would let pi be the Pontryagin classes of the

tautological bundle, not its dual, but this is more convenient here.) By Lemma 6.5,

e
(
Symni S∗

d+1,EM(W)
)
is in the image of Z[p1, . . . ,pr,e]→EM(W)∗ (BSLd+1). (Note that

we have omitted pr+1, as pr+1 = e2 [2, Corollary 3].) Therefore e(V ,Gr(d,n)) can be

expressed as a polynomial with integer coefficients in the Pontryagin classes and Euler

class of the dual tautological bundle S∗ on Gr(d,n). By Lemma 6.7, it follows that
discn(V ,Gr(d,n)) = 1 in k∗/(k∗)2 as desired.

M. Levine [54] uses the normalizer N of the standard torus of SL2,

1→
{(

t 0

0 t−1

)}
→N →

{(
0 1

−1 0

)}
→ 1,

and bundles Õ(a) and Õ−(a) for a in Z corresponding respectively to the representations(
t 0

0 t−1

)
�→
(
ta 0

0 t−a

)
(

0 1

−1 0

)
�→
(

0 1

(−1)a 0

)
and (

t 0
0 t−1

)
�→
(
ta 0
0 t−a

)
(

0 1

−1 0

)
�→
(

0 −1

(−1)a+1 0

)
,

to compute characteristic classes, and we use his technique. We will use the notation

Õ(−)(a) to mean either Õ(a) or Õ−(a) when a claim holds for both possibilities.
We likewise use the EM(W)-Pontryagin (or Borel) classes of a vector bundle with

trivialized determinant of Panin and Walter [64]. For background on these classes, see [2,

Introduction, Section 3], [54, Section 3], or [74, Section 2].
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Let ei ∈EM(W)∗
(
Nr+1

)
denote the pullback of e(S∗

2,EM(W)) under the ith projection

BNr+1 →BN composed with the canonical map BN →BSL2.
Given vector bundles V and E on schemes X and Y, respectively, let V �E denote the

vector bundle on X×Y given by the tensor product of the pullbacks of V and E.

Lemma 6.4. Suppose r ≥ 1 and a1, . . . ,ar+1 are integers, and that our base
scheme is a field k with characteristic not dividing 2

∏r+1
i=1 ai. The Euler class

e
(
�r+1

i=1 Õ
(−)(ai),EM(W)

)
and EM(W)-Pontryagin classes pj

(
�r+1

i=1 Õ
(−)(ai),EM(W)

)
for j = 1, . . . ,2r are in the image of the map

Z
[
e21, . . . ,e

2
r+1

]
→ EM(W)∗

(
BNr+1

)
.

Proof. Proceed by induction on r. By Ananyevskiy’s splitting principle [2, Theorem 6],

there exists a map π : Y →BNr such that the pullback of �r+1
i=2 Õ

(−)(ai) is a direct sum
of rank 2 bundles Vi on Y,

π∗�r+1
i=2 Õ

(−)(ai)∼=⊕2r−1

i=1 Vi,

and the map

EM(W)∗(BN ×BNr)→ EM(W)∗(BN ×Y )

is injective. We pull back the vector bundle �r+1
i=1 Õ

(−)(ai) along the map 1BN ×π :BN×
Y →BNr+1 and obtain an isomorphism

(1BN ×π)∗�r+1
i=1 Õ

(−)(ai)∼=⊕2r−1

i=1

(
Õ(−)(a1)�Vi

)
. (8)

By [54, Theorem 7.1] and the equality e(S2,EM(W))2 = e(S∗
2,EM(W))

2
, which follows

from [55, Theorem 11.1],

e
(
Õ(−)(a1),EM(W)

)2
= a21e(S

∗
2,EM(W))

2
. (9)

Since Õ(−)(a1) and Vi both have rank 2, [54, Proposition 9.1] and equation (9) imply
that

e
(
Õ(−)(a1)�Vi,EM(W)

)
= a21e

2
1− e(Vi,EM(W))2 (10)

and

p1

(
Õ(−)(a1)�Vi,EM(W)

)
= 2
(
a21e

2
1+ e(Vi,EM(W))2

)
. (11)

This establishes the claim when r = 1, because p2 = e2.

We now assume the claim holds for r−1. By formula (8),

e
(
(1BN ×π)∗�r+1

i=1 Õ
(−)(ai),EM(W)

)
=

2r−1∏
i=1

e
(
Õ(−)(a1)�Vi,EM(W)

)
(12)
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and

p
(
(1BN ×π)∗�r+1

i=1 Õ
(−)(ai),EM(W)

)
=

2r−1∏
i=1

p
(
Õ(−)(a1)�Vi,EM(W)

)
, (13)

where p denotes the total Pontryagin class.
Combining equations (10) and (12) shows that

e
(
(1BN ×π)∗�r+1

i=1 Õ
(−)(ai),EM(W)

)
=

2r−1∑
i=0

(a1e1)
2iσ2r−1−i

(
e(V1,EM(W))2, . . . ,e(V2r−1,EM(W))2

)
,

where σi denotes the ith elementary symmetric function. Since the Vi have rank 2,

e(V1,EM(W))2 = p1(V1,EM(W)),

and the Whitney sum formula for Pontryagin classes implies that

pi

(
⊕2r−1

j=1 Vi,EM(W)
)
= σi

(
e(V1,EM(W))2, . . . ,e(V2r−1,EM(W))

2
)
.

Since ⊕2r−1

j=1 Vi
∼= π∗�r+1

i=2 Õ
(−)(ai), it follows by induction that e

(
�r+1

i=1 Õ
(−)(ai),EM(W)

)
is in the image of Z

[
e21, . . . ,e

2
r+1

]
.

Combining equations (10), (11), and (13), we have

p
(
(1BN ×π)∗�r+1

i=1 Õ
(−)(ai),EM(W)

)
=

2r−1∏
i=1

(
1+2

(
a21e

2
1+ e(Vi,EM(W))2

)
+
(
a21e

2
1− e(Vi,EM(W))2

)2)
.

Because the elementary symmetric polynomials generate all symmetric polynomials, it

follows that p
(
(1BN ×π)∗�r+1

i=1 Õ
(−)(ai),EM(W)

)
is in the image of

Z

[
e21,σi

(
e(V1,EM(W))2, . . . ,e(V2r−1,EM(W))

2
)
: i= 1, . . . ,2r−1

]
.

As before, these elementary symmetric functions are the Pontryagin classes of the pullback

of �r+1
i=2 Õ

(−)(ai), finishing the proof by induction.

Let p1, . . . ,pr and e in EM(W)∗ (BSLd+1) denote the Pontryagin and Euler classes,

respectively, of the dual tautological bundle S∗
d+1 on BSLd+1.

Lemma 6.5. Let d = 2r+1 be an odd integer and let n be a positive integer. Let k be

a field of characteristic not dividing 2n!. Then e
(
SymnS∗

d+1,EM(W)
)
is in the image of

Z[p1, . . . ,pr,e]→ EM(W)∗ (BSLd+1).

Proof. Let f denote the composite

BNr+1 →BSLr+1
2 →BSLd+1
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of the (r+1)-fold product of the canonical map BN → BSL2 with the map BSLr+1
2 →

BSLd+1 classifying the external direct sum ⊕r+1
i=1S2. There is an isomorphism

f∗SymnS∗
d+1

∼=
⊕

(a1,...,ar+1)∈Z
r+1
≥0∑

i ai=n

�r
i=1Sym

ai Õ(1). (14)

By inspection, the symmetric powers of the tautological bundle Õ(1) on BN split into a

sum of bundles of rank ≤ 2 (compare [54, p. 38]):

Syma Õ(1)∼=

⎧⎪⎪⎨⎪⎪⎩
⊕b

l=0Õ
(−1)l(i−2l) when a= 2b+1 is odd,

⊕b−1
l=0 Õ

(−1)l(i−2l)⊕O when a= 2b is even and b is even,

⊕b−1
l=0 Õ

(−1)l(i−2l)⊕γ when a= 2b is even and b is odd,

(15)

where γ is the line bundle corresponding to the representation N → GL1 sending the

torus to 1 and

(
0 1

−1 0

)
to −1.

Combining formulas (14) and (15), we can decompose f∗SymnS∗
d+1 into a direct

sum with summands which have various numbers of factors of rank 2. Separate these

summands into those with at least two rank 2 factors and those with only one rank 2

factor, if any of the latter sort appear. (This occurs when we can take all but one ai to be
even.) The direct sum of the latter such terms can alternatively be expressed as a sum of

pullbacks of Symai Õ(1) under some projection Nr+1 →N tensored with some γs pulled

back from other projections. We may ignore the factors of γ by [55, §10 p. 78 (2)], because
e(γ) = 0, as γ is a bundle of odd rank. Since Õ has rank 2 and the characteristic of k

does not divide 2ai, we may apply [54, Theorem 8.1] and conclude that e
(
Symai Õ(1)

)
is an integer multiple of a power of e

(
Õ(1)

)
. Since the summands are symmetric under

the permutation action of the symmetric group on r+1 letters on BNr+1, it follows that

the Euler class of these summands is an integer multiple of a power of e.

We now consider the Euler class of the rest of the summands. It suffices to show that

the Euler class ε1 of the summands with at least two rank 2 factors is also in the image
of Z[p1, . . . ,pr,e]. We may again ignore the factors of γ, as these do not change the Euler

class. By Lemma 6.4, ε1 is the image of an element of Z
[
e21, . . . ,e

2
r+1

]
. Moreover, because

each tuple (a1, . . . ,ar+1) of the direct sum occurs in every permutation, we may choose
an element of Z

[
e21, . . . ,e

2
r+1

]
which is invariant under the permutation action of the

symmetric group on r+1 letters and which maps to ε1. Thus, ε1 is in the image of

the map

Z
[
σ1

(
e21, . . . ,e

2
r+1

)
, . . . ,σr+1

(
e21, . . . ,e

2
r+1

)]
→ EM(W)∗

(
BNr+1

)
,

where σi denotes the ith elementary symmetric polynomial. Since σi

((
e21, . . . ,e

2
r+1

))
is

the pullback to BN of pi
(
S∗
d+1 →BSLd+1,EM(W)

)
, we have that ε1 is in the image of

Z[p1, . . . ,pr,e], as desired.
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The Pontryagin and Euler classes of S∗
d+1 → Gr(d,n) are pulled back from those of

S∗
d+1 → BGLd+1. The EM(W)∗-cohomology and twisted cohomology of BGLd+1 inject

into that of BSLd+1,

EM(W)∗ (BGLd+1)⊕EM(W)∗ (BGLd+1, detS)⊆ EM(W)∗ (BSLd+1),

by [54, Theorem 4.1]. Under this injection, the Pontrygin and Euler classes of S∗
d+1 →

BGLd+1 are sent to p1, . . . ,pr,pr+1 and to e, respectively, so we will let pi and e denote

the corresponding characteristic classes of S∗ → BGLd+1 and S∗
d+1 → Gr(d,n) as well.

Let π : Gr(d,n)→ Speck denote the structure map and

π∗ : EM(W)∗
(
Gr(d,n),

(
detS∗

d+1

)⊗−(n+1)
)
→W(k)

the induced push-forward on EM(W)∗-cohomology.

Lemma 6.6. Let d= 2r+1 be odd. For any nonnegative integers a1, . . . ,ar+1,b such that∑
(4i)ai + b(d+1) = (d+1)(n− d) and b ≡ n+1 mod 2, the monomial eb

∏r+1
i=1 p

ai
i in

EM(W)∗
(
Gr(d,n),

(
detS∗

d+1

)⊗b
)
is in the image of Z[e]–or in other words, there exists

c in Z such that eb
∏r+1

i=1 p
ai
i = cen−d.

Proof. Let Q denote the quotient bundle on Gr(d,n), defined by the short exact sequence

0→Sd+1 →On+1 →Q→ 0.

In particular, the rank of Q is n− d. The nonvanishing Pontryagin classes of Sd+1 are

p1, . . . ,pr,pr+1, with e2 = pr+1. Define s so that n−d= 2s or n−d= 2s+1, depending on
whether n−d is odd or even. Let p⊥1 , . . . ,p

⊥
s denote the nonvanishing Pontryagin classes

of the dual to the quotient bundle Q∗ on Gr(d,n). By [2, Lemma 15],

(1+p1+ · · ·+pr+1)
(
1+p⊥1 + · · ·+p⊥s

)
= 1

in W ∗(Gr(d,n)). Setting the notation A for the ring

A= Z
[
p1, . . . ,pr,pr+1,p

⊥
1 , . . . ,p

⊥
s

]
/
〈
(1+p1+ · · ·+pr+pr+1)

(
1+p⊥1 + · · ·+p⊥s

)
−1
〉
,

we therefore have a homomorphism τ : A → EM(W)∗(Gr(d,n). There is a canonical

isomorphism

H∗(CGr(r,r+s);Z)∼=A,

where H∗(CGr(r,r+s);Z) denotes the singular cohomology of the C-manifold associated

to the C-points of the Grassmannian Gr(r,r+s), sending the ith Chern class of the dual
tautological bundle to pi. The top-dimensional singular cohomology H(r+1)s(CGr(r,r+

s);Z) is isomorphic to Z by Poincaré duality. Under our chosen isomorphism, the

monomial psr+1 corresponds to the top Chern class c(r+1)s

(
S⊕s
r+1 → CGr(r,r+s)

)
of the

direct sum of s-copies of the dual tautological bundle, which is a generator (with the usual

C-orientations, c(r+1)s

(
S⊕s
r+1 → CGr(r,r+s)

)
counts the number of linear subspaces of

dimension r in a complete intersection of s linear hypersurfaces in CPr+s, and this number

is 1; compare Remark 6.9 and Lemma 6.7). Therefore, for any monomial
∏r+1

i=1 p
a′
i

i with
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i=1 ia

′
i = (r+1)s, there is an integer c′ such that

r+1∏
i=1

p
a′
i

i = c′psr+1 (16)

in H∗(CGr(r,r+s);Z).

Since d is odd, n+1≡ n−d mod 2, and therefore b≡ n−d mod 2. Note that if n−d

is odd, b≥ 0. We may then define a nonnegative integer b′ by the rule

b′ =

{
b/2 if n−d≡ 0 mod 2,

(b−1)/2 if n−d≡ 1 mod 2.

With this notation, n−d− b= 2(s− b′). Thus∑
(4i)ai = (d+1)(n−d− b) = (d+1)2(s− b′) = 4(r+1)(s− b′),

whence ∑
iai = (r+1)(s− b′).

By equation (16), there is an integer c such that we have the equality

pb
′

r+1

r+1∏
i=1

pai
i = cpsr+1

in H∗(CGr(r,r+s);Z). Applying τ , we see that

e2b
′
r+1∏
i=1

pai
i = c′e2s,

which implies the claim, either immediately if n−d is even or by multiplying by e if n−d

is odd.

Lemma 6.7. Let d be odd. Suppose k is a finite field such that −1 is a square. For

any nonnegative integers a1, . . . ,ar+1,b such that b(d+1)+
∑r+1

i=1 4iai = (d+1)(n−d) and

b≡ n+1 mod 2, the push-forward π∗
(
eb
∏r+1

i=1 p
ai
i

)
has trivial discriminant.

Remark 6.8. The condition b ≡ n + 1 mod 2 ensures that eb
∏r+1

i=1 p
ai
i lies in

the appropriate twist of the Witt cohomology of Gr(d,n)–that is, eb
∏r+1

i=1 p
ai
i is in

EM(W)∗
(
Gr(d,n),ωGr(d,n)/k

)
as opposed to EM(W)∗(Gr(d,n)), so that we may apply

π∗. The condition on the sum b(d+1)+
∑r+1

i=1 4iai ensures that eb
∏r+1

i=1 p
ai
i lies in the

(d+1)(n−d)-degree EM(W)∗-cohomology of Gr(d,n), so the codomain of π∗ is W(k).

Proof. By Lemma 6.6, it suffices to show that discπ∗e
n−d = 1. We may identify π∗e

n−d

with the Euler number of ⊕n−d
j=1 S∗:

π∗e
n−d = n

(
⊕n−d

j=1 S∗,EM(W)
)
.
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Let x0, . . . ,xn be coordinates on a projective space Pn
k = Projk[x0, . . . ,xn]. The Euler

number n
(
⊕n−d

j=1 S∗,EM(W)
)
can be calculated with the section σ =⊕n

i=d+1xi as in §2.4.
There is an analogous section σZ =⊕n

i=d+1xi of ⊕n−d
j=1 S∗

Z
→Gr(d,n)Z defined over Z. The

zero locus σZ = 0 is the single Z-point of the Grassmannian associated to the linear

subspace of Pn
k given by xd+1 = xd+2 = · · ·= xn = 0.

The vanishing locus of σZ is the origin of the affine space A
(d+1)(n−d)
Z

=

SpecZ [aij : i= 0, . . . ,d,j = d+1, . . . ,n] ↪→ Gr(d,n) whose point (aij) corresponds to the

row space of ⎛⎜⎜⎜⎝
1 0 · · · 0 a0,d+1 a0,d+2 · · · a0,n
0 1 · · · 0 a1,d+1 a1,d+2 · · · a1,n
...

...
. . .

...
...

...
. . .

...

0 0 · · · 1 ad,d+1 ad,d+2 · · · ad,n

⎞⎟⎟⎟⎠ . (17)

For a description of these coordinates on this open affine of the Grassmannian, see, for

example, [28, Section 3.2]. Let e0, . . . ,en denote the standard basis of the free module
of rank n+1. Let ẽ0, . . . ,ẽn denote the basis consisting of the row space of matrix (17)

followed by ed+1,ed+1, . . . ,en. Let x̃0, . . . ,x̃n denote the dual basis to ẽ0, . . . ,ẽn. Over this

A
(d+1)(n−d)
Z

, the vector bundle S∗
Z
is trivialized by the basis of sections {x̃0, . . . ,x̃d}. Then

we may interpret σ as a function A
(d+1)(n−d)
Z

→ A
(d+1)(n−d)
Z

. Namely,

xu ((aij)) =

d∑
l=0

(xu (aij))(ẽl) x̃l

for

u= d+1, . . . ,n.

As a subscheme, σZ = 0 is therefore the zero locus of

(xu (aij))(ẽl) = al,u

for l = 0, . . . ,d and u= d+1, . . . ,n. Thus the subscheme of Gr(d,n)Z given by {σZ = 0} is

a section of the structure map Gr(d,n)Z → SpecZ. In particular, it is finite and étale of

rank 1. It follows that the Jacobian of σ,

Jacσ ∈Hom
(
detT Gr(d,n)|{σZ=0}, det⊕n−d

j=1 S∗
Z|{σZ=0}

)
(which is described further at the beginning of §6.2), is nowhere vanishing. Thus under

the relative orientation

Hom
(
detT Gr(d,n), det⊕n−d

j=1 S∗
Z

)∼= L⊗2,

we have that Jacσ is a nowhere-vanishing section of the restriction of L⊗2. Thus 〈Jacσk〉
is either 〈−1〉 or 〈1〉; but 〈−1〉 = 1 by assumption. Since n

(
⊕n−d

j=1 S∗
k,EM(W)

)
= 〈Jacσk〉

(compare Example 2.21), this proves the claim.
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6.2. An arithmetic count of the d-planes on a complete intersection in

projective space

A complete intersection of hypersurfaces

X = {F1 = F2 = · · ·= Fj = 0} ⊂ Pn

with Fi of degree ni gives rise to a section σ of V =⊕j
i=1Sym

ni S∗, defined by σ(PL) =

⊕j
i=1Fi|L, where L is any (d+1)-dimensional linear subspace of An+1 containing the origin

and PL denotes the corresponding point of Gr(d,n). The zeros of σ are then precisely the

d -planes in X (see, e.g., [25]). By [25, Théorèye 2.1], the closed subscheme {σ = 0} of

Gr(d,n) is smooth for general X and either of the expected dimension (d+1)(n− d)−
rankV = (d+1)(n− d)−

∑j
i=1

(
ni+d

d

)
or empty, with the empty case occurring exactly

when one or both of (d+1)(n− d)− rankV and n− 2r− j is less than 0. In particular,

when (d+1)(n−d)− rankV = 0, the zeros of σ are isolated and étale over k for a general
complete intersection X. The canonical relative orientation (Remark 6.2) of V determines

an isomorphism Hom(detT Gr(d,n), detV ) ∼= L⊗2 for a line bundle L on Gr(d,n). The

Jacobian determinant Jacσ at a zero p of σ is an element of the fiber of the vector

bundle Hom(detT Gr(d,n), detV ) at p. Choosing any local trivialization of L, we have a
well-defined element JacΣ(p) in k(p)/(k(p)∗)2, which can also be computed by choosing

a local trivialization of V and local coordinates of Gr(d,n) compatible with the relative

orientation and computing JacΣ(p) = det
(

∂σk

∂xl

)
.

Corollary 6.9. Let X = {F1 = F2 = · · ·= Fj = 0}⊂Pn be a general complete intersection

of hypersurfaces Fi = 0 of degree ni in Pn
k a projective space over a field k. Suppose that∑j

i=1

(
ni+d

d

)
= (d+1)(n−d) and

∑j
i=1

ni

d+1

(
ni+d

d

)
+n+1 is even. Then∑

d-planes PL in X

trk(PL)/k〈Jacσ(PL)〉=
nC+nR

2
+

nC+nR

2
〈−1〉,

where

• k(PL) denotes the residue field of PL viewed as a point on the Grassmannian;
• nC (resp., nR) is the topological Euler number of the complex (resp., real) vector

bundle associated to the algebraic vector bundle V = ⊕j
i=1Sym

ni S∗ given the
canonical relative orientation (Remark 6.2); and

• Jacσ is the Jacobian determinant.

Proof. By [25, Théorème 2.1], the zeros of σ are isolated and étale over k. It follows
[49, p.18, Proposition 34] that for a zero of σ corresponding to the d -plane PL, the

local index is computed as indPH
PL σ = trk(L)/k〈Jacσ(PL)〉 (see §2.4 for the definition of

the notation indPH). Thus nPH(V ,σ) =
∑

d-planes PL in X trk(L)/k〈Jacσ(PL)〉 by Definition

2.24. Corollary 6.3 computes nPH(V ,σ). Proposition 5.9 shows that nR and nC are the
claimed topological Euler numbers.

Remark 6.10. Note that Corollary 6.9 is a weighted count of the dimension d

hyperplanes on the complete intersection X, depending only on n1, . . . ,nj and not on

the choice of polynomials F1, . . . ,Fj as long as these are chosen generally.
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Example 6.11. Examples where Corollary 6.9 applies include lines on a degree 2n−
1 hypersurface of dimension n, 3-planes on a degree d hypersurface of dimension 2+
1
3

(
d+3
3

)
when this is an integer, and lines on a complete intersection of two degree n−2

polynomials in Pn for n odd.

Matthias Wendt’s oriented Schubert calculus shows that enriched intersections of

Schubert varieties are determined by the R and C realizations in the same manner [74,

Theorem 8.6], as well as giving enumerative applications [74, Section 9].
For d = j = 1 and n1 = 3, Corollary 6.3 is work of Kass and the second author [49]

over a general field. For d = 1 and general j and ni, it is work of M. Levine [54] over a

perfect field of characteristic either 0 or prime to 2 and the odd nis. Our result eliminates

the assumption on the characteristic and generalizes to arbitrary relatively orientable
d,n,n1, . . . ,nj .

In order to obtain an enumerative theorem whose statement is independent of

A1-homotopy theory, one needs an arithmetic-geometric interpretation of the local
indices:

Question 6.12. Can the local indices indPH
PL σ= trk(L)/k〈Jacσ(PL)〉 be expressed in terms

of the arithmetic geometry of the d-plane PL on X?

Such expressions are available over R for d= j=1 [36], and over a field k of characteristic

not 2 for lines on a cubic surface [49], lines on a quintic 3-fold [66], and points on a

complete intersection of hypersurfaces [58]. S. Pauli has interesting observations on such
results for lines on the complete intersection of two cubics in P5: dropping the assumption

that the zeros of σ are isolated, she computes contributions from infinite families of lines

on a quintic 3-fold in some cases [66]. An alternative point of view in terms of (S)pin

structures for d= j = 1 and n1 = 5, as well as computations of the real Euler number, is
discussed in [70, Example 1.6, Theorem 8.8].

Example 6.13. The computations of the Euler classes of C and R-points in Finashin

and Kharlamov’s paper [35, p. 190] imply the following enriched counts of 3-planes on
hypersurfaces over any field k :

We have n
(
Sym3S∗ →Gr(3,8)

)
= 160,839〈1〉 + 160,650〈−1〉 corresponding to an

enriched count of 3-planes in a 7-dimensional cubic hypersurface. Namely, for a general
degree 3 polynomial F in nine variables, the corresponding cubic hypersurface X ⊂ P8

contains finitely many 3-planes, as already discussed, and∑
3-planes P⊂X

trk(L)/k〈JacσF (P )〉= 160,839〈1〉+160,650〈−1〉,

where σF is the section of Sym3S∗ defined by σF [P ] = F |P .
Similarly, n

(
Sym5S∗ →Gr(3,17)

)
=

32,063,862,647,475,902,965,720,976,420,325〈1〉
+32,063,862,647,475,902,965,683,320,692,800〈−1〉
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corresponds to an enriched count of 3-planes in a 16-dimensional degree 5
hypersurface.

7. Indices of sections of vector bundles and A1-degrees

7.1. A1-degrees

Recall the following:

Definition 7.1 (local A1-degree). Let S be a scheme, set X ∈ SchS , and let F :X →An
S

be a morphism. We say that F has an isolated zero at Z ⊂X if Z is a clopen subscheme
of Z(F ) such that Z/S is finite.

Now let X ⊂An
S be open and suppose that F has an isolated zero at Z ⊂X. We define

the local A1 -degree of F at Z,

degZ(F ) ∈
[
Pn/Pn−1,Pn/Pn−1

]
SH(S)

� [1,1]SH(S),

as the morphism corresponding to the unstable map

Pn/Pn−1 → Pn/Pn \Z �X/X \Z ↪→X/X \Z(F )
F−→ An/An \0� Pn/Pn−1.

Here we use the assumption that Z(F ) � Z �Z ′, and hence X/X \Z(F ) � X/X \Z �
X/X \Z ′.

Example 7.2. If S = Spec(k) is the spectrum of a field, then an isolated zero z ∈ An
k of

F : An
k → An

k in the usual sense is also an isolated zero {z} ⊂ An
k in the foregoing sense,

and degz(F ) ∈GW(k) is the usual local A1-degree of [48, Definition 11].

Lemma 7.3. Set X,Y ∈ SmS and let (Z,U,φ,g) be an equationally framed correspondence

from X to Y [30, Definition 2.1.2]; in other words, Z ⊂ An
X , U is an étale neighborhood

of Z, g : U → Y , and φ : U → An is a framing of Z. Then the following two morphisms

are stably homotopic:

Tn∧X+ �
(
P1
)∧n∧X+ →

(
P1
)×n

X
/
(
P1
)×n

X
\Z � U/U \Z φ,g−−→ Tn∧Y+

Tn∧X+ � Pn/Pn−1∧X+ → Pn
X/Pn

X \Z � U/U \Z φ,g−−→ Tn∧Y+.

Proof. For E ∈ SH(S), precomposition with the first morphism (desuspended by Tn)

induces a map E(Y )→E(X) known as the Voevodsky transfer. Precomposition with the

second map induces an ‘alternative Veovedsky transfer’. It suffices (by the Yoneda lemma)
to show that these transfer maps have the same effect (even just on π0) for every E. In

[31, Theorem 3.2.11], it is shown that the Voevodsky transfer coincides with a further

construction known as the fundamental transfer. In that proof, all occurrences of
(
P1
)∧n

can be replaced by Pn/Pn−1; one deduces that the alternative Voevodsky transfer also

coincides with the fundamental transfer.

The result follows.
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Corollary 7.4. Set U ⊂ An
S and let F : U → An have an isolated zero along Z ⊂ U .

ThendegZ(F ) ∈ [1,1]S is the same as the endomorphism given by the equationally framed

correspondence defined by F.

Proof. By definition, degZ(F ) is given by the second morphism of Lemma 7.3, whereas

the equationally framed correspondence is given by the first morphism. The result
follows.

Recall also the following:

Proposition 7.5 ([31]). Let α : S
�,τ←−− Z → S be a tangentially framed correspondence

from S to S over S. Then the trivialization τ of LZ/S induces a transfer map

�∗ : [1,1]Z → [1,1]S,

where � : Z → S is the projection. The endomorphism of 1S corresponding to α is given

by �∗(1).

7.2. Main result

Let X/S be smooth and V/X a relatively oriented vector bundle with very nondegenerate

section σ and zero scheme Z (which is thus finite over S ). Let Z ′ ⊂ Z be a clopen

component and suppose there are coordinates (ψ,ϕ,σ′) for (V ,X,σ,ρ,Z ′) as in Definition
2.28. Then σ′ = (F1, . . . ,Fd) determines a function F : Ad

S → Ad
S , and ϕ(Z ′) is an isolated

zero of F.

Theorem 7.6. Assumptions and notations are as before. Let E ∈ SH(S) be an SL-

oriented ring spectrum with unit mapu : 1→ E. Then

indZ(V ,σ,ρ,E) = u∗degϕ(Z′)(F ) ∈ E0(S).

Proof. By Corollary 7.4, Proposition 7.5, and §4.2.2, we have u∗degϕ(Z′)(F ) =
indZ(σ

′,o′,E), where o′ is the canonical relative orientation of On
An/An. The result

now follows from Proposition 3.13.

Example 7.7. Suppose S = Spec(k) is a field. Then for well-chosen E (e.g., E =KO or

E =HZ̃), the unit map

u∗ : GW(k)� [1,1]SH(k) → E0(k)

is an isomorphism. We deduce that indz(V ,σ,ρ,E) is essentially the same as degϕ(z)(F ).

8. Euler numbers in KO-theory and applications

As explained in §§3.3 and 5.3, we have the motivic ring spectrum KO related to Hermitian

K -theory made homotopy invariant, and associated theories of Euler classes and Euler
numbers. Using (for example) the construction in Appendix A, we can define KO even

if 1/2 
∈ S. There is still a map GW(S) → KO(S), but we do not know if this is an

equivalence, even if S is regular (although we do know this if S is regular and 1/2 ∈ S).
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Example 8.1. Let V →X be a vector bundle and σ a section. Suppose 1/2 ∈ S. Then

the refined Euler class of V in KO-theory is given by e(V ,σ,KO) = [K(V ,σ)], the class of

the Koszul complex. Indeed, via Remark 5.15 it suffices to show the analogous result for
Thom classes, which is stated at [56, p. 34].

Recall that for any lci morphism f we put ω̃f = d̃etLf and ωf = detLf . We show in
Proposition B.1 that for f :X → Y an lci morphism, we have f !(O)� ω̃f . Via Proposition

B.1, coherent duality (i.e., the adjunction f∗ � f !) thus supplies us with a canonical trace

map

ηf : f∗ω̃f � f∗f
!OY →OY ∈D(Y ),

provided that f is also proper. We expect that this can be used to build a map

f̂∗ : GW
(
X,f !L

)
→GW(Y ,L),

and moreover that the following diagram commutes:

GW
(
X,f !L

)
−−−−→ KO

(
X,f !L

)
f̂∗

⏐⏐� f∗

⏐⏐�
GW(Y ,L) −−−−→ KO(Y ,L).

If we assume that 1/2 ∈ S and replace GW by W and KO by KW, then maps f̂∗ can

be defined and studied using the ideas from §2.2 (see also [22]). Levine and Raksit [56]
show that the (modified) diagram commutes, provided that X and Y are smooth over a

common base with 1/2 ∈ S.

If instead we assume that f is finite syntomic, then the analogous result is proved (for

GW→KO and without 1/2 ∈ S) in Corollary A.4. This is the only case we shall use in
the rest of this section. Recall the construction of the Scheja–Storch form 〈−|−〉SS from

Definition 2.20.

Corollary 8.2. Set X ∈ SmS, let V/X be a relatively oriented vector bundle with a

very nondegenerate section σ, and let Z be a clopen component of the zero scheme Z(σ).

Suppose there exist coordinates (ψ,ϕ,σ′) around Z, as in Definition 2.28. Then

indZ(σ,ρ,KO) =
[
〈−|−〉SS(ϕ(U),σ′,S)

]
∈KO0(S).

Proof. By Proposition 3.13, we may assume that ψ = id and so on; so in particular,

X ⊂ An
S . The result now follows from the identification of the transfers in Corollary A.4

(telling us that the index is given by the trace form from coherent duality) and Theorem

2.18 (identifying the coherent duality form with the Scheja–Storch form).

Corollary 8.3. Let S be regular semilocal scheme over a field k of characteristic 
= 2.

(1) Let � : S′ → S be a finite syntomic morphism and τ a trivialization of L� ∈K(S′).
Then the associated endomorphism of the sphere spectrum over S is given under

the isomorphism[1,1]S �GW (S) of [10, Theorem 10.12] by the symmetric bilinear
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form

�∗ (OS′)⊗�∗ (OS′)→�∗ (OS′)
det(τ)
� �∗

(
ωS′/S

) η�−−→OS .

(2) Let U ⊂ An
S be open and define F : U → An to have an isolated zero along Z ⊂ U .

Then

degZ(F ) =
[
〈−|−〉SS(U,F,S)

]
∈ [1,1]S �GW (S).

Proof. The proof of [10, Theorem 10.12] shows that the unit mapu : 1 → KO induces

the isomorphism[1,1]S � GW (S). (1) is an immediate consequence of Proposition 7.5,
Lemma 4.6(1), and Corollary A.4. Via Corollary 7.4 and Theorem 2.18, (2) is a special

case of (1). This concludes the proof.

Corollary 8.4. Let X be essentially smooth over a field k of characteristic 
= 2. Let

� : X ′ → X be a finite syntomic morphism, and suppose an orientation ωX′/X
ρ� L⊗2.

Consider the induced transfer

�∗ : HZ̃
0(X ′)

ρ�HZ̃0
(
X ′,ωX′/X

)
→HZ̃0(X)�GW (X).

Then �∗(1) is given by the image in GW (X) of the symmetric bilinear form on

�∗(L)⊗�∗(L)→�∗
(
L⊗2
) ρ��∗

(
ωX′/X

) η�−−→OX .

Proof. Using the unramifiedness of GW [60, Lemma 6.4.4], we may assume that X is

the spectrum of a field. Then X ′ is semilocal, so L � O and we obtain (up to choosing

such an isomorphism) ωX′/X
ρ′

�O. Since LX′/X has constant rank (namely 0), it follows
from [17, Lemma 1.4.4] that LX′/X � 0 ∈ K(X ′). The set of homotopy classes of such

trivializations is given by K1(X
′), which maps surjectively (via the determinant) onto

O×(X ′). It follows that there exists a trivialization τ : 0 � LX′/X ∈ K(X ′) such that
det(τ) = ρ′. Hence we have a commutative diagram

�∗(L)⊗�∗(L) −−−−→ �∗
(
L⊗2
) ρ−−−−→ �∗

(
ωX′/X

) η�−−−−→ O∥∥∥ ∥∥∥ ∥∥∥ ∥∥∥
�∗(O)⊗�∗(O) −−−−→ �∗(O)

detτ−−−−→ �∗
(
ωX′/X

) η�−−−−→ O.

It follows from Corollary 8.3 that the bottom row is the form �∗(1) arising from the
orientation ρ; by what we just said, this is the same as the top row, which is the form we

were supposed to obtain.

This concludes the proof.

We also point out the following variant:

Corollary 8.5. Let l/k be a finite extension of fields, 1/2 ∈ k. Then Morel’s absolute

transfer [61, §5.1] trl/k :GW
(
l,ωl/k

)
→GW (k) is given as follows: Let φ : V ⊗l V → l be

an element of GW (l), α ∈ ω×
l/k. Then

trl/k(φ⊗α) =
[
V ⊗k V → V ⊗l V

φ−→ l
α� ωl/k

ηl/k−−→ k
]
,
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where ηl/k : ωl/k → k is the (k-linear) trace map of coherent duality (see §B.1).

Proof. This is immediate from [31, Proposition 4.3.17] (telling us that Morel’s transfer

coincides with the one from §4.2.4) and Corollary A.4.

Remark 8.6. Corollary 8.3(2) generalizes the main result of [48], at least for fields of

characteristic 
= 2.

Remark 8.7. We expect that all of the results in this section extend to fields of

characteristic 2 as well. This should be automatic as soon as KO is shown to represent

GW in this situation (over regular bases, say).

Appendix A. KO via framed correspondences

In this section we will construct a strong orientation on KO and identify some of the
transfers. We would like to thank M. Hoyois for communicating these results to us. For

another approach to parts of the results in this section, see [57].

We will make use of the technology of framed correspondences [30]. We write Corrfr(S)
for the symmetric monoidal ∞-category of smooth S -schemes and tangentially framed

correspondences. Denote by FSynor ∈CAlg
(
PΣ

(
Corrfr(S)

))
the stack of finite syntomic

schemes Y/X together with a choice of trivialization detLY/X � O, with its standard

structure of framed transfers. This is constructed in [32, Example 3.3.4].
Write Bil ∈ CAlg(PΣ(SchS)) for the presheaf sending X to the 1-groupoid of pairs

(V ,φ) with V → X a vector bundle and φ : V ⊗V → OX a nondegenerate, symmetric

bilinear form. The commutative monoid structure is given by ⊗. If f :X → Y is a finite
syntomic morphism, then a choice of trivialization d̃etLf � ωf �OX induces an additive

map f̂∗ : Bil
�(X)→ Bil�(Y ) (see, e.g., §2.2).

Theorem A.1. There exists a lift Bil ∈CAlg
(
PΣ

(
Corrfr(S)

))
with the transfers given

by maps of the form f̂∗, together with a morphism FSynor →Bil∈CAlg
(
PΣ

(
Corrfr(S)

))
.

The morphism FSynor →Bil is informally described as follows: a pair (f :X → Y finite

syntomic, ωf �O) is sent to f∗(O), where O ∈Bil(X) denotes the vector bundle OX with

its canonical symmetric bilinear pairing OX ⊗OX →OX .

Proof. Denote by K◦ ∈ PΣ(SmS) the rank 0 part of the K -theory presheaf and by
Corrfr

(
(SmS)/K◦

)
the subcategory of the category constructed in [32, §B] on objects

(X,ξ) with X ∈ SmS , ξ of rank 0, and morphisms those spans whose left leg is finite

syntomic. There are symmetric monoidal functors γ : (SmS)/K◦ →Corrfr
(
(SmS)/K◦

)
and

δ : Corrfr(S)→ Corrfr
(
(SmS)/K◦

)
.

We first lift Bil to PΣ

(
Corrfr((SmS)/K◦)

)
; we let Bil(X,ξ) be the 1-groupoid of vector

bundles with a symmetric bilinear form for the duality Hom(−, detξ). Since Bil is 1-
truncated, we only need to specify a finite number of coherence homotopies, so this can

be done by hand. Since δ is symmetric monoidal, δ∗ is lax symmetric monoidal, and hence

δ∗(Bil) produces the desired lift.
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Let K ′ →K◦ denote the fiber of the determinant map; in other words, this is the rank

0 part of KSL. This defines an object of CAlg
(
PΣ(SmS)/K◦

)
� CAlg

(
PΣ

(
(SmS)/K◦

))
and γK ′ � FSynor [32, Example 3.3.4 and after Example 3.3.6]. To conclude the proof, it
thus suffices to construct a map K ′ → γ∗(Bil) ∈ CAlg

(
PΣ(SmS)/K◦

)
. Again, this needs

only a finite number of coherences; the desired map sends (ξ,φ) with ξ ∈ K◦(X) and

φ : det(ξ)�OX to (O,φ′), where φ′ :O⊗O �O φ� detξ.

Since group completion and Zariski localization commute with the forgetful functor

PΣ

(
CorrfrS

)
→ CMon(PΣ(SmS)) → PΣ(SmS) [30, Proposition 3.2.14], we deduce that

(LZarBil
gp)(X) � KO(X) [42, Definitions 1.5 and 2.2]; we denote this presheaf by GW.

There is thus a canonical Bott element β ∈
[
T 4,GW

]
.

Proposition A.2. There is a canonical equivalence (Σ∞
fr GW)

[
β−1
]
� KO, at least if

1/2 ∈ S.

Proof. The spectrum (Σ∞
fr GW)

[
β−1
]
∈ SHfr(S) can be modeled by the framed T 4-

prespectrum (GW,GW, . . . ) with the bonding maps given by multiplication by β. Under
the equivalence SHfr(S) � SH(S) [45], this corresponds to the same prespectrum with

transfers forgotten. This is KO by definition.

In particular, we have constructed an E∞-structure on KO.

Corollary A.3. There is a morphism MSL→KO ∈ CAlg(SH(S)), at least if 1/2 ∈ S.

Proof. Take the morphism Σ∞
fr FSyn

or → Σ∞
fr Bil→ Σ∞

fr GW→KO and use the fact that

Σ∞
fr FSyn

or �MSL [32, Theorem 3.4.3(i)].

Corollary A.4. Let f : Z → S be a finite syntomic morphism, with 1/2 ∈ S, τ : LZ/S �
0 ∈ K(Z) a trivialization, and φ : V ⊗V → OZ be a nondegenerate, symmetric bilinear
form (defining an element [φ] ∈KO0(Z)). Then

[
f̂∗(φ)

]
= f∗([φ]) ∈KO0(S).

Here f∗ denotes the transfer arising from the six-functors formalism, and f̂∗ denotes the
transfer constructed before using coherent duality.

Proof. We first give a simplified proof assuming that S is affine. Denote by KOfr ∈
SHfr(S) a lift of KO. By [31, Theorem 3.3.10], for any morphism p :Z → Y with Y ∈ SmS

and a form ψ on Y, the six-functors transfer of p∗([ψ]) along f coincides with the framed

transfer of [ψ] along the correspondence S
τ←− Z → Y . By Proposition A.2, we can take
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KOfr = Σ∞
fr GW

[
β−1
]
; it follows that there is a map Bil → Ω∞

fr KO
fr ∈ PΣ

(
Corrfr

)
. We

thus deduce that

f̂∗(p
∗ψ) = f∗(p

∗[ψ]) ∈KO0(S).

The result would follow if there exist p, ψ with p∗ψ= φ. Under our simplifying assumption

that S is affine, this is always the case [32, Proposition A.0.4 and Example A.0.6(5)].
To deal with the general case, we begin with some constructions. Given F ∈ P(SmS),

denote by f∗F ∈P(SmZ) the left Kan extension. If F comes from a presheaf with framed

transfers, then the transfers along (base changes of) f assemble to a map f∗f
∗F → F .

Given E ∈ SH(S), we obtain Ω∞E ∈ P(SmS) and can apply this construction. On the
other hand, there is a map f∗Ω

∞f∗E → Ω∞E coming from the six-functors transfer as

well as a map f∗Ω∞E → Ω∞f∗E, and [31, Theorem 3.3.10] implies that the following

diagram commutes

f∗f
∗Ω∞E f∗Ω

∞f∗E

Ω∞E.

Now we continue with the proof. We have a commutative diagram

f∗f
∗BilS f∗BilZ

BilS,

where BilT ∈P(SmT ) denotes the stack of symmetric bilinear forms, the map f∗f
∗BilS →

BilS comes from the construction with F = BilS , the map f∗BilZ → BilS is the transfer

f̂∗, and commutativity holds by construction. Applying the construction with E = KO

and using its naturality in F, we obtain all in all the following commutative diagram:

f∗BilZ f∗f
∗BilS f∗f

∗Ω∞KO f∗Ω
∞f∗KO

BilS Ω∞KO.

w

It follows from [32, Proposition A.0.4 and Example A.0.6(5)] that f∗BilS → BilZ is a

Zariski equivalence, and hence the map labeled w is a Nisnevich equivalence (f being
finite). Since f∗Ω

∞f∗KO and Ω∞KO are Nisnevich local, we may invert w to obtain the

following commutative diagram:

f∗BilZ −−−−→ f∗f
∗Ω∞KO

f̂∗

⏐⏐� f∗

⏐⏐�
BilS −−−−→ Ω∞KO.

The result follows.
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Remark A.5. If 1/2 
∈ S, then we could define KO as (Σ∞
fr GW)

[
β−1
]
. Then Corollaries

A.3 and A.4 (as well as Proposition A.2) remain true. The problem is that we no longer
know what theory KO represents.

Appendix B. Miscellaneous

We collect some results which we believe are well known, but for which we could not find

convenient references.

B.1. Cotangent complexes and dualizing complexes

For any morphism of schemes f :X → Y , there is the cotangent complex Lf ∈D(X) (see,
e.g., [73, Tag 08P5]). If f is lci, then Lf is perfect [73, Tag 08SH] and hence defines a

point Lf ∈K(X). Consequently, in this case we can make sense of the graded determinant

d̃etLf ∈ Pic(D(X)); this is (locally) a shift of a line bundle.

Proposition B.1. Let f :X → Y be lci. Then there is a canonical isomorphism f !OY �
d̃etLf .

Recall that by our conventions, X and Y are separated and of finite type over some

Noetherian scheme S ; in particular, they are themselves Noetherian. We strongly believe
that these assumptions are immaterial.

Proof of Proposition B.1. Both sides are compatible with passage to open subschemes

of X. Locally on X, f factors as a regular immersion followed by a smooth morphism, say

f = pi. For either a regular immersion or a smooth morphism g, we have isomorphisms

g!OY � d̃etLg, (18)

as desired [40, Definition III.2, Proposition 7.2]. For composable lci morphisms p,i, we

have

(pi)!(O)� i∗p!(O)⊗ i!(O). (19)

Similarly we have a canonical cofiber sequence i∗Lp → Lpi → Li, and hence

d̃etLpi � i∗d̃etLp⊗ d̃etLi. (20)

Combining formula (18), (19), and (20), we thus obtain an isomorphism

αp,i : f
!OX � i!p!OX � d̃etLf .

We have thus shown that f !OY is locally isomorphic to d̃etLf (via αp,i), and hence

that A := f !OY ⊗
(
d̃etLf

)−1

is an OX -module concentrated in degree 0. Exhibiting an

isomorphism as claimed is the same as exhibiting A � OX , or equivalently a section

a ∈ Γ(X,A) which locally on X corresponds to an isomorphism. Since A is 0-truncated,
we may construct a locally. In other words, we need to exhibit a cover {Un}n of X and

isomorphisms αn : f !OY |Un
� d̃etLf |Un

such that on Un∩Um we have αn � αm. Hence,

since we are claiming to exhibit a canonical isomorphism, we may do so locally on X. We
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may thus assume that f factors as pi, for a smooth morphism p : V → Y and a regular
immersion i :X → V . We have already found an isomorphism in this situation, namely

αp,i. What remains is to show that this isomorphism is independent of the choice of

factorization f = pi.
Thus let i′ :X → V ′ and p′ : V ′ → Y be another such factorization. We need to show

that αp,i = αp′,i′ . By considering V ′×Y V , we may assume a commutative diagram

X
i′−−−−→ V ′ p′

−−−−→ Y∥∥∥ q

⏐⏐� ∥∥∥
X

i−−−−→ V
p−−−−→ Y ,

where q is smooth. If in formula (20) both f and g are smooth, then the isomorphism

arises from the first fundamental exact sequence of Kähler differentials [40, Proposition
III.2.2], and hence is the same as isomorphism (19). It follows that we may assume that

p= id. The isomorphism i′!q! � i! is explained in [40, Proposition III.8.2] and reduces via

formal considerations (that apply in the same way to d̃etL−) to the case of a smooth
morphism with a section.

We are thus reduced to the following problem: Let p : V →X be smooth and i :X → V

a regular immersion which is a section of p. The coherent duality formalism provides us

with an isomorphism ωX/V ⊗ i∗ωV/X �OX ; we need to check that this is the same as the
isomorphism detLi⊗ i∗detLp � detLid =OX coming from formula (20). By [40, Lemma

III.8.1, Definition III.1.5], the first isomorphism arises from the second fundamental exact

sequence of Kähler differentials. This is the same as the second isomorphism.
This concludes the proof. �

B.2. Grothendieck–Witt rings and Witt rings

Let R be a commutative ring. A symmetric space over R means a finitely generated

projective R-module M together with a nondegenerate, symmetric bilinear form ϕ :M ×
M → R. The Grothendieck group on the semiring of isomorphism classes of symmetric

spaces over R (with operations given by the direct sum and tensor product) is denoted

GW(R) and called the Grothendieck–Witt ring of R. A symmetric space (M,ϕ) is called

metabolic if there exists a summand N ⊂M with N =N⊥. The quotient of GW(R) by
the subgroup (which is an ideal) generated by metabolic spaces is denoted W(R) and

called the Witt ring of R.

Lemma B.2. Let R be a commutative ring and (M,ϕ) a symmetric space. The following

are equivalent:

(1) M is metabolic.

(2) M contains an isotropic subspace of half rank: there exists a summand N ⊂M such

that dimM = 2dimN and ϕ|N = 0.

Now suppose that all finitely generated projective R-modules are free of constant rank–

for example, R a local ring. In this case the image of M in GW(R) is given by nh, where
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dimM = 2n and h denotes the hyperbolic plane, corresponding to the matrix

(
0 1
1 0

)
,

which also satisfies h= 1+ 〈−1〉 ∈GW(R). Moreover we have a pullback square

GW(R) −−−−→ Z⏐⏐� ⏐⏐�
W(R) −−−−→ Z/2,

where the horizontal maps are given by rank. In particular GW(R) → W(R)× Z is
injective.

Proof. The equivalence of (1) and (2) is [51, Corollary I.3.2]. The fact that the image in

GW(R) is given by nh follows from [51, Proposition I.3.2 and Corollary I.3.1].

Consider the symmetric space M = 〈1〉 ⊕ h. Thus M � R3 has basis e1,e2,e3 with
〈e1,e1〉 = 1, 〈e1,e2〉 = 0, and so on. Direct computation shows that f1 = e1 + e2, f2 =

e1− e3, f3 = e3− e1− e2 are an orthogonal basis exhibiting M � 〈1〉⊕ 〈1〉⊕ 〈−1〉. Thus
h= 1+ 〈−1〉 ∈GW(R), as claimed.
We have W(R) = GW(R)/J , where the ideal J is generated by metabolic spaces. By

the previous assertion, J = Z ·h, and so the rank homomorphism maps J isomorphically

onto 2Z. The pullback square follows formally.

Lemma B.3. Let R be a local ring.

(1) Let (M,ϕ) be a symmetric space over R. Then M admits an orthogonal basis if and
only if there exists m ∈M with ϕ(m,m) ∈R×.

(2) GW(R) is generated by elements of the form 〈a〉, with a ∈R×.

Proof. (1) If e1, . . . ,en is an orthogonal basis, then ϕ(ei,ei) = ai, whereas ϕ(ei,ej) =

0 for i 
= j; it follows now from nondegeneracy that a1 ∈ R×, and so the condition is
necessary. Now suppose that m ∈ M with ϕ(m,m) ∈ R×. By [59, Theorem I.3.2] we

get M � Rm⊕ (Rm)⊥. Consider an isomorphism M � Re1⊕ ·· ·⊕Ren⊕N , where n is

maximal. We wish to show that N = 0. We know that n > 0 (by the existence of m),
and if x ∈ N , then (∗)ϕ(x,x) 
∈ R× (because otherwise we could split off Rx as before,

contradicting maximality). Replacing M by e1R⊕N , we may assume that n = 1. Since

ϕ|N is nondegenerate and R is local, if N 
= 0 we have y,z ∈ N with ϕ(y,z) = 1. Set

e′1 = e1 + y and f = e1 + λz (with λ ∈ R). Then ϕ(e′1,e
′
1) = ϕ(e1,e1) +ϕ(y,y) ∈ R× by

(∗) (and using the fact that R is local), and similarly ϕ(f,f) ∈ R×. On the other hand,

ϕ(e′1,f) =ϕ(e1,e1)+λ, and hence there exists a (unique) value of λ such that f ∈ (Re′1)
⊥
.

It follows that M �Re′1⊕Rf ⊕N ′, in contradiction of the maximality of n.
(2) If M is an inner product space, then M ⊕〈1〉 admits an orthogonal basis by (1),

and hence [M ] = [M ⊕〈1〉]−〈1〉 ∈ GW (R) can be expressed in terms of elements of the

form 〈a〉.

Corollary B.4. We have GW(F2) = Z.

Proof. It is immediate from Lemma B.3 that Z→GW(F2) is surjective. Since the rank

provides a retraction, the map is also injective, hence an isomorphism.
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B.3. Regular sequences

Lemma B.5. Let S be a scheme and X → S a smooth morphism, set f1, . . . ,fn ∈OX(X)k

and put Z = Z(f1, . . . ,fn). Assume that for all s ∈ S, either Zs is empty or else dimZs ≤
dimXs−n. Then Z → S is flat, and for each z ∈Z, f1, . . . ,fn ∈OZ,z is a strongly regular

sequence. In particular, f1, . . . ,fn is a regular sequence and Z →X is a regular immersion.

Proof. For x∈X there exist affine open subschemes x∈U ⊂X, S′ ⊂S and a factorization

U →Ad
S′ → S′ → S of U → S with U →An

S′ étale [73, Tag 01V4]. Then Z ′ := Z ∩U → S′

still has fibers of dimension ≤ d−n and hence equal to d−n by Krull’s principal ideal
theorem [73, Tag 0BBZ]. This implies that Z ′ →S is a relative global complete intersection

(in the sense of [73, Tag 00SP]) [30, Lemma 2.1.15], whence flat [73, 00SW], and (f1, . . . ,fn)

is a strongly regular sequence in OZ′,z′ for any z′ ∈ Z ′ [73, Tag 00SV(1)]. Since x was

arbitrary, it follows that Z → S is flat and (f1, . . . ,fn) form a strongly regular sequence
in OZ,z for any z ∈ Z. For the last statement, we note that if x ∈X \Z, then fi ∈OX,x is

a unit for some i, and hence K(f•)x � 0� (OZ)x, whereas if x ∈ Z, then K(f•)x �OZ,z

by strong regularity [73, Tag 062F].
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