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Abstract

In a recent paper, Bondarko [Weight structures vs. t-structures; weight filtrations,
spectral sequences, and complexes (for motives and in general), Preprint (2007),
0704.4003] defined the notion of weight structure, and proved that the category
DMgm(k) of geometrical motives over a perfect field k, as defined and studied by
Voevodsky, Suslin and Friedlander [Cycles, transfers, and motivic homology theories,
Annals of Mathematics Studies, vol. 143 (Princeton University Press, Princeton, NJ,
2000)], is canonically equipped with such a structure. Building on this result, and
under a condition on the weights avoided by the boundary motive [J. Wildeshaus,
The boundary motive: definition and basic properties, Compositio Math. 142 (2006),
631–656], we describe a method to construct intrinsically in DMgm(k) a motivic version
of interior cohomology of smooth, but possibly non-projective schemes. In a sequel to
this work [J. Wildeshaus, On the interior motive of certain Shimura varieties: the case
of Hilbert–Blumenthal varieties, Preprint (2009), 0906.4239], this method will be applied
to Shimura varieties.

Contents

Introduction 1196
1 Weight structures 1200
2 Weight zero 1206
3 Example: motives for modular forms 1210
4 Weights, boundary motive and interior motive 1215
Acknowledgements 1224
References 1224

Introduction

The full title of this work would be ‘Approximation of motives of varieties which are smooth, but
not necessarily projective, by Chow motives, using homological rather than purely geometrical
methods’. This might give a better idea of our program, but as a title, it appeared too long.
So there.

One way to place the problem historically is to start with the question asked by Serre [Ser91,
p. 341], whether the ‘virtual motive’ χc(X) of an arbitrary variety X over a fixed base field k

Received 20 June 2008, accepted in final form 16 January 2009, published online 4 September 2009.
2000 Mathematics Subject Classification 14F42 (primary), 14F20, 14F25, 14F30, 14G35, 18E30, 19E15 (secondary).
Keywords: weight structures, weight filtrations, Chow motives, geometrical motives, motives for modular forms,
boundary motive, interior motive.

Partially supported by the Agence Nationale de la Recherche, project no. ANR-07-BLAN-0142 ‘Méthodes à la
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Chow motives without projectivity

can be (well) defined in the Grothendieck group of the category CHM eff(k) of effective Chow
motives. When k admits resolution of singularities, Gillet and Soulé [GS96] (see also [GN02] when
char(k) = 0) provided an affirmative answer. In fact, their solution yields much more information:
they define the weight complex W (X) (hc(X) in [GN02]) in the category of complexes over
CHM eff(k), well defined up to canonical homotopy equivalence. By definition, χc(X) equals the
class of W (X) in K0(CHM eff(k)). Thus, given any representative

M• : · · · −→Mn −→Mn−1 −→ · · ·

of W (X), we have the formula χc(X) =
∑

n(−1)n[Mn].
Consider the fully faithful embedding ι of CHM eff(k) into DM eff

gm(k), the category of effective
geometrical motives, as defined and studied by Voevodsky et al. [VSF00]. As observed in [GS96],
localization for both χc(X) and the motive with compact support M c

gm(X) of X shows that the
element χc(X) is mapped to the class of M c

gm(X) under K0(ι). Gillet and Soulé went on and
asked [GS96, p. 153] whether

K0(ι) :K0(CHM eff(k))−→K0(DM eff
gm(k))

is an isomorphism.
Similarly to Serre, Gillet and Soulé provoked much more than just an affirmative answer to

their question. Bondarko defined in [Bon07] the notion of weight structure on a triangulated
category C. He proved that the inclusion of the heart of the weight structure into C induces an
isomorphism on the level of Grothendieck groups, whenever the weight structure is bounded, and
the heart is pseudo-Abelian. The definitions will be recalled in our § 1; let us just note that shift
by [m], for m ∈ Z, adds m to the weight of an object of C. According to one of the main results
of [Bon07] (recalled in Theorem 1.13), DM eff

gm(k) carries a canonical weight structure, which is
indeed bounded, and admits CHM eff(k) as its heart. By definition, this means that among all
geometrical motives, Chow motives distinguish themselves as being the motives which are pure
of weight zero.

In particular, this gives an intrinsic characterization of objects of the category DM eff
gm(k)

belonging to CHM eff(k). We think of this insight as nothing less than revolutionary.
To come back to the beginning, the component Mn of the weight complex W (X) can be

considered as a ‘GrnW (X)’ with respect to the weight structure. In the context of Bondarko’s
theory, the formula for the ‘virtual motive’ of X thus reads

χc(X) =
∑
n

(−1)n GrnW (X).

Basically, our approach to construct a Chow motive out of X, when X is smooth, is very simple:
according to Bondarko (see Corollary 1.14), the motive Mgm(X) of X is of weights at most zero.
We would like to consider Gr0 Mgm(X), the ‘quotient’ of Mgm(X) of maximal weight zero.

However, one of the main subtleties of the notion of weight structure is that ‘the’ weight
filtration of an object is almost never unique. (In the example of the weight complex, this
corresponds to the fact that W (X) is only well-defined up to homotopy.) Hence, ‘GrnMgm(X)’
is not well defined, and the above approach cannot work as stated. In fact, for any smooth
compactification X̃ of X, the Chow motive Mgm(X̃) occurs as ‘Gr0 Mgm(X)’ for a suitable
weight filtration.

Our main contribution is to identify a criterion assuring existence and unicity of a ‘best choice’
of Gr0 Mgm(X). It is best understood in the abstract setting created by Bondarko, that is, in
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the context of a weight structure on a triangulated category C. Let M be an object of C of
non-positive weights. Then Bondarko’s axioms imply that if M admits a weight filtration in
which the adjacent weight −1 does not occur, then the associated Gr0 M is unique up to unique
isomorphism. In the motivic context, this observation leads to our criterion on weights avoided
by the boundary motive ∂Mgm(X) of X, introduced and studied in [Wil06]. The behavior of the
realizations of the Chow motive Gr0 Mgm(X) motivates its name: we chose to call it the interior
motive of X.

Let us now give a more detailed description of the content of this article. Section 1 claims
no originality whatsoever. We give Bondarko’s definition of weight structures (Definition 1.1)
and review the results from [Bon07] needed in the sequel. We treat particularly carefully the
phenomenon which will turn out to be the main theme of this article, namely the absence
of certain weights. Thus, we introduce the central notion of weight filtration avoiding weights
m, m+ 1, . . . , n− 1, n, for fixed integers m 6 n. Bondarko’s axioms imply that whenever such a
filtration exists, it behaves functorially (Proposition 1.7). In particular, for any fixed object, it is
unique up to unique isomorphism (Corollary 1.9). We conclude § 1 with Bondarko’s application
of his theory to geometrical motives, which we already mentioned before (Theorem 1.13 and
Corollary 1.14).

Section 2 is the technical center of this article. It is devoted to a further study of functoriality
of weight filtrations avoiding certain weights. We work in the context of an abstract weight
structure w = (Cw60, Cw>0) on a triangulated category C. We first show (Proposition 2.2) that
the inclusion ι− of the heart Cw=0 into the full sub-category Cw60,6=−1 of objects of non-positive
weights other than minus one admits a left adjoint

Gr0 : Cw60,6=−1 −→ Cw=0.

There is a dual version of this statement for non-negative weights other than one. We then
consider the situation which will be of interest in our application to motives. We thus fix a
morphism u :M−→M+ between objectsM− ∈ Cw60 and M+ ∈ Cw>0, and a cone C[1] of u. While
the axioms characterizing weight structures easily show that u can be factored through some
object of Cw=0, our aim is to do so in a canonical way. We therefore formulate Assumption 2.3:
the object C is without weights minus one and zero. Theorem 2.4 states that Assumption 2.3
not only allows to factor u as desired; in addition this factorization is through an object which is
simultaneously identified with Gr0 M− and with Gr0 M+. As a formal consequence of this, and
of the functoriality properties of Gr0 from Proposition 2.2, we obtain a statement on abstract
factorization of u (Corollary 2.5), whose rigidity may appear surprising at first sight, given that
we work in a triangulated category: whenever u :M−→N →M+ factors through an object N
of Cw=0, then Gr0 M− = Gr0 M+ is canonically identified with a direct factor of N , admitting in
addition a canonical direct complement.

The reader willing to turn directly to the application of these results to geometrical motives
may choose to skip § 3, in which Scholl’s construction of motives for modular forms [Sch90]
is discussed at length. As in [Sch90], we consider a self-product Xr

n of the universal elliptic
curve Xn over a modular curve. We show (Theorem 3.3, Corollaries 3.4 and 3.6) that certain
direct factors Mgm(Xr

n)e of the motive Mgm(Xr
n) and M c

gm(Xr
n)e of the motive with compact

supportM c
gm(Xr

n), together with the canonical morphism u :Mgm(Xr
n)e→M c

gm(Xr
n)e, satisfy the

conclusions of Theorem 2.4. In particular, the Chow motives Gr0 Mgm(Xr
n)e and Gr0 M

c
gm(Xr

n)e

are defined, and canonically isomorphic. In fact, they are both canonically isomorphic to the
motive denoted by r

nW in [Sch90]. We insist on giving a proof of the above statements which
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is independent of the theory developed in § 2, that is, we prove the conclusions of Theorem 2.4
without first checking Assumption 2.3. Instead, we use the detailed analysis from [Sch90] of the
geometry of the boundary of a ‘good choice’ of smooth compactification of Xr

n. If one forgets
about the language of weight structures, whose use could not be completely avoided, § 3 is thus
technically independent of the material preceding it. The reader may find an interest in the
re-interpretation of Scholl’s construction in the context of Voevodsky’s geometrical motives,
which were not yet defined at the time when [Sch90] was written. This concerns in particular
the exact triangle

Mgm(S∞n )(r + 1)[r + 1]−→Mgm(Xr
n)e −→ r

nW −→Mgm(S∞n )(r + 1)[r + 2]

from Corollary 3.4 (S∞n := the cuspidal locus of the modular curve). As a by-product of Scholl’s
analysis, we prove that the triangle is defined using Z[1/(2n · r!)]-coefficients. An interpretation
of Beilinson’s Eisenstein symbol [Bei86] in this context (namely, as a splitting of this triangle)
is clearly desirable.

Section 4 is devoted to the application of the results from § 2 to geometrical motives.
As u :M−→M+, we take the canonical morphism Mgm(X)e→M c

gm(X)e, for a fixed smooth
variety X over k, and a fixed idempotent e. Then the role of the object C from § 2 is canonically
played by ∂Mgm(X)e, the e-part of the boundary motive. In this context, Assumption 2.3 reads
as follows: the object ∂Mgm(X)e is without weights minus one and zero (Assumption 4.2). Our
main result Theorem 4.3 is then simply the translation of the sum of the results from § 2 into
this particular motivic context. Thus, the Chow motive Gr0 Mgm(X)e = Gr0 M

c
gm(X)e is defined.

Furthermore (Corollary 4.6), we obtain the motivic version of abstract factorization: whenever X̃
is a smooth compactification of X, then Gr0 Mgm(X)e is canonically a direct factor of the Chow
motive Mgm(X̃), with a canonical direct complement. We then study the implications of these
results for the Hodge theoretic and `-adic realizations. Theorems 4.7 and 4.8 state that they are
equal to the respective e-parts of the interior cohomology of X. Abstract factorization allows us to
say more about the quality of the Galois representation on the `-adic realization of Gr0 Mgm(X)e

(Theorem 4.14). For example, simple semi-stable reduction of some smooth compactification ofX
implies that the representation is semi-stable.

To conclude, we get back to Scholl’s construction. We show (Remark 4.17) that essentially
all results of § 3 can be deduced (just) from Assumption 4.2, and the theory developed in § 4.
We consider that in spite of the technical independence of § 3, there is a good reason to include
that material in this article: for higher-dimensional Shimura varieties, ‘good choices’ of smooth
compactifications as that used in [Sch90] may simply not be available. Therefore, the purely
geometrical strategy of proof of the results of § 3 can safely be expected not to be generalizable.
We think that a promising way to generalize is via a verification of Assumption 4.2 by other
than purely geometrical means. We refer to [Wil09] for the development of such an alternative
in a context including that of (powers of universal elliptic curves over) modular curves.

Notation and conventions
In this article k denotes a fixed perfect base field, Sch/k the category of separated schemes
of finite type over k, and Sm/k ⊂ Sch/k the full sub-category of objects which are smooth
over k. When we assume that k admits resolution of singularities, then in the sense of
[FV00, Definition 3.4]: (i) for any X ∈ Sch/k, there exists an abstract blow-up Y →X
(see [FV00, Definition 3.1]) whose source Y is in Sm/k, (ii) for any X, Y ∈ Sm/k, and any
abstract blow-up q : Y →X, there exists a sequence of blow-ups p :Xn→ · · · →X1 =X with

1199

https://doi.org/10.1112/S0010437X0900414X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X0900414X


J. Wildeshaus

smooth centers, such that p factors through q. Let us note that the main reason for us to assume
that k admits resolution of singularities is to have the motive with compact support satisfy
localization [Voe00, Proposition 4.1.5].

As far as motives are concerned, the notation of this paper follows that of [Voe00]. We refer
to [Wil06, § 1] for a review of this notation and, in particular, of the definition of the categories
DM eff

gm(k) and DMgm(k) of (effective) geometrical motives over k, and of the motive Mgm(X) and
the motive with compact support M c

gm(X) of X ∈ Sch/k. Let F be a commutative flat Z-algebra,
i.e. a commutative unitary ring whose additive group is without torsion. The notation DM eff

gm(k)
F

and DMgm(k)F stands for the F -linear analogues of DM eff
gm(k) and DMgm(k) defined in

[And04, §§ 16.2.4 and 17.1.3]. Similarly, let us denote by CHM eff(k) and CHM(k) the categories
opposite to the categories of (effective) Chow motives, and by CHM eff(k)F and CHM(k)F the
pseudo-Abelian completion of the category CHM eff(k)⊗ZF and CHM(k)⊗ZF , respectively.
Using [Voe02, Corollary 2] ([Voe00, Corollary 4.2.6] if k admits resolution of singularities), we
canonically identify CHM eff(k)F and CHM(k)F with a full additive sub-category of DM eff

gm(k)
F

and DMgm(k)F , respectively.

1. Weight structures

In this section, we review the main definitions and results of Bondarko’s recent paper [Bon07].

Definition 1.1. Let C be a triangulated category. A weight structure on C is a pair w =
(Cw60, Cw>0) of full sub-categories of C, such that, putting

Cw6n := Cw60[n], Cw>n := Cw>0[n] ∀n ∈ Z,

the following conditions are satisfied.

(1) The categories Cw60 and Cw>0 are Karoubi-closed: for any object M of Cw60 or Cw>0, any
direct summand of M formed in C is an object of Cw60 or Cw>0, respectively.

(2) (Semi-invariance with respect to shifts.) We have the inclusions

Cw60 ⊂ Cw61, Cw>0 ⊃ Cw>1

of full sub-categories of C.
(3) (Orthogonality.) For any pair of objects M ∈ Cw60 and N ∈ Cw>1, we have

HomC(M, N) = 0.

(4) (Weight filtration.) For any object M ∈ C, there exists an exact triangle

A−→M −→B −→A[1]

in C, such that A ∈ Cw60 and B ∈ Cw>1.

By condition (2) in Definition 1.1,

Cw6n ⊂ Cw60

for negative n, and
Cw>n ⊂ Cw>0

for positive n. There are obvious analogues of the other conditions for all of the categories Cw6n

and Cw>n. In particular, they are all Karoubi-closed, and any object M ∈ C is part of an exact
triangle

A−→M −→B −→A[1]
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in C, such that A ∈ Cw6n and B ∈ Cw>n+1. By a slight generalization of the terminology
introduced in condition (4) in Definition 1.1, we shall refer to any such exact triangle as a
weight filtration of M .

Remark 1.2. We make the following remarks.

(a) Our convention concerning the sign of the weight is actually opposite to that from
[Bon07, Definition 1.1.1], that is, we exchanged the roles of Cw60 and Cw>0.

(b) Note that in condition (4) in Definition 1.1, ‘the’ weight filtration is not assumed to be
unique.

(c) Recall the notion of t-structure on a triangulated category C (see [BBD82, Définition 1.3.1]).
It consists of a pair t= (Ct60, Ct>0) of full sub-categories satisfying formal analogues of
conditions (2)–(4) in Definition 1.1, but putting

Ct6n := Ct60[−n], Ct>n := Ct>0[−n] for all n ∈ Z.

Note that in the context of t-structures, the analogues of the exact triangles in condition (4)
in Definition 1.1 are then unique up to unique isomorphism, and that the analogue of
condition (1) in Definition 1.1 is formally implied by the others.

The following is contained in [Bon07, Definition 1.2.1].

Definition 1.3. Let w = (Cw60, Cw>0) be a weight structure on C. The heart of w is the full
additive sub-category Cw=0 of C whose objects lie both in Cw60 and in Cw>0.

Among the basic properties developed in [Bon07], let us note the following.

Proposition 1.4. Let w = (Cw60, Cw>0) be a weight structure on C,

L−→M −→N −→ L[1]

an exact triangle in C.
(a) If both L and N belong to Cw60, then so does M .

(b) If both L and N belong to Cw>0, then so does M .

Proof. This is the content of [Bon07, Proposition 1.3.3 3]. 2

The reader may wonder whether there is an easy criterion on a given sub-category of a
triangulated category to be the heart of a suitable weight structure. Bondarko has results
[Bon07, Theorem 4.3.2] answering this question. For our purposes, the result with the most
restrictive finiteness condition will be sufficient.

Proposition 1.5. Let H be a full additive sub-category of a triangulated category C. Suppose
that H generates C, that is, C is the smallest full triangulated sub-category containing H.

(a) If there is a weight structure on C whose heart contains H, then it is unique. In this case,
the heart is equal to the Karoubi envelope of H, that is, the category of retracts of H in C.

(b) The following conditions are equivalent.

(i) There is a weight structure on C whose heart contains H.
(ii) The sub-category H is negative, that is,

HomC(A, B[i]) = 0

for any two objects A, B of H, and any integer i > 0.
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Proof. Condition (ii) on H is clearly necessary for H to belong to the heart, given
orthogonality (3) in Definition 1.1. As for (a), note that by Proposition 1.4, there is only one
possible definition of the category Cw60 (resp. Cw>0): it is necessarily the full sub-category of
successive extensions of objects of the form A[n], for A ∈H and n 6 0 (respectively n > 0).

The main point is to show that under condition (ii), the above construction indeed yields a
weight structure on C. We refer to [Bon07, Theorem 4.3.2 II] for details. 2

For the rest of this section, we consider a fixed weight structure w on a triangulated category C.

Definition 1.6. LetM ∈ C, andm 6 n two integers (which may be identical). A weight filtration
of M avoiding weights m, m+ 1, . . . , n− 1, n is an exact triangle

M6m−1 −→M −→M>n+1 −→M6m−1[1]

in C, with M6m−1 ∈ Cw6m−1 and M>n+1 ∈ Cw>n+1.

The following observation is vital.

Proposition 1.7. Assume that m 6 n, and that M, N ∈ C admit weight filtrations

M6m−1
x−−→M

x+−→M>n+1 −→M6m−1[1]

and

N6m−1
y−−→N

y+−→N>n+1 −→N6m−1[1]
avoiding weights m, . . . , n. Then any morphism M →N in C extends uniquely to a morphism
of exact triangles.

M6m−1 //

��

M //

��

M>n+1 //

��

M6m−1[1]

��
N6m−1 // N // N>n+1 // N6m−1[1]

Proof. This follows from [Bon07, Lemma 1.5.1 2]. For the convenience of the reader, let us
recall the proof. Let α ∈HomC(M, N). The composition y+ ◦ α ◦ x− :M6m−1→N>n+1 is zero
by orthogonality (3) in Definition 1.1: m− 1 is strictly smaller than n+ 1. Hence, α ◦ x− factors
through N6m−1. We claim that this factorization is unique. Indeed, the error term comes from
HomC(M6m−1, N>n+1[−1]). However, this group is trivial, thanks to orthogonality, and our
assumption on the weights: the object N>n+1[−1] lies in

Cw>n+1[−1] = Cw>n,

and m− 1 is still strictly smaller than n. Similarly, the composition y+ ◦ α factors uniquely
through M>n+1. 2

Remark 1.8. Note that the hypothesis of Proposition 1.7 does not imply unicity of weight
filtrations in the (more general) sense of Definition 1.1(4). For example, assume that m= n=−1,
and let

(∗) M6−2 −→M −→M>0 −→M6−2[1]
be a weight filtration avoiding weight minus one. Choose any object M0 in Cw=0 and replace M>0

by M0 ⊕M>0, and M6−2 by M0[−1]⊕M6−2. Arguing as in the proof of Proposition 1.7, one
shows that any weight filtration of M is isomorphic to one obtained in this way. Thus, the exact
triangle (∗) satisfies a minimality property among all weight filtrations of M .
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Corollary 1.9. Assume that m 6 n. Then if M ∈ C admits a weight filtration avoiding weights
m, . . . , n, it is unique up to unique isomorphism.

Definition 1.10. Assume that m 6 n. We say that M ∈ C does not have weights m, . . . , n, or
that M is without weights m, . . . , n, if it admits a weight filtration avoiding weights m, . . . , n.

Let us now state what we consider as one of the main results of [Bon07].

Theorem 1.11. Assume that the triangulated category C is generated by its heart Cw=0.

(a) The pseudo-Abelian completion C′w=0 of Cw=0 generates the pseudo-Abelian completion C′
of C.

(b) There is a weight structure w′ on C′, uniquely characterized by any of the following
conditions.

(i) The weight structure w′ extends w.
(ii) The heart of w′ equals C′w=0.
(iii) The heart of w′ contains C′w=0.

Proof. This is [Bon07, Proposition 5.2.2]. Let us describe the main steps of the proof. Recall that
by [BS01, Theorem 1.5], the category C′ is indeed triangulated. The criterion from Proposition 1.5
implies the existence of a weight structure w′ on the full triangulated sub-category D of C′
generated by C′w=0 (hence, containing C), and uniquely characterized by condition (iii), hence
also by condition (i) or (ii). The claim then follows from [Bon07, Lemma 5.2.1], which states
that D is pseudo-Abelian, and hence equal to C′. 2

Remark 1.12. Note that given Proposition 1.5, part (b) of Theorem 1.11 follows formally from its
part (a). One may see Theorem 1.11(a) as a generalization of [BS01, Corollary 2.12], which states
that the pseudo-Abelian completion of the bounded derived category Db(A) of an exact cate-
gory A equals the bounded derived category Db(A′) of the pseudo-Abelian completion A′ of A.

For our purposes, the main application of the preceding is the following (cf. [Bon07, § 6]).

Theorem 1.13. Let F be a commutative flat Z-algebra, and assume that k admits resolution
of singularities.

(a) There is a canonical weight structure on the category DM eff
gm(k)

F
. It is uniquely

characterized by the requirement that its heart equals CHM eff(k)F .

(b) There is a canonical weight structure on the category DMgm(k)F , extending the weight
structure from statement (a). It is uniquely characterized by the requirement that its heart
equals CHM(k)F .

(c) Statements (a) and (b) hold without assuming resolution of singularities provided that F
is a Q-algebra.

Proof. For F = Z and k of characteristic zero, this is the content of [Bon07, §§ 6.5 and 6.6].
(1) As in [Bon07], denote by DM s the full triangulated sub-category of DM eff

gm(k) generated
by the motives Mgm(X) (see [Voe00, Definition 2.1.1]) of objects X of Sm/k, by J0 the full
additive sub-category of DM s generated by Mgm(X) for X smooth and projective, and by J ′0
the Karoubi envelope of J0. Thus, DM eff

gm(k) is the pseudo-Abelian completion of DM s, and
CHM eff(k) is the pseudo-Abelian completion of both J0 and J ′0.
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(2) We need two of the main results from [Voe00]. First, by [Voe00, Corollary 3.5.5], the
additive category J0 generates the triangulated category DM s. Next, by [Voe00, Corollary 4.2.6],
the category J0 is negative:

HomDMs(A, B[i]) = 0

for any two objects A, B of J0, and any integer i > 0.
(3) By Proposition 1.5, there is a weight structure on DM s, uniquely characterized by the

fact that J0 is contained in the heart. Furthermore, the heart equals the Karoubi envelope J ′0.
(4) By Theorem 1.11, the pseudo-Abelian completion CHM eff(k) of J0 generates the pseudo-

Abelian completion DM eff
gm(k) of DM s (let us remark that this is stated, but not proved,

in [Voe00, Corollary 3.5.5]). Thus, part (a) of our claim holds for F = Z.
(5) Recall that CHM(k) and DMgm(k) are obtained from CHM eff(k) and DM eff

gm(k) by
inverting an object, namely the Tate object T , with respect to the tensor structures. Hence,
CHM(k) generates the triangulated category DMgm(k). Its negativity follows formally from
that of CHM eff(k): indeed, for two objects A and B of CHM(k), and any integer i > 0, the
group HomDMgm(k)(A, B[i]) is, by definition, the direct limit over large integers r of the groups

HomDMeff
gm(k)(A⊗ T⊗r, B ⊗ T⊗r[i]),

which are all zero by part (a). Thus, we may again apply Proposition 1.5. The resulting weight
structure extends that on DM eff

gm(k): in fact, its restriction to DM eff
gm(k) is a weight structure,

whose heart equals CHM eff(k). This proves part (b) of our claim for F = Z.
If F is flat over Z, then the same proof works. (1′) Replace DM s by the full F -linear

triangulated sub-category DM s
F of DM eff

gm(k)
F

generated by the motives Mgm(X) of objects X
of Sm/k, and J0 by J0 ⊗Z F . (2′) The two results cited in step (2) formally imply that J0 ⊗Z F
generates DM s

F , and that J0 ⊗Z F is negative. Steps (3′) and (4′) are formally identical to
steps (3) and (4), proving part (a) of the claim. Step (5′) shows part (b), once we observe that
CHM(k)F and DMgm(k)F are obtained from CHM eff(k)F and DM eff

gm(k)
F

by inverting the
Tate object.

As for part (c) of our claim, everything reduces to showing analogues of the two statements
made in step (2). By [And04, Corollary 18.1.1.2], the additive category J0 ⊗Z F generates the
triangulated category DM s ⊗Z F . The argument uses alterations à la de Jong; since this involves
finite extensions of fields, whose degrees need to be inverted, one requires F to be a Q-algebra.
The generalization of [Voe00, Corollary 4.2.6] to arbitrary fields [Voe02, Corollary 2] shows that
the category J0 is negative. Hence, so is J0 ⊗Z F . 2

The following is the content of [Bon09, Theorems 6.2.1(1) and (2)], when k is of characteristic
zero.

Corollary 1.14. Assume that k admits resolution of singularities. LetX in Sch/k be of (Krull)
dimension d.

(a) The motive with compact support M c
gm(X) lies in

DM eff
gm(k)

w>0
∩DM eff

gm(k)
w6d

.

(b) If X ∈ Sm/k, then the motive Mgm(X) lies in

DM eff
gm(k)

w>−d ∩DM
eff
gm(k)

w60
.
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Proof. (a) We proceed by induction on d. If d= 0, then M c
gm(X) is an effective Chow motive,

hence of weight zero by Theorem 1.13(a).
For d > 1, Nagata’s theorem on the existence of a compactification of X, and resolution

of singularities imply that there is an open dense sub-scheme U of X admitting a smooth
compactification X̃. Denote by Z the complement of U in X, and by Y the complement of U
in X̃ (both with the reduced scheme structure). By localization for the motive with compact
support [Voe00, Proposition 4.1.5], there are exact triangles

M c
gm(Z)−→M c

gm(X)−→M c
gm(U)−→M c

gm(Z)[1]

and

M c
gm(Y )−→M c

gm(X̃)−→M c
gm(U)−→M c

gm(Y )[1].

By induction,

M c
gm(Y ), M c

gm(Z) ∈DM eff
gm(k)

w>0
∩DM eff

gm(k)
w6d−1

.

Therefore,

M c
gm(Y )[1], M c

gm(Z) ∈DM eff
gm(k)

w>0
∩DM eff

gm(k)
w6d

.

Given that M c
gm(X̃) is of weight zero, Proposition 1.4 shows first that

M c
gm(U) ∈DM eff

gm(k)
w>0
∩DM eff

gm(k)
w6d

,

and then that

M c
gm(X) ∈DM eff

gm(k)
w>0
∩DM eff

gm(k)
w6d

.

(b) By [Voe00, Theorems 4.3.7 1 and 2], the category DMgm(k) is rigid tensor triangulated.
The claim thus follows formally from part (a), and from the following observations: (i) assuming
(as we may) X to be of pure dimension d, the motive Mgm(X) is dual to M c

gm(X)(−d)[−2d] (see
[Voe00, Theorem 4.3.7 3]); (ii) the object Z(−d)[−2d] is a Chow motive; (iii) the heart of the
weight structure on DMgm(k) is stable under duality, hence for any natural number n, induction
on n shows that the dual of an object of the intersection DMgm(k)w>0 ∩DMgm(k)w6n belongs
to DMgm(k)w>−n ∩DMgm(k)w60; (iv) the weight structure on DM eff

gm(k) is induced from the
weight structure on DMgm(k) (Theorem 1.13(b)). 2

Remark 1.15. (a) Corollary 1.14(a) and its proof should be compared to the construction of
the weight complex W (X) from [GS96, § 2.1]. Let j̃ : Ỹ •→ X̃• be a smooth hyper-envelope
(in the sense of [GS96]) of a closed immersion Y ↪→X of proper schemes whose complement
equals X. Both Ỹ • and X̃• give rise to complexes Z Ỹ • and Z X̃• in the category denoted
ZV in [GS96], that is, the Z-linearized category associated with the category V of smooth
proper schemes over k. Hence, we may form the complex Cone(j̃) in ZV. Applying the functor
C ◦L (see [Voe00, pp. 207, 223–224]), we obtain a complex of Nisnevich sheaves with transfers
whose cohomology sheaves are homotopy invariant. On the one hand, it should be possible to
employ [Voe00, Theorem 4.1.2] in order to show that the complex C(L(Cone(j̃))) represents
the motive with compact support M c

gm(X) in DM eff
gm(k). On the other hand, by definition

[GS96, § 2.1], the (opposite of the) complex Mgm(Cone(j̃)) represents W (X) in the homotopy
category over CHM eff(k). The statement

M c
gm(X) ∈DM eff

gm(k)
w>0
∩DM eff

gm(k)
w6d

from Corollary 1.14(a) should be compared to [GS96, Theorem 2(i)].
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(b) Similarly, the construction from [GN02, Theorem (5.10)(3)] of the object h(X) should be
compared to Corollary 1.14(b).

Corollary 1.16. Assume that k admits resolution of singularities. Suppose that we are given
a direct factor M of Mgm(X), for X ∈ Sm/k, which is abstractly isomorphic to a direct factor
of M c

gm(Y ), for some Y ∈ Sch/k. Then M is an effective Chow motive.

2. Weight zero

Throughout this section, we fix a weight structure w = (Cw60, Cw>0) on a triangulated
category C. Anticipating the situation which will be of interest in our applications, we formulate
Assumption 2.3 on the cone of a morphism u in C. As we shall see (Theorem 2.4), this hypothesis
ensures in particular unique factorization of u through an object of the heart Cw=0.

Definition 2.1. Denote by Cw60,6=−1 the full sub-category of Cw60 of objects without weight
minus one, and by Cw>0,6=1 the full sub-category of Cw>0 of objects without weight one.

Proposition 2.2. We have the following results.

(a) The inclusion of the heart ι− : Cw=0 ↪→Cw60,6=−1 admits a left adjoint

Gr0 : Cw60,6=−1 −→ Cw=0.

On objects, it is given by sending M to the term M>0 of a weight filtration

M6−2 −→M −→M>0 −→M6−2[1]

avoiding weight minus one. The composition Gr0 ◦ι− equals the identity on Cw=0.

(b) The inclusion of the heart ι+ : Cw=0 ↪→Cw>0,6=1 admits a right adjoint

Gr0 : Cw>0,6=1 −→ Cw=0.

On objects, it is given by sending M to the term M60 of a weight filtration

M60 −→M −→M>2 −→M60[1]

avoiding weight one. The composition Gr0 ◦ι+ equals the identity on Cw=0.

Proof. Given Proposition 1.7 and Corollary 1.9, all that remains to be proved is that the
objects M>0 (in (a)) respectively M60 (in (b)) actually do lie in Cw=0. However, this follows
from Proposition 1.4. 2

Let us now fix the following data.

(1) A morphism u :M−→M+ in C between M− ∈ Cw60 and M+ ∈ Cw>0.
(2) An exact triangle

C
v−−→M−

u−→M+
v+−→ C[1]

in C. Thus, the object C[1] is a fixed choice of cone of u.

We make the following rather restrictive hypothesis.

Assumption 2.3. The object C is without weights minus one and zero, that is, it admits a
weight filtration

C6−2
c−−→ C

c+−→ C>1
δC−→ C6−2[1]

avoiding weights minus one and zero.
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The validity of this assumption is independent of the choice of C. Here is our main technical
tool.

Theorem 2.4. Fix the data (1), (2), and assume that Assumption 2.3 holds.

(a) The object M− is without weight minus one, and M+ is without weight one.

(b) The morphisms v− ◦ c− : C6−2→M− and π0 :M−→Gr0 M− (respectively i0 : Gr0 M+→
M+ and (c+[1]) ◦ v+ :M+→ C>1[1]) can be canonically extended to exact triangles

and

(3) C6−2
v−c−−→ M−

π0−→Gr0 M−
δ−−→ C6−2[1]

(4) C>1
δ+−→Gr0 M+

i0−→M+
(c+[1])v+−→ C>1[1].

Thus, (3) is a weight filtration ofM− avoiding weight minus one, and (4) is a weight filtration
of M+ avoiding weight one.

(c) There is a canonical isomorphism Gr0 M−
∼−−→Gr0 M+. As a morphism, it is uniquely

determined by the property of making the diagram

M−
u //

π0

��

M+

Gr0 M− // Gr0 M+

i0

OO

commute. Its inverse makes the diagram

C>1
δC //

δ+
��

C6−2[1]

Gr0 M+
// Gr0 M−

δ−

OO

commute.

Proof. We start by choosing and fixing exact triangles

and
(3′) C6−2

v−c−−→ M−
π′0−→G−

δ−−→ C6−2[1]

(4′) C>1
δ−−→G+

i′0−→M+
(c+[1])v+−→ C>1[1].

Thus,G− is a cone of v− ◦ c−, andG+ a cone of c+ ◦ v+[−1]. Observe first that by Proposition 1.4,

G− ∈ Cw60 and G+ ∈ Cw>0.

Given this, the existence of some isomorphism G− ∼=G+ clearly implies parts (a) and (b) of our
statement.

Let us now show that there is an isomorphism α :G− ∼−−→G+ making the diagrams

M−
u //

π′0
��

M+

G−
α // G+

i′0

OO
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and

C>1
δC //

δ+
��

C6−2[1]

G+
α−1

// G−

δ−

OO

commute. To see this, consider the following diagram.

M−

u [1]

��

C6−2
v−◦c−oo

{{vvvvvvvvv

C

ccHHHHHHHHH

[1]

##HHHHHHHHH

M+[−1]

;;wwwwwwwww [1]

c+◦v+[−1]
// C>1[−1]

δC [−1]

OO

The three arrows marked [1] link the source to the shift by [1] of the target, the upper and
lower triangles are commutative, and the left and right triangles are exact. In the terminology
of [BBD82, § 1], this is a calotte inférieure, which thanks to the axiom TR4’ of triangulated
categories in the formulation of [BBD82, § 1.1.6] can be completed to an octahedron. In particular,
its contour

M−

u [1]

��

C6−2
v−◦c−oo

M+[−1]
[1]

c+◦v+[−1]
// C>1[−1]

δC [−1]

OO

is part of a calotte supérieure:

M−

u [1]

��

[1] ##HHHHHHHHH
C6−2

v−◦c−oo

G

;;vvvvvvvvv

{{wwwwwwwww

M+[−1]
[1]

c+◦v+[−1]
// C>1[−1]

δC [−1]

OO

ccHHHHHHHHH

Here, the upper and lower triangles are exact, and the left and right triangles are commutative.
Hence, the same object G[1] can be chosen as the cone of v− ◦ c− and of c+ ◦ v+[−1] and, in
addition, such that the morphisms u and δC factor through G[1]. For our fixed choices of cones,
this means precisely that there is an isomorphism G− ∼=G+ factorizing both u and δC .

As observed before, this implies parts (a) and (b). It remains to show the unicity statement
from part (c). For this, use the exact triangle (3) and apply Proposition 2.2(b) to see that

HomC(M−, M+) = HomC
(
Gr0 M−, M+

)
= HomCw=0(Gr0 M−,Gr0 M+).

Under this identification, a morphism M−→M+ is sent to its unique factorization Gr0 M−→
Gr0 M+. 2

Given Theorem 2.4(c), we may and do identify Gr0 M− and Gr0 M+.

1208

https://doi.org/10.1112/S0010437X0900414X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X0900414X


Chow motives without projectivity

Corollary 2.5. Fix the data (1), (2), and assume that Assumption 2.3 holds. Let M−→N →
M+ be a factorization of u through an object N of Cw=0. Then Gr0 M− = Gr0 M+ is canonically
identified with a direct factor of N , admitting a canonical direct complement.

Proof. By Proposition 2.2, the morphism M−→N factors uniquely through Gr0 M−, and N →
M+ factors uniquely through Gr0 M+. The composition Gr0 M−→N →Gr0 M+ is therefore
a factorization of u. By Theorem 2.4(c), it thus equals the canonical identification Gr0 M− =
Gr0 M+. Hence Gr0 M− = Gr0 M+ is a retract of N . Consider a cone of Gr0 M−→N in C:

Gr0 M− −→N −→ P −→Gr0 M−[1]

The exact triangle is split in the sense that P →Gr0 M−[1] is zero. Hence, the morphism N → P
admits a right inverse P →N , unique up to morphisms P →Gr0 M−. There is therefore a unique
right inverse i : P →N such that its composition with the projection p :N →Gr0 M+ = Gr0 M−
is zero. The image of i is then a kernel of p, whose existence is thus established. This is the
canonical complement of Gr0 M− = Gr0 M+ in N .

As a retract of N , the object P belongs to Cw=0 (condition (1) in Definition 1.1). 2

Remark 2.6. Our proof of Corollary 2.5 uses the triangulated structure of the category C. This
can be avoided when the heart Cw=0 is pseudo-Abelian. Namely, consider the composition

p :N −→Gr0M+ = Gr0 M− −→N.

It is an idempotent whose image is identified with Gr0 M− = Gr0 M+. Since Cw=0 is pseudo-
Abelian, the morphism p also admits a kernel.

For future use, we check the compatibility of Assumption 2.3 with tensor products. Assume
therefore that our category C is tensor triangulated. Thus, a bilinear bifunctor

⊗ : C × C −→ C

is given, and it is assumed to be triangulated in both arguments. Assume also that the weight
structure w is compatible with ⊗, that is, that

Cw60 ⊗ Cw60 ⊂ Cw60 and Cw>0 ⊗ Cw>0 ⊂ Cw>0.

It follows that the heart Cw=0 is a tensor category. Now fix a second set of data as above.

(1′) A morphism u′ :M ′−→M ′+ in C between M ′− ∈ Cw60 and M ′+ ∈ Cw>0.

(2′) An exact triangle

C ′
v′−−→M ′−

u′−→M ′+
v′+−→ C ′[1].

Fix an exact triangle

D −→M− ⊗M ′−
u⊗u′−→ M+ ⊗M ′+ −→D[1].

Proposition 2.7. If C and C ′ are without weights minus one and zero, then so is D. In
other words, the validity of Assumption 2.3 for u and u′ implies the validity of Assumption 2.3
for u⊗ u′.

Proof. We leave it to the reader to first construct an exact triangle

D −→M+ ⊗ C ′
v+⊗v′−−→ C ⊗M ′−[1]−→D[1],
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that is, to show that D[1] is isomorphic to the cone of the morphism v+ ⊗ v′−. Then, consider
the morphisms

δ− ⊗ v′−c′− : Gr0 M− ⊗ C ′6−2 −→ C6−2 ⊗M ′−[1]

and

(c+[1])v+ ⊗ δ′+ :M+ ⊗ C ′>1 −→ C>1 ⊗Gr0 M
′
+[1]

(notation as in Theorem 2.4). They are completed to give exact triangles

D6−2 −→Gr0 M− ⊗ C ′6−2 −→ C6−2 ⊗M ′−[1]−→D6−2[1]

and

D>1 −→M+ ⊗ C ′>1 −→ C>1 ⊗Gr0 M
′
+[1]−→D61[1].

By compatibility of w and ⊗, and by Proposition 1.4, the object D6−2 is of weights at most
minus two, and D>1 is of weights at least one. Finally, it remains to construct an exact triangle

D6−2 −→D −→D>1 −→D6−2[1].

We leave this to the reader (hint: use Theorem 2.4(c)). 2

Corollary 2.8. Under the hypotheses of Proposition 2.7, the canonical morphisms

Gr0(M− ⊗M ′−)−→Gr0 M− ⊗Gr0 M
′
−

and

Gr0 M+ ⊗Gr0 M
′
+ −→Gr0(M+ ⊗M ′+)

are isomorphisms.

3. Example: motives for modular forms

In his article [Sch90], Scholl constructs the Grothendieck motive M(f) for elliptic normalized
newforms f of fixed level n and weight w = r + 2, for positive integers n > 3 and r > 1. It is a
direct factor of a Grothendieck motive, which underlies a Chow motive denoted r

nW in [Sch90]
(this Chow motive depends only on n and r).

In order to establish the relation of r
nW to the theory of weights, let us begin by setting

up the notation. It is identical to that introduced in [Sch90], up to one exception: the letter
M used in [Sch90] to denote certain sub-schemes of the modular curve will change to S in
order to avoid confusion with the motivic notation used earlier in the present paper. Thus,
for our fixed n > 3 and r > 1, let Sn ∈ Sm/Q denote the modular curve parametrizing elliptic
curves with level n structure, j : Sn ↪→ Sn its smooth compactification, and S∞n the complement
of Sn in Sn. Thus, S∞n is of dimension zero. Write Xn→ Sn for the universal elliptic curve,
and Xn→ Sn for the universal generalized elliptic curve. Thus, Xn is smooth and proper over
Q. The r-fold fibre product X r

n :=Xn ×Sn
· · · ×Sn

Xn of Xn over Sn is singular for r > 2, and
can be desingularized canonically [Del69, Lemmas 5.4 and 5.5] (see also [Sch90, § 3]). Denote
by X

r

n this desingularization (X
r

n =X
r
n for r = 1). Write Xr

n for the r-fold fibre product Xn

over Sn. The symmetric group Sr acts on X
r
n by permutations, the rth power of the group

Z/nZ by translations, and the rth power of the group µ2 by inversion in the fibres. Altogether
[Sch90, § 1.1.1], this gives a canonical action of the semi-direct product

Γr := ((Z/nZ)2 o µ2)r o Sr
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by automorphisms on X
r
n . By the canonical nature of the desingularization, this extends to an

action of Γr by automorphisms on X
r

n . Of course, this action respects the open sub-scheme Xr
n

of X
r

n .
As in [Sch90, § 1.1.2], let ε : Γr→{±1} be the morphism which is trivial on (Z/nZ)2r, is the

product map on µr2, and is the sign character on Sr.

Definition 3.1. We make the following definitions.

(a) Let F denote the Z-algebra Z[1/(2n · r!)].
(b) Let e denote the idempotent in the group ring F [Γr] associated with ε:

e :=
1

(2n2)r · r!
∑
γ∈Γr

ε(γ)−1 · γ =
1

(2n2)r · r!
∑
γ∈Γr

ε(γ) · γ

(observe that ε−1 = ε).

Let M be an object of an F -linear pseudo-Abelian category. If M comes equipped with an
action of the group Γr, let us agree to denote by M e the direct factor of M on which Γr acts
via ε (in other words, the image of e). Let us define the object r

nW as in [Sch90, § 1.2.2].

Definition 3.2. Denote by r
nW :=Mgm

(
X

r

n

)e ∈DM eff
gm(Q)

F
the image of the idempotent e

on Mgm

(
X

r

n

)
.

Given that X
r

n is smooth and proper, we see that r
nW is an effective Chow motive over Q.

As above, denote by Mgm(Xr
n)e and M c

gm(Xr
n)e the images of e on Mgm(Xr

n) and M c
gm(Xr

n),
respectively. The following can be seen as a translation into the language of geometrical motives
of the detailed analysis from [Sch90, §§ 2 and 3] of the geometry of the boundary of X

r

n .

Theorem 3.3. We have the following results.

(a) The motive M c
gm(Xr

n)e is without weight one. In particular, the object Gr0 M
c
gm(Xr

n)e is
defined.

(b) The restriction

jr,∗n : rnW =Mgm(X
r

n )e −→M c
gm(Xr

n)e

induced by the open immersion jrn of Xr
n into X

r

n factors canonically through an
isomorphism

Gr0 j
r,∗
n : rnW ∼−−→Gr0 M

c
gm(Xr

n)e.

(c) There is an exact triangle in DM eff
gm(Q)

F

Cr
δ+−→Gr0 M

c
gm(Xr

n)e i0−→M c
gm(Xr

n)e
p+−→ Cr[1],

where

Cr =Mgm(S∞n )[r]

is pure of weight r. The exact triangle is canonical up to a replacement of the triple of
morphisms (δ+, i0, p+) by ((−1)rδ+, i0, (−1)rp+).

Before giving the proof of Theorem 3.3, let us list some of its consequences. First, duality for
smooth schemes [Voe00, Theorem 4.3.7(3)] implies the following.
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Corollary 3.4. We have the following results.

(a) The motive Mgm(Xr
n)e is without weight minus one. In particular, the object Gr0 Mgm(Xr

n)e

is defined.

(b) The morphism

jrn :Mgm(Xr
n)e −→Mgm(X

r

n )e = r
nW

factors canonically through an isomorphism

Gr0 j
r
n : Gr0 Mgm(Xr

n)e ∼−−→ r
nW.

(c) There is an exact triangle in DM eff
gm(Q)

F

C−(r+1)
ι−−→Mgm(Xr

n)e π0−→Gr0 Mgm(Xr
n)e

δ−−→ C−(r+1)[1],

where

C−(r+1) =Mgm(S∞n )(r + 1)[r + 1]

is pure of weight −(r + 1). The exact triangle is canonical up to a replacement of the triple
of morphisms (ι−, π0, δ−) by ((−1)rι−, π0, (−1)rδ−).

Remark 3.5. We have the following remarks.

(a) It is well known that the motive Mgm(S∞n ) is isomorphic to a finite sum of copies of
Mgm(Spec Q(µn)).

(b) As the proof will show, Theorem 3.3(c) and Corollary 3.4(c) remain true for r = 0 if one
replaces Gr0 M

c
gm(Xr

n)e and Gr0 Mgm(Xr
n)e by Mgm(Sn).

Next, note that Theorem 3.3(b) and Corollary 3.4(b) together imply the following.

Corollary 3.6. The canonical morphism Mgm(Xr
n)e→M c

gm(Xr
n)e factors canonically through

an isomorphism

Gr0 Mgm(Xr
n)e ∼−−→Gr0 M

c
gm(Xr

n)e.

For any object M of DM eff
gm(Q)

F
, define motivic cohomology

Hp
M(M, F (q)) := HomDMeff

gm(Q)
F

(M, Z(q)[p]).

When M =Mgm(Y ) for a scheme Y ∈ Sm/Q, this gives motivic cohomology Hp
M(Y, Z(q)) of Y ,

tensored with F = Z[1/(2n · r!)]. Thus, for example,

Hr+1
M (C−(r+1), F (r + 1)) =H0

M(S∞n , Z(0))⊗Z F.

Similarly,

Hr+2
M (C−(r+1), F (r + `+ 2)) =H1

M(S∞n , Z(`+ 1))⊗Z F
for any integer `. We get the following refinement of [Sch90, Corollary 1.4.1].

Corollary 3.7. Let ` > 0 be a second integer. Then the kernel of the morphism

HM(ι−) : (Hr+2
M (Xr

n, Z(r + `+ 2))⊗Z F )e −→H1
M(S∞n , Z(`+ 1))⊗Z F

equals Hr+2
M (Gr0 Mgm(Xr

n)e, F (r + `+ 2)).

Proof. This follows from the exact triangle of Corollary 3.4(c), and from the vanishing of
H0
M(S∞n , Z(`+ 1)) (since `+ 1 > 1). 2
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Recall that following ideas of Beilinson [Bei86], this result can be employed as follows:
using the Eisenstein symbol defined in [Bei86] one constructs elements in (Hr+2

M (Xr
n, Z(r +

`+ 2))⊗Z Q)e. By Corollary 3.7, linear combinations of such elements vanishing under HM(ι−)
lie in the sub-Q-vector space Hr+2

M (Gr0 Mgm(Xr
n)e,Q(r + `+ 2)). It can then be shown that

there are sufficiently many such linear combinations, in the sense that their images under the
regulator generate Deligne cohomology [Sch88, §§ 2 and 4] Hr+2

D (Gr0 Mgm(Xr
n)e/R, R(r + `+ 2)).

Furthermore, the Q-span of these images has the relation to the leading coefficient at s=−` of
the L-function of Gr0 Mgm(Xr

n)e, predicted by Beilinson’s conjecture. For details, see forthcoming
work of Scholl [Sch97].

Proof of Theorem 3.3. Denote by X
r,∞
n the complement of the smooth scheme Xr

n in the
smooth and proper scheme X

r

n . Localization for the motive with compact support [Voe00,
Proposition 4.1.5] shows that there is a canonical exact triangle

Mgm(X
r

n )e
jr,∗
n−→M c

gm(Xr
n)e −→Mgm(X

r,∞
n )e[1]−→Mgm(X

r

n )e[1].

Following the strategy from [Sch90], we show the following claim:

(C) Mgm(X
r,∞
n )e =M c

gm(X
r,∞
n )e ∼−−→M c

gm(S∞n )[r] =Mgm(S∞n )[r]

canonically up to a sign (−1)r. In particular, the motive Mgm(X
r,∞
n )e is pure of weight r > 1.

Claim (C) implies that the above exact triangle is a weight filtration of M c
gm(Xr

n)e avoiding

weight one. Furthermore, the restriction jr,∗n identifies Mgm(X
r

n )e with Gr0 M
c
gm(Xr

n)e.

To show claim (C), observe first that the motivic version of [Sch90, Statement 1.3.0]
remains valid: for any S ∈ Sm/Q, there is a decomposition in DM eff

gm(Q)
F

(in fact, already
in DM eff

gm(Q)Z[1/2]
)

M c
gm(Gm ×Q S)∼=M c

gm(S)(1)[2]⊕M c
gm(S)[1],

such that inversion x 7→ x−1 on Gm acts on the first factor by plus one, and on the second by
minus one. The projection onto the first factor is canonical, and the projection onto the second
factor is canonical up to a sign. Proof: localization [Voe00, Proposition 4.1.5] for the inclusion
of Gm into the projective line; the choice of the second projection is equivalent to the choice of
one of the residue morphisms to zero or infinity. Fix one of the two choices of projection

π− :M c
gm(Gm)−→→M c

gm(Spec Q)[1]

(and use the same notation for M c
gm(Gm ×Q S)−→→M c

gm(S)[1] obtained by base change via S).
Then to define the morphism

j0,∗ :M c
gm(X

r,∞
n )e −→M c

gm(S∞n )[r],

consider the following.

(i) The intersection X
r,∞,reg

n of X
r,∞
n with the non-singular part X r,reg

n of X r
n . Explanation:

by [Sch90, Theorem 3.1.0 (ii)], the desingularization X
r

n −→→X
r
n is an isomorphism over

X
r,reg
n . Thus, X

r,∞,reg

n is an open sub-scheme of X
r,∞
n .

(ii) The neutral component X
r,∞,0
n of X

r,∞,reg

n , that is, its intersection with the Néron model

of Xr
n. Thus, X

r,∞,0
n is an open sub-scheme of X

r,∞,reg

n .
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(iii) The identification ofX
r,∞,0
n with the rth power (over the base S∞n ) of the neutral component

X
1,∞,0
n for r = 1. The latter can be identified with Gm ×Q S∞n , canonically up to an

automorphism x 7→ x−1. Hence, X
r,∞,0
n

∼= Gr
m ×Q S∞n , canonically up to an automorphism

(x1, . . . , xr) 7−→ (x1, . . . , xr)−1.

The three steps (i)–(iii) give an open immersion

j0 : Gr
m ×Q S∞n ↪−→X

r,∞
n ,

which by contravariance of M c
gm induces a morphism

j0,∗ :M c
gm(X

r,∞
n )e −→M c

gm(Gr
m ×Q S∞n ).

Its composition with the rth power of π− gives the desired morphism

M c
gm(X

r,∞
n )e −→M c

gm(S∞n )[r],

equally denoted j0,∗, and canonical up to a sign (−1)r. In the context of twisted Poincaré duality
theories (H∗, H∗), Scholl’s main technical result [Sch90, Theorem 1.3.3] is equivalent to stating
that the morphism induced by j0,∗ on the level of the theory H∗ is an isomorphism.

Our observation is simply that the same proof as that given in [Sch90] runs through, with
(H∗, H∗) replaced by (Mgm, M

c
gm).

More precisely, [Sch90, Lemma 1.3.1] holds for M c
gm, and hence the proof of [Sch90,

Proposition 2.4.1] runs through for M c
gm. The latter result implies that the schemes occurring in

a suitable stratification of the complement of X
r,∞,reg

n in X
r,∞
n all have trivial M c,e

gm (cf. [Sch90,
Proof of Theorem 3.1.0(ii)]. This shows that step (i) induces an isomorphism

M c
gm(X

r,∞
n )e ∼−−→M c

gm(X
r,∞,reg

n )e.

To deal with step (ii), one shows that the group Γr acts transitively on the set of components
of the singular part of X

r,∞,reg

n , and that the stabilizer of each component admits a subgroup of
order two acting trivially on the component, but having trivial intersection with the kernel of ε
(cf. [Sch90, Proof of Theorem 3.1.0(iii)]). This shows first that the singular part of X

r,∞,reg

n does
not contribute to M c,e

gm, and then that

M c
gm(X

r,∞,reg

n )e −→M c
gm(X

r,∞,0
n )e

′

is an isomorphism, where e′ denotes the projection onto the eigenspace for the restriction of ε to
the subgroup µr2 o Sr of Γr. To conclude, we apply the motivic version of [Sch90, Lemma 1.3.1]
to see that π⊗r− induces an isomorphism M c

gm(Gr
m ×Q S∞n )e

′ ∼−−→M c
gm(S∞n )[r]. 2

Remark 3.8. We make the following remarks.

(a) The proof of Theorem 3.3 shows that the open immersion of the non-singular part X r,reg
n

of X r
n into X

r

n induces an isomorphism

Mgm(X
r

n )e ∼−−→M c
gm(X r,reg

n )e.

In particular, M c
gm(X r,reg

n )e is a Chow motive. By duality for smooth schemes [Voe00,
Theorem 4.3.7 3],

Mgm(X r,reg
n )e −→Mgm(X

r

n )e
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is also an isomorphism, and hence so is the canonical morphism

Mgm(X r,reg
n )e −→M c

gm(X r,reg
n )e.

The construction of the motives M(f) can therefore also be done using the smooth non-
proper scheme X r,reg

n instead of X
r

n .

(b) A slightly closer look at the proof of [Sch90, Theorem 3.1.0(ii)] reveals that the open
immersion of X r,reg

n into X r
n also induces an isomorphism

Mgm(X r
n )e ∼−−→M c

gm(X r,reg
n )e.

By remark (a), Mgm(X r
n )e =M c

gm(X r
n )e is a Chow motive. The construction of the motives

M(f) can therefore also be done using the non-smooth (for r > 2) proper scheme X r
n instead

of X
r

n .

4. Weights, boundary motive and interior motive

This section contains our main result (Theorem 4.3). We list its main consequences, and define in
particular the motivic analogue of (certain direct factors of) interior cohomology (Definition 4.9).
Throughout, we assume k to admit resolution of singularities.

Let us fix X ∈ Sm/k. The boundary motive ∂Mgm(X) of X (see [Wil06, Definition 2.1]) fits
into a canonical exact triangle

(∗) ∂Mgm(X)−→Mgm(X)−→M c
gm(X)−→ ∂Mgm(X)[1]

in DM eff
gm(k). The algebra of finite correspondences c(X, X) acts on Mgm(X) (see [Voe00,

p. 190]). Denote by tc(X, X) the transposed algebra: a cycle Z on X ×k X lies in tc(X, X)
if and only if tZ ∈ c(X, X). The definition of composition of correspondences [Voe00] shows that
the intersection c(X, X) ∩ tc(X, X) acts on M c

gm(X).

Definition 4.1. We make the following definitions.

(a) Define the algebra c1,2(X, X) as the intersection of the algebras c(X, X) and tc(X, X). As
an Abelian group, c1,2(X, X) is thus free on the symbols (Z), where Z runs through the
integral closed sub-schemes of X ×k X, such that both projections to the components X
are finite on Z, and map Z surjectively to a connected component of X. Multiplication in
c1,2(X, X) is defined by composition of correspondences as in [Voe00, p. 190].

(b) Denote by t the canonical anti-involution on c1,2(X, X) mapping a cycle Z to tZ.

This results directly from the definitions that the algebra c1,2(X, X) acts on the triangle (∗)
in the sense that it acts on the three objects, and the morphisms are c1,2(X, X)-equivariant.
Denote by c̄1,2(X, X) the quotient of c1,2(X, X) by the kernel of this action. Fix a commutative
flat Z-algebra F , and an idempotent e in c̄1,2(X, X)⊗Z F . Denote by Mgm(X)e, M c

gm(X)e and
∂Mgm(X)e the images of e on Mgm(X), M c

gm(X) and ∂Mgm(X), respectively, considered as
objects of the category DM eff

gm(k)
F

. We are ready to set up the data (1), (2) considered in § 2,
for C :=DM eff

gm(k)
F

.

(1) The morphism u is the morphism Mgm(X)e→M c
gm(X)e. By Corollary 1.14 and

Definition 1.1(1), the object Mgm(X)e belongs indeed to DM eff
gm(k)

F,w60
, and M c

gm(X)e

to DM eff
gm(k)

F,w>0
.
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(2) Our choice of cone of u is ∂Mgm(X)e[1], together with the exact triangle

∂Mgm(X)e
v−−→Mgm(X)e u−→M c

gm(X)e
v+−→ ∂Mgm(X)e[1]

in DM eff
gm(k)

F
induced by (∗).

Observe that our data (1), (2) are stable under the natural action of

GCenc̄1,2(X,X)(e) := {z ∈ c̄1,2(X, X)⊗Z F, ze= eze}.

In particular, they are stable under the action of the centralizer Cenc̄1,2(X,X)(e) of e in
c̄1,2(X, X)⊗Z F . In this context, Assumption 2.3 reads as follows.

Assumption 4.2. The direct factor ∂Mgm(X)e of the boundary motive of X is without weights
minus one and zero.

Thus, we may and do fix a weight filtration

C6−2
c−−→ ∂Mgm(X)e

c+−→ C>1
δC−→ C6−2[1]

avoiding weights minus one and zero. Theorem 2.4, Corollary 2.5 and the adjunction property
from Proposition 2.2 then give the following.

Theorem 4.3. Fix the data (1), (2), and assume that Assumption 4.2 holds.

(a) The motive Mgm(X)e is without weight minus one, and the motive M c
gm(X)e is without

weight one. In particular, the effective Chow motives Gr0 Mgm(X)e and Gr0 M
c
gm(X)e are

defined, and they carry a natural action of GCenc̄1,2(X,X)(e).
(b) There are canonical exact triangles

and

(3) C6−2
v−c−−→ Mgm(X)e π0−→Gr0 Mgm(X)e

δ−−→ C6−2[1]

(4) C>1
δ+−→Gr0 M

c
gm(X)e i0−→M c

gm(X)e
(c+[1])v+−→ C>1[1],

which are stable under the natural action of GCenc̄1,2(X,X)(e).

(c) There is a canonical isomorphism Gr0 Mgm(X)e ∼−−→Gr0 M
c
gm(X)e in CHM eff(k)F . As a

morphism, it is uniquely determined by the property of making the diagram

Mgm(X)e u //

π0

��

M c
gm(X)e

Gr0 Mgm(X)e // Gr0 M
c
gm(X)e

i0

OO

commute; in particular, it is GCenc̄1,2(X,X)(e)-equivariant. Its inverse makes the diagram

C>1
δC //

δ+
��

C6−2[1]

Gr0 M
c
gm(X)e // Gr0 Mgm(X)e

δ−

OO

commute.

(d) Let N ∈ CHM(k)F be a Chow motive. Then π0 and i0 induce isomorphisms

HomCHM(k)F
(Gr0 Mgm(X)e, N) ∼−−→HomDMgm(k)F

(Mgm(X)e, N)
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and

HomCHM(k)F
(N,Gr0 M

c
gm(X)e) ∼−−→HomDMgm(k)F

(N,M c
gm(X)e).

(e) Let Mgm(X)e→N →M c
gm(X)e be a factorization of u through a Chow motive N ∈

CHM(k)F . Then Gr0 Mgm(X)e = Gr0 M
c
gm(X)e is canonically a direct factor of N , with a

canonical direct complement.

We explicitly mention the following immediate consequence of Theorem 4.3.

Corollary 4.4. Fix X and e, and suppose that ∂Mgm(X)e = 0, that is, that

u :Mgm(X)e ∼−−→M c
gm(X)e.

Then Mgm(X)e ∼=M c
gm(X)e are effective Chow motives.

Of course, this also follows from Corollary 1.16. The author knows of no proof of Corollary 4.4
‘avoiding weights’ when e 6= 1. (For e= 1, we leave it to the reader to show (using for
example [Voe00, Corollary 4.2.5]) that the assumption ∂Mgm(X) = 0 is equivalent to X being
proper.)

Remark 4.5. It is not difficult to see that Assumption 4.2 is actually implied by parts (a) and (c)
of Theorem 4.3.

Henceforth, we identify Gr0 Mgm(X)e and Gr0 M
c
gm(X)e via the canonical isomorphism of

Theorem 4.3(c).

Corollary 4.6. In the situation considered in Theorem 4.3, let X̃ be any smooth
compactification of X. Then Gr0 Mgm(X)e is canonically a direct factor of the Chow motive

Mgm(X̃), with a canonical direct complement.

Proof. Indeed, the morphism u factors canonically through Mgm(X̃):

Mgm(X)e ↪−→Mgm(X)−→Mgm(X̃)−→M c
gm(X)−→→M c

gm(X)e.

Hence, we may apply Theorem 4.3(e). 2

Recall that the category CHM(k)F is pseudo-Abelian. Thus, the construction of a sub-
motive of Mgm(X̃) does not a priori necessitate the identification, but only the existence of
a complement. In our situation, Corollary 4.6 states that the complement of Gr0 Mgm(X)e is
canonical. This shows that Assumption 4.2 is indeed rather restrictive, an observation confirmed
by part (c) of the following results on the Hodge theoretic and `-adic realizations ([Hub04,
§ 2 and Corrigendum]; see [DG05, § 1.5] for a simplification of this approach). They can be
seen as applications of the cohomological weight spectral sequence [Bon07, Theorem 2.4.1 and
Remark 2.4.2] in a very special case.

Theorem 4.7. Keep the situation considered in Theorem 4.3. Assume that k can be embedded
into the field C of complex numbers. Fix one such embedding. Let H∗ be the Hodge theoretic
realization [Hub04, Corollary 2.3.5 and Corrigendum], followed by the canonical cohomology
functor, that is, the functor on DM eff

gm(k)
F

given by Betti cohomology of the topological space of
C-valued points, tensored with Q⊗Z F , and with its natural mixed Hodge structure. Let n ∈ N.

(a) The morphisms π0 and i0 induce isomorphisms

Hn(Gr0 Mgm(X)e) ∼−−→WnH
n(Mgm(X)e) = (WnH

n(X(C),Q)⊗Z F )e
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and

(Hn
c (X(C),Q)⊗Z F )e

(Wn−1Hn
c (X(C),Q)⊗Z F )e

=
Hn(M c

gm(X)e)
Wn−1Hn(M c

gm(X)e)
∼−−→Hn(Gr0 Mgm(X)e).

Here, Wr denotes the rth filtration step of the weight filtration of a mixed Hodge structure
(thus, the weights of Hn(X(C),Q) are at least n, and those of Hn

c (X(C),Q) are at most n).

(b) The isomorphisms of part (a) identify Hn(Gr0 Mgm(X)e) with the image of the natural
morphism

(Hn
c (X(C),Q)⊗Z F )e −→ (Hn(X(C),Q)⊗Z F )e.

(c) The image of (Hn
c (X(C),Q)⊗Z F )e in (Hn(X(C),Q)⊗Z F )e equals the lowest weight

filtration step Wn of (Hn(X(C),Q)⊗Z F )e.

The reader should be aware that the algebra c̄1,2(X, X) acts contravariantly on Betti
cohomology Hn(X(C),Q). The same remark applies of course to the `-adic realization, which
we consider now.

Theorem 4.8. Keep the situation considered in Theorem 4.3, and fix a prime ` > 0. Assume
that k is finitely generated over its prime field, and of characteristic zero. Let H∗ be the `-adic
realization [Hub04, Corollary 2.3.4 and Corrigendum], followed by the canonical cohomology
functor, that is, the functor on DM eff

gm(k)
F

given by `-adic cohomology of the base change to a

fixed algebraic closure k̄ of k, tensored with Q` ⊗Z F , and with its natural action of the absolute
Galois group Gk of k. Let n ∈ N.

(a) The morphisms π0 and i0 induce isomorphisms

Hn(Gr0 Mgm(X)e) ∼−−→WnH
n(Mgm(X)e) = (WnH

n(Xk̄,Q`)⊗Z F )e

and

(Hn
c (Xk̄,Q`)⊗Z F )e

(Wn−1Hn
c (Xk̄,Q`)⊗Z F )e

=
Hn(M c

gm(X)e)
Wn−1Hn(M c

gm(X)e)
∼−−→Hn(Gr0 Mgm(X)e).

Here, Wr denotes the rth filtration step of the weight filtration of a Gk-module, and Xk̄

denotes the base change X ⊗k k̄ of X to k̄ (thus, the weights of Hn(Xk̄,Q`) are at least n,
and those of Hn

c (Xk̄,Q`) are at most n).

(b) The isomorphisms of part (a) identify Hn(Gr0 Mgm(X)e) with the image of the natural
morphism

(Hn
c (Xk̄,Q`)⊗Z F )e −→ (Hn(Xk̄,Q`)⊗Z F )e.

(c) The image of (Hn
c (Xk̄,Q`)⊗Z F )e in (Hn(Xk̄,Q`)⊗Z F )e equals the lowest weight filtration

step Wn of (Hn(Xk̄,Q`)⊗Z F )e.

Definition 4.9. Fix the data (1), (2), and assume that Assumption 4.2 holds. We call
Gr0 Mgm(X)e the e-part of the interior motive of X.

This terminology is motivated by Theorems 4.7(b) and 4.8(b), which show that after
passage to rational coefficients, the realizations of Gr0 Mgm(X)e are classes of complexes, whose
cohomology equals the part of the interior cohomology of X fixed by e.

Proof of Theorems 4.7 and 4.8. Consider the exact triangle

(∗) C6−2 −→Mgm(X)e π0−→Gr0 Mgm(X)e −→ C6−2[1]
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from Theorem 4.3(b). Recall that as suggested by the notation, the motive C6−2 is of weights
at most minus two. The cohomological functor H∗ transforms it into a long exact sequence

Hn−1(C6−2)−→Hn(Gr0 Mgm(X)e)
Hn(π0)−→ Hn(Mgm(X)e)−→Hn(C6−2).

The essential information we need to use is that Hn transforms Chow motives into objects which
are pure of weight n, for any n ∈ N. Since C6−2 admits a filtration whose cones are Chow motives
sitting in degrees at least two, the object Hn(C6−2) admits a filtration whose graded pieces are
of weights at least n+ 2. Since our coefficients are Q-vector spaces, there are no non-trivial
morphisms between objects of disjoint weights. The above long exact sequence then shows that

Hn(π0) :Hn(Gr0 Mgm(X)e)−→Hn(Mgm(X)e)

is injective, and its image is identical to the part of weight n of Hn(Mgm(X)e). This shows the
part of claim (a) concerning π0.

Now recall that the realization functor is compatible with the tensor structures
[Hub04, Corollaries 2.3.5 and 2.3.4], and sends the Tate motive Z(1) to the dual of the Tate
object [Hub04, Theorem 2.3.3]. It follows that it is compatible with duality. Since, on the one
hand, Mgm(X) and M c

gm(X) are in duality [Voe00, Theorem 4.3.7 3] and, on the other hand, the
same is true for Betti, respectively `-adic cohomology and Betti, respectively `-adic cohomology
with compact support, we see that Hn sends the motive with compact support M c

gm(X) to
cohomology with compact support Hn

c of X.

Now repeat the above argument for the exact triangle

(4) C>1 −→Gr0 M
c
gm(X)e i0−→M c

gm(X)e −→ C>1[1]

from Theorem 4.3(b). This shows the remaining part of claim (a).

Claims (b) and (c) follow, once we observe that the composition of Hn(i0) and Hn(π0)
equals the canonical morphism from cohomology with compact support to cohomology without
support. 2

Remark 4.10. We make the following remarks.

(a) The proof of Theorems 4.7 and 4.8 uses the fact that in the respective target categories
(mixed Hodge structures in Theorem 4.7, Galois representations in Theorems 4.8), there
are no non-trivial morphisms between objects of disjoint weights. This is true as long as we
work with coefficients which are Q-vector spaces. Note that recent work of Lecomte [Lec08]
establishes the existence of a Betti realization which does not require the passage to
Q-coefficients. In particular [Lec08, Theorem 1.1], for a smooth quasi-projective variety
X, it yields the classical singular cohomology of the topological space X(C). We have no
statement (and not even a guess) to offer on the image of Gr0 Mgm(X)e under the realization
of [Lec08].

(b) The author does not know whether for general Y ∈ Sm/k it is possible (or even reasonable
to expect) to find a complex computing interior (Betti or `-adic) cohomology of Y , and
through which the natural morphism RΓc(Y )→RΓ(Y ) factors.

Remark 4.11. When k is a number field, Theorems 4.7(b) and 4.8(b) tell us in particular that the
L-function of the Chow motive Gr0 Mgm(X)e is computed via (the e-part of) interior cohomology
of X.
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Example 4.12. Let C be a smooth projective curve, and P ∈ C a k-rational point. Put X :=
C − P . Localization [Voe00, Proposition 4.1.5] shows that there is an exact triangle

Mgm(P )−→Mgm(C)−→M c
gm(X)−→Mgm(P )[1].

The morphism Mgm(P )→Mgm(C) is split; hence M c
gm(X) is a direct factor of Mgm(C). It

is therefore a Chow motive. By duality [Voe00, Theorem 4.3.7(3)], the same is then true for
Mgm(X). In particular, both Mgm(X) and M c

gm(X) are pure of weight zero. However, the
morphism u :Mgm(X)→M c

gm(X) is not an isomorphism (look at degree zero or minus two, or
check that the conclusions of Theorems 4.7(c) and 4.8(c) do not hold). Therefore, Assumption 4.2
is not fulfilled for e= 1. Of course, this can be seen directly: the boundary motive ∂Mgm(X) has
a weight filtration

Z(1)[1]−→ ∂Mgm(X)−→ Z(0)−→ Z(1)[2]
(which is necessarily split since there are no non-trivial morphisms from Z(0) to Z(1)[2]).
Orthogonality (3) in Definition 1.1 then shows that there are no non-trivial morphisms from an
object of weights at most minus two to ∂Mgm(X), and no non-trivial morphisms from ∂Mgm(X)
to an object of weights at least one. The object ∂Mgm(X) being non-trivial, we conclude that it
does not admit a weight filtration avoiding weights minus one and zero.

More generally, we have the following, which again illustrates just how restrictive
Assumption 4.2 is.

Proposition 4.13. Fix data (1) and (2) as before. Assume that X admits a smooth
compactification X̃ such that the complement Y = X̃ −X is smooth. Then the following
statements are equivalent.

(i) Assumption 4.2 is valid, that is, the object ∂Mgm(X)e is without weights minus one and
zero.

(ii) The object ∂Mgm(X)e is trivial (hence, the conclusion of Corollary 4.4 holds).

Proof. Statement (ii) clearly implies statement (i). In order to show that it is implied by
statement (i), let us show that the hypothesis on X̃ and Y forces the boundary motive ∂Mgm(X)
to lie in the intersection

DM eff
gm(k)

w>−1
∩DM eff

gm(k)
w60

.

By orthogonality (3) in Definition 1.1, the same is then true for its direct factor ∂Mgm(X)e.
Thus, the only way for ∂Mgm(X)e to avoid weights minus one and zero is to be trivial (again by
orthogonality).

In order to show our claim, apply [Wil06, Proposition 2.4] to see that ∂Mgm(X) is isomorphic
to the shift by [−1] of a choice of cone of the canonical morphism

Mgm(Y )⊕Mgm(X)−→Mgm(X̃).

In particular, there is a morphism c+ : ∂Mgm(X)→Mgm(Y ), and an exact triangle

(W ) C− −→ ∂Mgm(X)
c+−→Mgm(Y )−→ C−[1],

where C− equals the shift by [−1] of a cone of

Mgm(X)−→Mgm(X̃).

By assumption, Y is smooth and proper, hence Mgm(Y ), as a Chow motive, is pure of weight zero.
Duality for smooth schemes [Voe00, Theorem 4.3.7 3] shows that C− is pure of weight minus one.
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Hence, (W ) is a weight filtration of ∂Mgm(X) by objects of weights minus one and zero.
Proposition 1.4 then shows that ∂Mgm(X) belongs indeed to

DM eff
gm(k)

w>−1
∩DM eff

gm(k)
w60

. 2

Corollary 4.6 allows us to say more about the étale realizations.

Theorem 4.14. Keep the situation considered in Theorem 4.3, and fix a prime ` > 0. Assume
that k is the quotient field of a Dedekind domain A, and that k is of characteristic zero. Fix a
non-zero prime ideal p of A, and let p denote its residue characteristic.

(a) Assume that p 6= `. Then a sufficient condition for the `-adic realization H∗(Gr0 Mgm(X)e)
to be unramified at p is the existence of some smooth compactification of X having good
reduction at p. A sufficient condition for H∗(Gr0 Mgm(X)e) to be semi-stable at p is the
existence of some smooth compactification of X having simple semi-stable reduction at p.

(b) Assume that p= `, and that the residue field A/p is perfect. Then a sufficient condition
for the p-adic realization H∗(Gr0 Mgm(X)e) to be crystalline at p is the existence of
some smooth compactification of X having good reduction at p. A sufficient condition for
H∗(Gr0 Mgm(X)e) to be semi-stable at p is the existence of some smooth compactification
of X having simple semi-stable reduction at p.

Proof. By Corollary 4.6, Gr0 Mgm(X)e is a direct factor of the motive Mgm(X̃) of any smooth
compactification X̃ of X. Hence, H∗(Gr0 Mgm(X)e) is a direct factor of the cohomology of any
such X̃.

Part (a) uses the spectral sequence [Del72, Scholie 2.5] relating cohomology with coefficients
in the vanishing cycle sheaves ψq to cohomology of the generic fibre X̃. By [RZ82, Korollarie 2.25]
([Del72, Theorem 3.3] when p= 0), our assumption on the reduction of X̃ implies that the inertia
group acts trivially on the ψq. It therefore acts unipotently on the cohomology of X̃. Part (b)
follows from the Cst-conjecture, proved by Tsuji [Tsu99, Theorem 0.2] (see also [Niz08] for a
proof via K-theory). 2

By [Voe00, Theorem 4.3.7], the category DMgm(k)F is a rigid tensor triangulated
category. Furthermore, if X is smooth of pure dimension n, then the objects Mgm(X) and
M c
gm(X)(−n)[−2n] are canonically dual to each other. By [Wil06, Theorem 6.1], the boundary

motive ∂Mgm(X) is canonically dual to ∂Mgm(X)(−n)[−(2n− 1)]. Furthermore, these dualities
fit together to give an identification of the dual of the exact triangle

(∗) ∂Mgm(X)−→Mgm(X)−→M c
gm(X)−→ ∂Mgm(X)[1]

and the exact triangle (∗)(−n)[−2n]. The construction of the duality isomorphism [Wil06] shows
that the dual of the action of the algebra c̄1,2(X, X) on (∗) equals the natural (anti-)action given
by the composition of the canonical action on (∗)(−n)[−2n], preceded by the anti-involution t.
Consider the idempotent te (i.e. the transposition of e).

Proposition 4.15. We have the following results.

(a) Assumption 4.2 is equivalent to any of the following statements.

(i) Both ∂Mgm(X)e and ∂Mgm(X)
te are without weight minus one.

(ii) Both ∂Mgm(X)e and ∂Mgm(X)
te are without weight zero.

In particular, Assumption 4.2 is satisfied for e if and only if it is satisfied for the
transposition te.
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(b) Assume that e is symmetric, that is, that e= te. Then Assumption 4.2 is equivalent to any
of the following statements:

(i) ∂Mgm(X)e is without weight minus one;
(ii) ∂Mgm(X)e is without weight zero.

Proof. Indeed, ∂Mgm(X)e is dual to ∂Mgm(X)
te(−n)[−(2n− 1)]. Now observe that

Z(−n)[−(2n− 1)] is pure of weight one. Then use unicity of weight filtrations avoiding weight
minus one respectively weight zero (Corollary 1.9). 2

Example 4.16. Assume that an abstract group G acts by automorphisms on X.
(a) The action of G translates into a morphism of algebras Z[G]→ c1,2(X, X). This morphism

transforms the natural anti-involution ∗ of Z[G] induced by g 7→ g−1 into the anti-involution t of
c1,2(X, X).

(b) Let F be a flat Z-algebra, and e an idempotent in F [G]. The morphism of part (a), then
allows us to consider the image of e (equally denoted by e) in c1,2(X, X), then in c̄1,2(X, X),
and to ask whether Assumption 4.2 is valid for e.

(c) As a special case of part (b), consider the case when G is finite, its order r is invertible
in F , and e is the idempotent in F [G] associated with a character ε on G with values in the
multiplicative group F ∗:

e=
1
r

∑
g∈G

ε(g)−1 · g.

Observe that the idempotent e ∈ c̄1,2(X, X) is symmetric if ε−1 = ε.
(d) Let us consider the situation from § 3, and show that Assumption 4.2 is satisfied for

X =Xr
n ∈ Sm/Q and

e=
1

(2n2)r · r!
∑
γ∈Γr

ε(γ)−1 · γ.

As in § 3, denote by X
r,∞
n the complement of Xr

n in X
r

n . By [Wil06, Proposition 2.4], the object
∂Mgm(Xr

n)e is canonically isomorphic to the shift by [−1] of a canonical choice of cone of the
canonical morphism

Mgm(X
r,∞
n )e ⊕Mgm(Xr

n)e −→Mgm(X
r

n )e.

In particular, there is a canonical morphism c+ : ∂Mgm(Xr
n)e→Mgm(X

r,∞
n )e, and an exact

triangle

C− −→ ∂Mgm(Xr
n)e

c+−→Mgm(X
r,∞
n )e −→ C−[1],

where C− equals the shift by [−1] of a cone of

jrn :Mgm(Xr
n)e −→Mgm(X

r

n )e.

By Corollary 3.4(b) and (c),
C− ∼=Mgm(S∞n )(r + 1)[r + 1]

is pure of weight −(r + 1). It follows from this and from Corollary 1.14(a) that the exact triangle

C− −→ ∂Mgm(Xr
n)e

c+−→Mgm(X
r,∞
n )e =M c

gm(X
r,∞
n )e −→ C−[1]

is a weight filtration of ∂Mgm(Xr
n)e avoiding weights −r, . . . ,−1, and hence, in particular,

avoiding weight minus one (since r > 1). Our claim then follows from Proposition 4.15(b)
(observe that e is symmetric).
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(Alternatively, use claim (C) of the proof of Theorem 3.3, to see directly that the last term
of the weight filtration of ∂Mgm(Xr

n)e,

Mgm(X
r,∞
n )e ∼=Mgm(S∞n )[r]

is pure of weight r > 1.)
(e) As a by-product of the above identification of the weight filtration of ∂Mgm(Xr

n)e,
we see that the cohomological Betti realization H i(∂Mgm(Xr

n)e) (see [Lec08]), tensored with
Z[1/(2n · r!)], is without torsion for all integers i. We thus recover a result of Hida’s (see [Gha02,
Proposition 3]): the odd primes p dividing the torsion of the (e-part of the) boundary cohomology
of Xr

n (see [Gha02, § 3.2]) satisfy p 6 r or p | n.

Remark 4.17. Let us agree to forget the results from § 3, and see what the theory developed in
the present section implies in the situation studied in Example 4.16(d). We only use the validity
of Assumption 4.2.

(a) It follows formally from Theorem 4.3(a)–(c) that Gr0 Mgm(Xr
n)e and Gr0 M

c
gm(Xr

n)e are
defined, and canonically isomorphic, and that there are exact triangles

C− −→Mgm(Xr
n)e π0−→Gr0 Mgm(Xr

n)e
δ−−→ C−[1]

and

Mgm(X
r,∞
n )e

δ+−→Gr0 M
c
gm(Xr

n)e i0−→M c
gm(Xr

n)e −→Mgm(X
r,∞
n )e[1].

(b) It follows formally from Corollary 4.6 that Gr0 Mgm(Xr
n)e is a direct factor of r

nW =
Mgm(X

r

n )e, with a canonical complement. Call this complement N . It follows formally
from Theorems 4.7(b) and 4.8(b) that the realizations of the motive Gr0 Mgm

(
Xr
n

)e equal
interior cohomology, that is, the image of the morphism

Hn
c (Xr

n)e −→Hn(Xr
n)e.

By [Sch90, § 1.2.0, Theorem 1.2.1 and § 1.3.4], the same is true for r
nW. Therefore, the

complement N has trivial realizations. Thus, its underlying Grothendieck motive is trivial.
This means that the construction of the Grothendieck motives for modular forms M(f) can
be done by replacing the Chow motive r

nW by Gr0 Mgm(Xr
n)e.

(c) As recalled in [And04, § 11.5.2], Voevodsky’s nilpotence conjecture implies that homological
equivalence equals smash-nilpotent equivalence. Therefore [And04, Corollary 11.5.1.2],
this conjecture implies that the forgetful functor from Chow motives to Grothendieck
motives is conservative. Thus, the nilpotence conjecture gives a hypothetical abstract
reason for the complement N of Gr0 Mgm(Xr

n)e in r
nW to be zero, which would mean

that Gr0 Mgm(Xr
n)e = r

nW.
(d) Recall that Scholl’s motives M(f) are constructed out of rnW using cycles, which are only

known to be idempotent after passage to the Grothendieck motive underlying r
nW: indeed,

the Eichler–Shimura isomorphism allows for a control of the action of the Hecke algebra on
the relevant cohomology group. In particular, there are only finitely many eigenvalues, a fact
which is needed for the construction of the projector to the eigenspace corresponding to f .
The nilpotence conjecture implies [And04, Corollary 11.5.1.2] that idempotents can be lifted
from Grothendieck to Chow motives. Hence, its validity would mean that Scholl’s cycles can
be modified by terms homologically equivalent to zero, to give idempotent endomorphisms
of r

nW. This would produce Chow motives, whose underlying Grothendieck motives are
the M(f).
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(e) By [Kim05, Corollary 7.8], the conclusion from part (d) holds under an assumption,
which is a priori weaker than the nilpotence conjecture: the finite dimensionality [Kim05,
Definition 3.7] of the Chow motive r

nW. By [Kim05, Theorem 4.2 and Corollary 5.11],
finite dimensionality is known for motives of curves and motives of Abelian varieties.
Unfortunately, the methods of [Kim05] do not seem to admit an immediate generalization
to families of Abelian varieties over curves, or degenerations of such families (such as X

r

n ).

Remark 4.18. We make the following remarks.

(a) Of course, none of the implications listed in parts (a)–(c) of the preceding remark are new:
they are all consequences of Theorem 3.3, Corollaries 3.4 and 3.6, whose proof involves
the geometry of the boundary of the smooth compactification X

r

n of Xr
n. Observe that

some of these results were even used in our proof in Example 4.16(d) of the validity of
Assumption 4.2. In other words, we applied the strategy from Remark 4.5, and proved
Assumption 4.2 via parts (a) and (c) of Theorem 4.3.

(b) For Shimura varieties of higher dimension, Hecke-equivariant smooth compactifications
(such as X

r

n in the case of powers of the universal elliptic curve over a modular curve)
are not known (and maybe not reasonable to expect) to exist. In this more general setting,
a different strategy of proof of Assumption 4.2 ‘avoiding geometry as far as possible’ would
therefore be of interest. Such a strategy, disjoint from that of Remark 4.5, will be developed
in [Wil09].

Acknowledgements

Part of this work was done while I was enjoying a modulation de service pour les porteurs
de projets de recherche, granted by the Université Paris 13. I wish to thank M. V. Bondarko,
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les espaces singuliers (I), Astérisque, vol. 100, eds B. Teissier and J. L. Verdier (Société
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