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Abstract. We consider the problem of defining the structure of a smooth manifold
on the various spaces of piecewise-smooth loops in a smooth finite-dimensional
manifold. We succeed for a particular type of piecewise-smooth loops. We also examine
the action of the diffeomorphism group of the circle. It is not a useful action on the
manifold that we define. We consider how one might fix this problem and conclude
that it can only be done by completing to the space of loops of bounded variation.
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1. Introduction. It is often convenient to regard a space of certain loops in a
smooth manifold as a smooth manifold itself with the aim of doing differential topology
thereon. Depending on the application this approach can vary from the conceptual
to the rigorous. The two most popular types of loop are continuous and smooth, for
both of which there is a rigorous theory of infinite-dimensional manifolds making
these into smooth manifolds: [4, 6–9]. Other types of loop have also been considered:
it is often convenient to use a manifold modelled on a Hilbert space when one usually
uses the space of loops with square-integrable first derivative. Our subject of study is
piecewise-smooth loops.

These loops are used as a compromise between continuous and smooth loops,
having some of the advantages of each over the other. Like continuous loops, piecewise-
smooth loops can be pasted together with minimal reparametrisation (none if Moore
loops are used). Like smooth loops, one can parallel transport along piecewise-smooth
loops. Also the theory of loop groups, [11], applies to piecewise-smooth loops but not
to continuous loops.

However, when attempting to build a smooth manifold of piecewise-smooth loops,
one encounters the problem that outside the realm of Banach spaces the concept of
“smooth” becomes increasingly hard to pin down. If one defines “smooth” as “infinitely
differentiable”, then there are many ways to interpret this. Fortunately, a general theory
has been developed that is both conceptually simple and straightforward to apply. This
theory has been laid out in the weighty tome [5]. Where we need to use a specific theory
of smooth spaces, we shall use this one—though much of the work of this paper is
“calculus-independent” in that it is relevant no matter which calculus theory is in use.
In addition to its simplicity and breadth of application, the calculus of [5] has the
advantage of being, in a loose sense, the “weakest” calculus theory; thus a negative
result for this calculus at the very least makes it unlikely that anything will be possible
in any other theory of calculus. The introduction of [5] and the historical remarks at
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the end of the first chapter are an interesting read on the development of calculus in
infinite dimensions.

We should clarify at the outset that piecewise-smooth loops are often used in a
slightly different context in the theory of loop spaces. It is sometimes the case that a
more complicated, or less intuitive, class of loops is required inside which piecewise-
smooth loops sit as a dense subspace. One then starts with piecewise-smooth loops and
completes to the desired space. Obviously in this case, the topology is dictated by the
desired completion and not by the space of piecewise-smooth loops themselves. This
paper has little to say in this context, barring that Theorem 1 below can be interpreted
as saying that even in this context one should be very precise as to what one means by
“piecewise-smooth”.

There is a standard method for making a space of loops in a smooth manifold
into a smooth manifold itself. This is well-known for specific examples; the simplest
being smooth loops as in [5, ch IX] or [7]. In [15], we generalised this to an arbitrary
class of loops satisfying a short list of conditions. We shall review these conditions in
Section 3. This reduces the problem of constructing a smooth structure on a space of
loops to checking these conditions, all of which only involve loops in � or �n. The first
part of this paper is, therefore, devoted to checking these conditions for the spaces of
piecewise-smooth loops.

The word “spaces” in the above is not a misprint. We say “spaces” because
we intend to consider two types of piecewise-smooth loop: piecewise-smooth and
piecewise-smooth with bounded derivatives; that is, each derivative is a bounded
function on its domain of definition. There is a natural topology on each of these
spaces of loops in � which makes each into a locally convex topological vector space.

We begin our analysis with the space of (all) piecewise-smooth loops in �. Our
first theorem is perhaps somewhat surprising.

THEOREM 1. The space of piecewise-smooth loops in Euclidean space is a dense
topological subspace of the space of continuous loops.

This means that although the derivatives were used in selecting the loops, when
putting a topology on the resulting space this information is thrown away. It is
essentially a consequence of the fact that there are no conditions near breaks; which
means that derivatives are ignored near a break. However, this means that one cannot
even test for a break and so effectively one has to ignore all derivatives of all loops.
This introduces all sorts of problems.

This is bad news for building a smooth manifold. Since not all continuous loops
are piecewise-smooth, an immediate corollary of this is that the space of piecewise-
smooth loops is not complete. One of the foremost conditions that the model space of
a smooth (infinite dimensional) manifold must satisfy is a weak form of completeness;
referred to as c∞–completeness in [5] and more commonly known as local completeness
in functional analysis, see for example [3, ch 10]. It is generally weaker than sequential
completeness but the two are the same for normed vector spaces. Therefore, the space
of piecewise-smooth loops is not c∞–complete. We shall explain later why this is
problematic.

COROLLARY 2. The space of piecewise-smooth loops in a smooth manifold does not
form a smooth manifold in the sense of [5].
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When we turn to piecewise-smooth and bounded loops, then these problems
disappear.

THEOREM 3. The space of piecewise-smooth and bounded loops in a smooth manifold
forms a smooth manifold in the sense of [5] modelled on the space of piecewise-smooth
and bounded loops in Euclidean space.

Unfortunately, it is difficult to prove even elementary properties of this manifold:

OPEN QUESTION 1. Does a manifold of piecewise-smooth and bounded loops admit
smooth partitions of unity?

We conjecture that the model space is not even smoothly regular, something that
we require for a positive answer to the above question.

However, there is a more serious problem with this manifold. Consider the natural
action of the diffeomorphism group of the circle on this manifold. It is easy to see that
this action is by diffeomorphisms but that is the best that one can say.

THEOREM 4. The image of the diffeomorphism group of the circle in the
diffeomorphism group of a manifold of piecewise-smooth and bounded loops is totally
disconnected, even when the latter has the topology of pointwise-convergence. The image
of the circle acting by rigid rotations is discrete.

The topology of pointwise-convergence, also known as the weak topology, is the
coarsest that one would sanely consider. Therefore, this result holds for any other
sensible topology one might try. The practical upshot of this result is that many
standard homotopies which rely on continuously reparametrising a loop do not work
directly. See [15] for other ways to get these homotopies to work.

In the light of this failure, we can modify our space slightly to correct our earlier
inability to find smooth partitions of unity. One reason for having piecewise-smooth
loops is to allow pasting of loops without overmuch reparameterisation. This process
only ever introduces breaks at rational points on the circle. That is to say, if we start
with two loops whose breaks are at rational points then the resulting loop will have the
same property. This space is subtly better than that with breaks allowed at all points.

THEOREM 5. The space of piecewise-smooth and bounded loops with breaks only at
rational points in a smooth manifold forms a smooth manifold in the sense of [5] modelled
on the space of such loops in Euclidean space. This manifold admits smooth partitions of
unity.

In fact, for pasting loops, we need only allow breaks at rational points with
denominator a power of 2. This would not introduce any advantages as it is the
cardinality of the set of allowable breaks that is important.

We have, of course, lost the action by much of the diffeomorphism group of the
circle in that we have to throw out any diffeomorphism which does not map the space
of rational points into itself. In particular, only rational rigid rotations are allowed.
This is not a huge loss as this action was problematic to begin with.

In the last part of this paper, we return to the space of piecewise-smooth and
bounded loops with arbitrary breaks. As the natural circle action is quite an important
feature of the structure of a loop space, it is worth taking some time to see what happens
if we try to fix it. That is, what does it mean for the topology if we impose the condition
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that the natural circle action is continuous? Define a loop γ to be S1–odd if it satisfies
γ (t) + γ ( 1

2 + t) = 0 for all t.

THEOREM 6. Let E be a subspace of the space of continuous loops in a Euclidean
space with a locally convex vector space topology satisfying the following properties:

(1) E contains the space of piecewise-smooth and bounded loops and this inclusion is
continuous.

(2) The given topology on E is finer than that inherited from the space of continuous
loops.

(3) The circle action on E is continuous.
(4) E is complete for its given topology.
Then E contains the subspace of S1–odd differentiable loops with derivative of bounded
variation and this inclusion is continuous.

It is easy to adapt this to find other similar subspaces of E. However, the above is
probably already enough to show that the cure is worse than the disease.

The conditions that we need to check are given in the prequel to this paper, [15].
That paper also contains some useful results which show how topological properties
of the model spaces propagate to the manifold. It also contains a discussion of circle
actions on locally convex topological vector spaces that may serve to illustrate just how
bad is the circle action on piecewise-smooth and bounded loops.

The results in this paper, particularly the negative ones, depend on the analytical
properties of the model space. A certain amount of familiarity with functional analysis
is therefore required to follow the arguments. Our main reference texts are [3, 12]
and [5]. We shall also determine several standard analytical and topological properties
of the model spaces beyond those needed to build a manifold partly to illuminate the
differences between the various spaces and partly as they can be useful for constructions
beyond merely building the manifold. The most obvious example being the existence
of smooth partitions of unity. Another example is that the construction in the author’s
paper [14] uses the fact that the space of smooth loops in Euclidean space is complete,
reflexive, and nuclear. Nuclear spaces are, of course, covered in [12] and [3] but the
treatise [10] is also worth a look.

Although this paper is reliant on functional analysis, it is probable that the majority
of its readers will be more topologically minded. We have therefore included Section 2
to give a little topological insight into the intricacies of the arguments.

The rest of the paper is structured as follows. In Section 3, we review the main
results of [15] and list the requirements on the model space for the standard method
of making a space of loops into a manifold to work. In Section 4, we shall consider
the space of all piecewise-smooth loops and prove Theorem 1. In Section 5, we shall
start our analysis of the space of piecewise-smooth and bounded loops by proving
Theorem 3. We include the proof of Theorem 5 as most of the structure is the same
for breaks at only rational points as breaks at arbitrary points. In Section 6, we prove
Theorems 4 and 6.

We regard the circle as the quotient �/� and so shall write it additively. We
shall refer to connected subsets of S1—including S1 itself—as intervals. We shall write
these intervals in S1 as if they were intervals in � without worrying about the wrap-
around factor. This will save much annoyance with “special cases”. The justification
for allowing this abuse is that we shall usually be using this notation when considering
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Figure 1. Close-up of two paths.

Figure 2. Interpolation I: Piecewise-smooth.

Figure 3. Interpolation II: Piecewise-smooth and bounded.

issues of continuity and, of course, a map from S1 is continuous if and only if it is
continuous as a map from �.

2. An overview. Before we begin the analysis, the following discussion may help
the reader understand what is going on.

Let us start by considering our two types of loop. Consider two loops and suppose
that on a small patch one of them looks like the path on the left and the other on the
right in Figure 1.

We wish to interpolate between the two paths. First, we work in the space of all
piecewise-smooth loops. In this space, we never look too closely at what happens near
a break. This results in Figure 2. The important thing to notice in this figure is that all
of the intermediate paths are smooth; the break develops as the path finally “snaps”.

Second, we work in the space of piecewise-smooth loops with bounded derivatives.
In this space, we are allowed to examine what happens near breaks with the result that
breaks cannot just disappear; they have to be gradually phased out. This results in
Figure 3. Here, all of the intermediate paths have a break which is slowly removed as
the two pieces either side of the break come together.

Thus, piecewise-smooth loops are almost smooth in that any piecewise-smooth
loop can be approximated arbitrarily closely by a smooth loop. Piecewise-smooth
bounded loops do not have this property which makes the space of piecewise-smooth
bounded loops seem larger than that of all piecewise-smooth loops.

Our second group of pictures is intended to illustrate Theorem 1. As this is perhaps
the most surprising of the results in this paper, it is worth a picture or two to explain it.

Recall that the inductive topology on a union of topological spaces is the finest
topology making all the inclusions continuous. Thus, a set in the union is open if all
of its traces (intersections) on the pieces are open. When working with locally convex
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Figure 4. A loop close to the zero loop.

Figure 5. Applying a bump function.

Figure 6. Rotating a broken loop.

topological spaces, one includes the additional condition that these open sets be locally
convex.

With this in mind, we are led to consider subsets of the space of all piecewise-
smooth loops in a fixed Euclidean space which are neighbourhoods of the origin
whenever we restrict our attention to those loops with a prescribed finite set of breaks.
Theorem 1 states that such a set is a neighbourhood of the origin for the standard
topology on the space of continuous loops. That is to say, for such a set U , there is
some ε > 0 such that if |γ (t)| < ε for all t ∈ S1, then γ ∈ U .

The heart of the proof of Theorem 1 is illustrated in Figure 4. This is a piece of
a smooth loop which is close to the zero loop in the C0–topology but far away in the
C∞–topology. Let us consider it in the piecewise-smooth topology. We restrict our
attention at first to those loops which have at most one break and this at the point
marked in the figure. Now as we allow any piecewise-smooth loops in our space, we
cannot use any information about the derivatives near that point; these are potentially
unbounded. This is true even if our loop did not actually have a break at that point.

This means that there is some neighbourhood of the point, say the grey box in
Figure 4, in which we are only allowed to test the curve itself and not any of its
derivatives. As our original loop was C0–close to the zero loop, if we hit it with a
suitable bump function with support in the grey box, resulting in Figure 5, we are close
to zero in the piecewise-smooth topology.

Therefore, our original loop is locally close to zero in the piecewise-smooth
topology. At this point, we recall that we actually wanted the inductive locally convex
topology, not just the inductive topology. This allows us to assume that our open set is
convex. Together with the compactness of S1, we can now show that our original loop
is actually close to zero in the piecewise-smooth topology.

Our last picture illustrates the difficulties with the circle action on piecewise-
smooth bounded loops. Consider a loop with a break and rotate it slightly. Figure 6 is
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a picture of what happens near the break. The dash-dotted lines are the loop and its
rotation. The solid line is the difference in the derivatives between the two loops. This
is zero except between the breaks where its value is independent of the amount of the
rotation. In the topology on the space of piecewise-smooth and bounded loops, this
is sufficient to separate the loop from its rotation no matter how small the rotation.
Should one try to fix the problem by taking into account the length of the non-zero part
then one finds one of two things happening. Either one tries to apply this fix derivative
by derivative in which case the problem is simply shifted up a derivative. Or if one tries
to apply this fix to the whole lot in one go, the net result is that once again derivatives
cannot be used in defining the topology. Broadly speaking, this is Theorem 6.

Let us comment on why the negative results are bad news.
First, let us consider Theorem 1. The corollary of this states that the space

of piecewise-smooth loops is not complete. Completeness is required in calculus to
avoid issues with non-existence of derivatives and integrals for trivial reasons. This is
perhaps easier to understand with integrals. Using Theorem 1, it is simple to construct
a continuous curve in the space of piecewise-smooth loops which does not have a
Riemann integral. The integral would exist in the space of continuous loops, but not
in the space of piecewise-smooth loops. Similarly, it is possible to construct a curve in
the space of piecewise-smooth loops which “ought to be” differentiable but is not; the
problem being that the derivative seems to exist but is not a piecewise-smooth loop,
merely a continuous one. Thus, completeness (or more specifically, c∞–completeness)
is there to ensure that “things which ought to exist actually do”. It plays exactly the
same role as completeness does for � in terms of existence of limits.

The importance of smooth partitions of unity in differential topology is hard to
overestimate. So the possibility that the space of piecewise-smooth bounded loops may
not have them should at the least make one a little wary of this space.

As mentioned in the introduction, the fact illustrated above that the
diffeomorphism group of the circle is totally disconnected as a subgroup of the
diffeomorphism group of piecewise-smooth bounded loops has a serious impact on
many standard homotopies. Specifically, any homotopy that relies on being able to
reparametrise loops cannot be (directly) applied. Rather one has to appeal to the more
general homotopy equivalence between all of these spaces and, say, ordinary smooth
loops where the reparameterisation homotopies do work. Of course, if one has to do
that then one may as well work with smooth loops throughout.

Finally, let us comment on piecewise-smooth loops in the literature. Although
their use is reasonably common, it is rare to find a specific topology mentioned. A
classic example can be found in [1].

1.3 Definition. A piecewise smooth path (or simply a path) on a differentiable space
X [for example, a finite-dimensional smooth manifold] is a continuous map α : I → X
[here, I is the unit interval] such that, for some partition 0 = t0 < . . . < tr = 1 of the
unit interval, each restriction α|[ti−1, ti] is a plot of [smooth map into] X .
Let P(X) denote the space of all (piecewise smooth) paths on X with the compact open
topology.

It is easy to see from this that Chen is using what we call piecewise-smooth
bounded loops. However, he describes the topology as the “compact open topology”
and does not elaborate on that. This is reasonable given that his differentiable spaces
do not rely overmuch on the underlying topology (indeed, by [2] he had dropped
the requirement that a differentiable space be a topological space). However, it does
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provoke the question as to what is the “right” topology on the space of piecewise-
smooth loops.

It is also interesting to note that by [2], Chen was working with honest smooth
loops. In Section 1.5 of [2], a path is an honest plot which means that a loop in a
manifold is a smooth loop in the standard sense. Three paragraphs later, Chen uses the
reparameterisation homotopy referred to above which, as we shall see, does not work
for piecewise-smooth loops.

3. Manifold requirements. In this section, we shall summarise the work of [15]
and list the conditions on the model space that are required to put a smooth structure
on the space of smooth loops in a manifold.

We start by choosing a class of maps S1 → � which we denote by Lx�, or by
Cx(S1, �) if we wish to emphasise the domain. We shall refer to these as Cx–loops.
Already implicit here is the assumption that these are genuine maps so that Lx� is
a subset of Map(S1, �). One implication of this is that if we modify Cx in some
fashion, say by completing with respect to some uniformity, then we must be careful to
ensure that this completion still consists of genuine maps. This rules out, for example,
L2–functions.

From Lx�, we define some other useful spaces of maps. We identify the spaces
Map(S1, �n) and Map(S1, �)n in the obvious way. With this identification, we define
Lx�n as (Lx�)n. For A ⊆ �n, we define LxA as the subset of Lx�n of loops which take
values in A. Here, we use the fact that elements in Lx�n are genuine maps and so can
be evaluated.

We now list the conditions required. For why each is important, we refer the reader
to [15].

(1) The condition of being a Cx–loop is local.
That is, a loop γ : S1 → � is a Cx–loop if there is some open cover U of S1 and for
each U ∈ U a Cx–loop γU such that γ agrees with γU on U .

(2) The set Lx� is a subspace of Map(S1, �).
(3) The vector space Lx� can be given a topology with respect to which it is a locally

convex topological vector space.
(4) With its topology, Lx� is a convenient vector space. That is, it is c∞–complete or,

equivalently, locally complete.
(5) As subspaces of Map(S1, �), we have inclusions:

L� ⊆ Lx� ⊆ L0�,

where L� = C∞(S1, �) and L0� = C0(S1, �). These inclusions are continuous
with respect to the natural topologies on each.

(6) The condition of being Cx is preserved by post-composition by smooth maps and
the action of a given smooth map is smooth. That is, for φ : U → V , a smooth
map between open sets of Euclidean spaces, the induced map φ∗ : LxU → LxV is
well-defined and is smooth in the sense of [5].
The primary results of [15] can be summarised in the following theorem.

THEOREM 3.1. Let Lx� be a class of loops satisfying the above conditions. Let M be
a smooth, finite-dimensional, orientable manifold without boundary. Then LxM can be
defined and is a smooth manifold.
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If M can be embedded as a smooth submanifold of some Euclidean space then
the following properties devolve from Lx� to LxM: separable, metrisable, Lindelöf,
paracompact, normal, smoothly regular, smoothly paracompact, and smoothly normal.

Let G be a sub-Lie group of Diff(S1) and suppose that Lx� is invariant under the
natural action of G. Under the same conditions as above, the following properties of this
action devolve from Lx� to LxM: that the action is by continuous or smooth maps, that
the action map is continuous or smooth, and that the representation map G → Diff(LxM)
is continuous or smooth.

By “devolve” we mean that if a property holds for Lx� then it holds for LxM. The
point of this theorem is that it transfers our attention wholly to the space Lx� and thus
plants us firmly in the realm of functional analysis. For the action by diffeomorphisms,
we shall be most concerned with the case where G = S1, acting by rigid rotations.

In addition to the properties listed in the above theorem, there are some other
properties of Lx� that will be useful to know. These do not appear in the above list
because they only make sense for linear spaces and therefore do not have any meaning
for LxM. However, they will have meaning for the tangent spaces of LxM and this may
be important. The example given in the introduction is that of the author’s construction
of the Dirac operator from [14] which used the fact that the space of smooth loops is
a complete, nuclear, reflexive space, and therefore we add these to the list of properties
that we wish to determine. For completeness, we have assumed that we have local
completeness but this is just a low rung on the panoply of possibilities for completeness;
other standard possibilities are complete, quasi-complete, and sequentially complete.

In fact, we shall not be able to come up with definite answers for all of the properties
that we consider and therefore have to leave some open questions. We suspect that the
answers to these would involve analysis on a far more intricate level than that contained
in this paper.

For comparison with the spaces of piecewise-smooth and piecewise-smooth and
bounded loops, we list the properties of smooth and continuous loops.

The space of smooth loops, L�, is: separable, metrisable, Lindelöf, paracompact,
normal, smoothly regular, smoothly paracompact, smoothly normal, complete,
nuclear, and reflexive. The circle action is by diffeomorphisms, the action map is
smooth, and the representation map is smooth.

The space of continuous loops, L0�, is: separable, metrisable, Lindelöf,
paracompact, normal, and complete. It is not smoothly regular, smoothly
paracompact, nor smoothly normal; see the remark after the statement of [5, III.14.9]
and the references therein. It is neither nuclear nor reflexive. The circle action is by
homeomorphisms but not diffeomorphisms; the action map is continuous but the
representation map is not.

4. Piecewise-smooth loops. In this section, we turn to the first of our spaces under
consideration: piecewise-smooth loops. We start by defining and topologising the set
of piecewise-smooth maps and then consider the conditions. We start this by looking
at all the conditions other than 4 and 6 since these are relatively straightforward. The
main result in this section is that Condition 4 does not hold and so we cannot build a
smooth manifold. We shall not consider Condition 6 directly, although one can deduce
from Theorem 1 that Condition 6 holds if we put on the space of piecewise-smooth
loops the induced smooth structure from the space of continuous loops.
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4.1. Definitions. Before considering the conditions, we must define the space of
piecewise-smooth loops in �. It is obvious what this must be: continuous everywhere
and smooth except for a finite number of breaks.

DEFINITION 4.1. A loop γ : S1 → � is said to be piecewise-smooth if it is continuous
and there is some finite set F ⊆ S1 such that γ is smooth on S1

�F .
We write the set of all such loops as Lps�. For a subset H ⊆ S1 we denote by LH�

the subset of Lps� consisting of those maps with breaks constrained to lie in H.
Let F denote the set of all finite subsets of S1. For H ⊆ S1 let F(H) denote the set

of all finite subsets of H.

It is clear that Lps� is the union of the sets LF � for F ∈ F . The set F is directed
by inclusion from which we deduce:

LEMMA 4.1. Lps� is a subspace of Map(S1, �); that is, it satisfies Condition 2.

Proof. Let α, β ∈ Lps� and c ∈ �. Let A, B ∈ F be the corresponding subsets of
S1. Now α and β are continuous whence α + cβ is also continuous. Then α is smooth
on S1

�A, whence also on S1
�(A ∪ B), and β is smooth on S1

�B, whence also on
S1

�(A ∪ B). Hence α + cβ is smooth on S1
�(A ∪ B) and so α + cβ ∈ Lps�. �

Also in this section we shall verify the locality condition as this does not involve
the topology.

LEMMA 4.2. The condition of being piecewise-smooth is local; that is, Lps� satisfies
Condition 1.

Proof. Let α ∈ Map(S1, �) be such that there is an open cover U of S1 with
functions αU ∈ Lx� for each U ∈ U such that α agrees with αU on U . As continuity is
a local property, i.e. L0� satisfies Condition 1, α is continuous.

As S1 is compact we can find U1, . . . , Un ∈ U covering S1. Let αj
..= αUj . Let Fj

be the breaks of αj. Each Fj is finite whence the union F ..= ⋃
Fj is also finite. As

Uj ∩ Fj ⊆ Uj ∩ F , αj is smooth on Uj �F . Hence α is smooth on each Uj �F , whence
on S1

�F , and is thus piecewise-smooth. �

4.2. Topology. Our next task is to topologise Lps�. To do this we use its
description as the union of the directed family {LF �, F ∈ F}. There is an obvious
way to topologise LF � for F ∈ F .

DEFINITION 4.2. For F ∈ F , define a topology on LF � as the projective topology
for the maps:

LF � → L0�,

LF � → C∞(S1
�F, �).

Here, L0� and C∞(S1
�F, �) are given their standard topologies. Since F is a

finite subset of S1, S1
�F is diffeomorphic to a finite union of open intervals of � and

this identification defines the topology on C∞(S1
�F, �). The projective topology of

locally convex topologies is again a locally convex topology, [12, II.5], so this defines a
locally convex topological vector space structure on LF �. Notice that L∅� = L� and
here the given topology agrees with the standard one.
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There is a natural way to topologise the union of a directed family: as an inductive
limit. It is important to note that this is the inductive limit in the category of locally
convex topological vector spaces and not in the category of topological spaces. The
inductive topology is not, in general, a locally convex topology.

DEFINITION 4.3. Define the topology on Lps� as the locally convex inductive limit
of the directed family {LF � : F ∈ F}.

From the construction of this topology it is easy to verify Condition 5.

LEMMA 4.3. The inclusions L� → Lps� and Lps� → L0� are continuous.

Proof. This follows from the properties of the inductive limit: as L� is one of
the members in the family its inclusion is continuous; as all the maps LF � → L0�

are continuous (from the characterisation of the projective topology) the inclusion
Lps� → L0� is continuous. �

4.3. Completeness. Unfortunately, Lps� is not convenient. This will come as a
corollary of a very surprising result which states that the topology on Lps� is that
inherited from L0�. Since Lps� is not closed as a subspace of L0� it cannot therefore
be complete. As Lps� is thus a normed vector space, local completeness (a.k.a. c∞–
completeness) agrees with ordinary completeness and so Lps� is not convenient.

To prove this result we need to examine the topologies concerned in a little more
detail. We start with our reference spaces. The space L0� is a Banach space with norm:

‖γ ‖∞ ..= sup{|γ (t)| : t ∈ S1}.
The space C∞(S1

�F, �) is a Fréchet space with semi-norms:

ρC,n(γ ) ..= sup{
∣∣∣γ (k)(t)

∣∣∣ : t ∈ C, 0 ≤ k ≤ n}

for n ∈ � and for C a compact subset of S1
�F . The family of such compact subsets has

a countable cofinal (under inclusion) subfamily. Taking this family yields a countable
family of semi-norms and hence the structure of a Fréchet space.

The topology on LF � is the projective topology for its inclusion into the two above
spaces. Since there are only two spaces, the topology of the projective limit is very
easy to determine. Given 0–neighbourhood bases U and V for the above two spaces,
a 0–neighbourhood base for LF � is given by the family {U ∩ V : U ∈ U , V ∈ V}.
By throwing out a few redundancies, we can find a 0–neighbourhood base indexed
by (C, n, ε), where ε > 0, n ∈ �, and C ⊆ S1

�F is compact. The corresponding 0–
neighbourhood is

U(C, n, ε) ..= {
γ ∈ LF � :

sup{
∣∣∣γ (k)(t)

∣∣∣ : 1 ≤ k ≤ n and t ∈ C, or k = 0 and t ∈ S1} < ε
}
.

The topology on Lps� is the inductive topology of this family, taken over F ∈ F .
The method for constructing a 0–neighbourhood base for this is described in [3, 6.6.5]
and [12, II.6]. First, choose 0–neighbourhood bases for each of the components, say
UF . From each UF we choose one element, UF , and take the convex hull of their union
in Lps�. Doing this for all choices yields a 0–neighbourhood base for Lps�.
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Thus, an element of this 0–neighbourhood base is indexed by a family
{(CF , nF , εF ) : F ∈ F}, where each (CF , nF , εF ) is as above. The corresponding
neighbourhood is

U((CF , nF , εF )) ..= {∑
F

λFγF : λF ∈ �, γF ∈ LF �,

all but finitely many zero,∑
|λF | ≤ 1,

sup{
∣∣∣γF

(k)(t)
∣∣∣ : 1 ≤ k ≤ nF , t ∈ CF } < εF ,

sup{|γF (t)| : t ∈ S1} < εF
}
.

For a fixed F ∈ F the space LF � inherits a topology from its inclusion in Lps�. It
is this topology that we wish to examine next.

PROPOSITION 4.4. Let F ∈ F . The topology that LF � inherits from Lps� agrees with
the topology that it inherits from L0�.

Proof. As the inclusion Lps� → L0� is continuous, the inherited topology on LF �

is at least as fine as that induced by its inclusion in L0�. Therefore, we just need to
show that the topology inherited from L0� is at least as fine as that from Lps�.

To do this, we need to show that for each 0–neighbourhood U on Lps� there is
some η > 0 such that whenever γ ∈ LF � satisfies ‖γ ‖∞ < η then γ ∈ U . It is sufficient
to do this for a 0–basis and thus for the 0–neighbourhood U((CG, nG, εG)) for some
fixed but arbitrary index set.

Thus we fix the family {(CG, nG, εG)}. For t ∈ S1, let Ft = F ∪ {t} and note that this
is in F . Let Ct

..= CFt . This is a compact set which does not contain t, hence the family
{S1

�Ct} is an open cover of S1. As S1 is a compact manifold, there is a finite smooth
partition of unity subordinate to this cover, say {τj : 1 ≤ j ≤ n}. Let t1, . . . , tn ∈ S1 be
such that the support of τj is contained in S1

�Ctj . Let Fj = Ftj , Cj = Ctj , εj = εFj , and
nj = nFj . Let η = 1

n min{εj} and note that this is strictly greater than zero.
Let γ ∈ LF � be such that ‖γ ‖∞ < η. For 1 ≤ j ≤ n let γj = nτjγ . It is obvious

each γj is piecewise-smooth with breaks in F and so is an element of LF �. Then, as
LF � ⊆ LFj �, we have γj ∈ LFj �. Now,∥∥γj

∥∥
∞ = ∥∥nτjγ

∥∥
∞ ≤ n ‖γ ‖∞ < nη ≤ εj,

whilst γj is identically zero on a neighbourhood of Cj so for t ∈ Cj and k ∈ �, |γj
(k)(t)| =

0. Hence, γj ∈ U(Cj, nj, εj) and thus γj ∈ U((CG, nG, εG)).
Since U((CG, nG, εG)) is a convex set, it contains the following the finite sum:

n∑
j=1

1
n
γj =

n∑
j=1

1
n

nτjγ = γ.

Hence γ ∈ U((CG, nG, εG)). This completes the proof. �
It is not quite immediate from this that the topology on Lps� is that inherited from

L0� but we are not far off. There is an important corollary of the above result which
we need on our way.
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COROLLARY 4.5. The subspace L� is dense in Lps�.

Proof. For each γ ∈ Lps� and each 0–neighbourhood U then we need to show that
there is some β ∈ L� such that γ − β ∈ U . Fix γ and U . There is some F ∈ F such
that γ ∈ LF �. By Proposition 4.4, the inherited topology on LF � agrees with that from
L0�. Thus there is some 0–neighbourhood V in L0� such that V ∩ LF � ⊆ U ∩ LF �.
Now L� is dense in L0� so there is some β ∈ L� such that γ − β ∈ V . Since L� is a
subspace of LF �, γ − β ∈ LF � also. Hence, γ − β ∈ U . �

COROLLARY 4.6. The topology on Lps� is that inherited from L0�.

Proof. It is a corollary of the existence and uniqueness of completions of locally
convex topological vector spaces that the topology on a locally convex topological
vector space is completely determined by its trace on a dense subspace. Thus, since L�

is dense in Lps� and the trace topology agrees with that inherited from L0�, this must
also be the topology on Lps�. �

We can rephrase this result using the universal nature of inductive topologies.

COROLLARY 4.7. Let T be a locally convex topology on Lps� such that all the maps
LF � → Lps� and the map Lps� → L0� are continuous. Then T agrees with the topology
inherited from L0�.

Finally, we state the failure of Lps� to be a good model space for a manifold, and
also of any of the spaces derived from it.

COROLLARY 4.8. Lps� does not satisfy Condition 4.

Proof. The space Lps� is a topological subspace of L0� so is a normed vector
space. As such, it is convenient if and only if it is complete. As it is dense in L0� but is
not equal to L0�, it cannot be complete. �

5. Piecewise-smooth and bounded. Having fallen at the first significant hurdle
with piecewise-smooth maps we now consider an alternative. The problem with
piecewise-smooth maps is that we have to deny ourselves any control over the maps in
the neighbourhood of a break. In fact, we even have to deny ourselves the knowledge
that there is a genuine break at a given point, and this—we have seen—leads to all
sorts of trouble. This suggests refining our type of maps so that we can impose some
sort of order at the (potential) breaks.

DEFINITION 5.1. A piecewise-smooth bounded map γ : S1 → � is a piecewise-
smooth map with the property that each derivative is bounded on its domain of
definition.

We write the set of all such maps as Lpsb�. For H ⊆ S1 we denote by LH,b� the
set of all piecewise-smooth bounded maps whose breaks lie in the set H.

In the piecewise-smooth world, LH� for H other than S1 was merely a way-stone
on the path to Lps�. In this case, we shall actually want to consider LH,b� as an end
in itself.

Simple calculus yields the following result.

LEMMA 5.1. Let γ : S1 → � be a piecewise-smooth map. Then γ is a piecewise-
smooth bounded map if and only if all the derivatives of γ have left and right limits at all
points of �.
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This lemma allows us to ignore the breaks of a loop when dealing with its
boundedness properties. We can regard the derivatives as being effectively defined
(albeit possibly multivalued) at the breaks and thus on the whole of S1. As these
extensions are still bounded, we can allow ourselves the freedom to ignore issues of
domains of definition when considering bounds on a given loop or loops.

This lemma provides us with straight-forward verification of the first two
conditions.

COROLLARY 5.2. LH,b� is a subspace of Lps� and thus satisfies Condition 2.

Proof. Let α, β ∈ LH,b� and λ ∈ �. We know already that α + λβ is piecewise-
smooth and has breaks in H so we just need to show the boundedness property. This
follows from basic results on limits using Lemma 5.1. �

COROLLARY 5.3. LH,b� satisfies the locality condition, 1.

Proof. Let γ : S1 → � be a map which is locally a piecewise-smooth bounded
map. As the set of piecewise-smooth maps has the local property, γ is piecewise-
smooth. Thus we need to show that it has the boundedness property. This follows from
Lemma 5.1: for t ∈ S1, there is a neighbourhood I and a loop α such that γ = α on I
and α has left and right limits of all derivatives at t, whence so does γ . �

5.1. Topology. Now we come to the topology. We use essentially the same method
as in the piecewise-smooth case: first topologise the spaces LF,b� for F ∈ F and then
express LH,b� as the inductive limit of these spaces for F ∈ F(H).

The most obvious way to describe the topology on LF,b� is as the topology of
uniform convergence of derivatives on S1

�F . Using Lemma 5.1 and a standard ε/2–
argument, we can replace this with the topology of uniform convergence of left and
right limits of derivatives on the whole of S1. That is, a 0–neighbourhood base consists
of the sets:

U(n, ε) ..=
{
γ ∈ LF,b� : sup

{ ∣∣∣γ (k)
± (t)

∣∣∣ : t ∈ S1, 0 ≤ k ≤ n
}

< ε
}
.

DEFINITION 5.2. Define the topology on LH,b� to be the inductive locally convex
topology from the family {LF,b�, F ∈ F(H)}.

We now turn to checking the simpler conditions.

LEMMA 5.4. LH,b� sits nicely between smooth and continuous maps, that is it satisfies
Condition 5.

Proof. That smooth loops are piecewise-smooth bounded loops is obvious as the
circle is compact. Thus, L∅,b� = L�; note that ∅ ∈ F(H) whatever H is. It is then
trivial to note that the topology on L� is the same as that on L∅,b�.

The inclusion LH,b� → L0� is immediate from the definition. To show that it is
continuous, we just need to show that the inclusions LF,b� → L0� are continuous; the
desired result then follows from the universal property of inductive limits. This follows
from the simple observation that U(0, 1) is the intersection of LF,b� with the unit ball
in L0�. �
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5.2. Completeness. Having checked the simple conditions, we turn to
completeness. Most of the properties of LH,b� that are in the realm of functional
analysis stem from the following two technical results.

PROPOSITION 5.5. Let F ∈ F(H). The topology on LF,b� is the same as that inherited
from its inclusion in LH,b�.

Proof. The inclusion LF,b� → LH,b� is continuous by construction. Therefore we
need to show that if U is a 0–neighbourhood in LF,b� then there is a 0–neighbourhood
V in LH,b� such that V ∩ LF,b� ⊆ U .

Now a 0–neighbourhood base of LF,b� is given by the family of sets U(n, ε). A
0–neighbourhood base of LH,b� is given by the family of sets U((nG, εG)), where G
runs over F(H) and for each G, nG ∈ � and εG > 0. Then,

U((nG, εG)) ..=
{ ∑

G

λGγG : λG ∈ �, γG ∈ LG,b�,

all but finitely many zero,∑
|λG| ≤ 1,

sup
{∣∣∣γ (k)

G,±(t)
∣∣∣ : t ∈ S1, 0 ≤ k ≤ nG

}
< εG

}
.

Let ε > 0 and n ∈ �. We need to find a set of the above type such that if γ ∈
U((nG, εG)) and γ ∈ LF,b�, then γ ∈ U(n, ε). For G ∈ F(H), let nG = n and εG = ε.
Let γ ∈ LF,b� be such that γ ∈ U((nG, εG)). Then γ = ∑

G λGγG for appropriate λG

and γG.
Let t ∈ S1 and k ∈ � with 0 ≤ k ≤ n. Now it may be the case that γ (k)(t) and some

or all of the γ
(k)
G (t) are not defined. However the left and right limits of all are defined

and satisfy

γ
(k)
+ (t) =

∑
G

λGγ
(k)
G,+(t)

and similarly for the left limit. For G ∈ F(H), as γG ∈ U(nG, εG), |γ (k)
G,+(t)| < ε. Thus,

as
∑|λG| ≤ 1, |γ (k)(t)| < ε. As this holds for all t ∈ S1, γ ∈ U(n, ε) as required. �

PROPOSITION 5.6. Let K ⊆ LH,b� be a bounded set. Then there is some F ∈ F(H)
such that K ⊆ LF,b�.

Proof. We need to show that there is some F ∈ F(H) such that if γ ∈ K then the
breaks of γ lie in the set F . Let FK ⊆ S1 be the set of all breaks of elements of K ;
that is, FK = ⋃

γ∈K F(γ ), where F(γ ) is the set of breaks of γ . Clearly FK ⊆ H and
K ⊆ LFK ,b�. Therefore we just need to show that FK is finite.

For t ∈ S1, define a map λt : LH,b� → �� by

λt(γ ) = (γ ′
+(t) − γ ′

−(t), . . . , γ (k)
+ (t) − γ

(k)
− (t), . . . ).

A simple corollary of Borel’s theorem, see [16] or [5, 15.4, 21.5], shows that λt is
surjective. The topology on �� has 0–basis the sets V (n, ε) with n ∈ �, ε > 0:

V (n, ε) ..= {(ak) : |al| < ε, 1 ≤ l ≤ n}.
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For F ∈ F(H), let nF = n and let εF = ε/2. Let γ ∈ U((nF , εF )). By standard
arguments, for 0 ≤ k ≤ n, |γ (k)

± (t)| < ε/2. Hence |γ (k)
+ (t) − γ

(k)
− (t)| < ε and so λt(γ ) ∈

V (n, ε). Thus λt is continuous.
Consider the space

∑
t∈H ��. Define a map λH : LH,b� → ∑

t∈H �� by γ �→∑
t∈S1 λt(γ ). Now λt(γ ) �= 0 only if γ has a break at t so for a given γ , λH(γ ) has only

a finite number of non-zero terms; hence λH is well-defined. For a fixed F ∈ F(H), the
induced map LF,b� → ∑

t∈H �� fits into the diagram:

LH,bR
∑

t∈H R
N

LF,bR
∑

t∈F R
N

λH

λF

The lower horizontal map is a finite product of λt, hence is continuous. Therefore
λH restricts to a continuous map LF,b� → ∑

t∈H ��. Hence, by the universal property
of inductive limits, λH is continuous.

Now a continuous linear map takes bounded sets to bounded sets. Therefore λH(K)
is bounded. From [12, II.6.3], a bounded set in a direct sum is contained in a finite
number of its factors. Therefore the set {t ∈ H : λt(γ ) �= 0 for some γ ∈ K} is finite.
This is precisely FK . �

COROLLARY 5.7. LH,b� is convenient; that is, it satisfies Condition 4.

Proof. We shall actually show that it is quasi-complete, that is that all closed,
bounded subsets are complete. This is stronger than c∞–completeness.

Let K be a closed, bounded set in LH,b�. By Proposition 5.6, there is some
F ∈ F(H) such that K ⊆ LF,b�. Proposition 5.5 shows that the induced topology on
LF,b� is the natural one, whence K is a closed and bounded subset of LF,b�.

Now LF,b� is a Fréchet space and thus quasi-complete. Thus K is complete. �
We postpone the more general question as to whether or not LH,b� is complete to

Section 5.4.

5.3. Smooth maps. A second corollary of Proposition 5.6 is important in
examining the smooth structure.

COROLLARY 5.8. Let c : � → LH,b� be a continuous curve. Then for each r > 0 there
is some F ∈ F(H) such that c([−r, r]) ⊆ LF,b�.

Proof. As [−r, r] is compact and c is continuous, its image is bounded and hence
contained in some LF,b�. �

This will allow us to reduce the problem of checking Condition 6 to LF,b�.

LEMMA 5.9. Let U ⊆ �n and V ⊆ �m be open sets. Let φ : U → V be a smooth
map. Then the map φ∗ : γ �→ φ ◦ γ is a smooth map LF,bU → LF,bV.

Proof. First, it is obvious that φ ◦ γ does indeed lie in LF,bV . Thus the map is
defined and we simply need to check that it is smooth. We are using the convenient
calculus of [5] so we need to check that φ∗ takes smooth curves to smooth curves.
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That is, we need to show that if c : � → LF,bU is smooth then so is φ∗c : � → LF,bV .
Smoothness is a local concept in all its forms so it is sufficient to show that if c : � →
LF,bU is smooth then for every bounded open interval I ⊆ �, then the restriction of
φ∗c to I is smooth. The reason for doing this is that it allows us to modify φ slightly.
Choose a sequence {Un} of open subsets of U with the property that Un ⊆ Un+1 and
U = ⋃

Un; as the circle is compact we see that LF,bU = ⋃
LF,bUn. Then, as I ⊆ � has

compact closure, c maps I into LF,bUn for some n. Applying the locality of smoothness
again, it is therefore sufficient to check that φ∗ : LF,bUn → LF,bV is smooth for each
n. Now on the right, we have that LF,bV is an open subset of LF,b�n so a map into
LF,bV is smooth if and only if it is smooth into LF,b�n. On the left, since Un ⊆ U , we
can use a bump function to find a map φ̃ : �m → �n which agrees with φ on Un. On I ,
φ∗c = φ̃∗c and therefore it is sufficient to show that φ̃∗c is a smooth map I → LF,b�n.

To do this, we need to characterise smooth curves in LF,b�n. Now S1
�F is

diffeomorphic to a disjoint union of unit intervals. The obvious map:

LF,b�n →
k∏

i=1

C∞
b((0, 1)), �n)

is injective and a homeomorphism onto its image. The image is

{(f1, . . . , fk) : fi,−(1) = fi+1,+(0), fk,−(1) = f1,+(0)},

which has finite codimension and is thus a direct summand. Now since the left and right
limits exist, C∞

b((0, 1), �n) = C∞([0, 1], �n). By Seeley’s theorem, [13], this is a direct
summand of C∞(�, �n). Therefore LF,b�n is a direct summand of

∏n−1
i=0 C∞(�, �n).

Following all of this through, a curve in LF,b�n is smooth if and only if it is
smooth into

∏n−1
i=0 C∞(�, �n) and a map into a finite product is smooth if and only

if it is smooth into each factor. The exponential law of [5, 3.2] says that a curve in
C∞(�, �n) is smooth if and only if its adjoint, which is a map �2 → �n, is smooth.

All of this jiggery-pokery has been to do with the domains. We have not touched the
codomains. It is easy to see, therefore, that if c : � → LF,b�m is smooth and c∨ : �2 →
�n the result of the above mechanics then (φ̃∗c)∨ = φ̃ ◦ c∨. Hence φ̃∗ takes smooth
curves to smooth curves and is thus smooth. �

COROLLARY 5.10. The map φ∗ : LH,bU → LH,bV is smooth. Hence LH,b� satisfies
Condition 6.

Proof. We need to show that if c : � → LH,bU is smooth then φ∗c : � → LH,bV
is smooth. As smoothness is a local concept, this holds if it is true for c restricted to
(−r, r) for all r > 0. Now for r > 0, let cr be this restriction, then cr is a smooth curve
in LF,bU for some F ∈ F(H). By the above, φ∗cr is a smooth curve in LF,bV , whence
also smooth in LH,bV . Hence, φ∗ is smooth. �

5.4. Further properties. We now consider some of the other properties for LH,b�.
For this consideration, we need to consider two cases: where H is countable and where
it is not. Our primary examples are H = �/� and H = S1.

In the following theorem, each space under consideration has two interesting
topologies: its original locally convex topology and its c∞–topology. Some of the
properties that we consider are properties of locally convex topological vector spaces
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and these clearly only make sense for the former topology. Others are clearly in the
realm of the smooth structure. Whilst they may make sense for both topologies they
are most interesting for the c∞–topology. Still other properties are relevant for both
topologies. Some standard topological properties, in particular separation properties,
can be given a smooth twist. For example, one can alter the usual topological property
of complete regularity to that of smooth regularity where the separating function is
required to be smooth. In all the cases that we consider, the smooth version is an
obvious alteration to the standard one so we shall not list them all.

THEOREM 5.11. Let H ⊆ S1.

(1) Suppose that H is countably infinite.
(a) As a locally convex topological vector space, LH,b� is: complete, nuclear,

reflexive, barrelled, and bornological. Its topology is normal, separable, Lindelöf,
and paracompact, but not metrisable.

(b) The c∞–topology on LH,b� is the inductive topology as a topological space of
the family {LF,b� : F ∈ F(H)}. It is separable, Lindelöf, smoothly Hausdorff,
smoothly paracompact, and smoothly normal, but not metrisable.

(2) Suppose that H is uncountable.
(a) As a locally convex topological vector space, LH,b� is: complete, reflexive,

barrelled, bornological, but not nuclear. Its topology is not separable, metrisable,
or Lindelöf. We do not know whether or not it is paracompact or normal.

(b) The c∞–topology on LH,b� is the inductive topology as a topological space
of the family {LF,b� : F ∈ F(H)}. It is smoothly Hausdorff. It is not separable,
Lindelöf, or metrisable. We do not know whether or not it is regular, paracompact,
normal, smoothly regular, smoothly paracompact, or smoothly normal.

For H uncountable we leave open several questions. The techniques we use to
answer these questions for H countable do not extend to the uncountable case. In light
of the fact that, as we shall see, there is not a significant advantage to taking H = S1

over taking H = �/�, we leave these questions to the future, though we shall make
some remarks on them at the end of this section.

5.4.1. The locally convex topology. Let us start by considering the locally convex
topology on LH,b�.

PROPOSITION 5.12. For H ⊆ S1, LH,b� is reflexive, barrelled, and bornological.

Proof. Both barrelled and bornological are preserved by inductive limits and each
LF,b� is both barrelled and bornological; see [12, II.7, II.8]. For reflexivity, we use
Proposition 5.6. Each LF,b� is a nuclear Fréchet space, whence reflexive, so using
Proposition 5.6 we can apply [3, 11.4.5(e)] to deduce that LH,b� is also reflexive. �

For H countable much of the rest of our analysis relies on the following result.

PROPOSITION 5.13. Let H ⊆ S1 be countable. Then LH,b� is the strict inductive limit
of a sequence {LFn,b�}.

Proof. Proposition 5.5 shows that if F ⊆ G then the topology on LF,b� is the
same as that inherited from LG,b�. This is what is meant by the word “strict” in the
definition of an inductive limit. In any inductive limit, we can replace the family by
a cofinal subfamily; therefore to complete this proof we need to exhibit an increasing
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sequence in F(H) which is cofinal. Enumerate H and let Fn
..= {h1, . . . , hn}. It is easy to

see that this is increasing and every finite subset of H is contained in one of its terms.
Hence this will do for the sequence. �

COROLLARY 5.14. If H ⊆ S1 is countable then LH,b� is complete, nuclear, separable,
Lindelöf, paracompact, and normal.

Proof. It is complete by [12, II.6.6] and nuclear by [12, III.7.4].
Each LF,b� for F ∈ F(H) is separable so as the countable union of separable

subspaces, LH,b� is separable.
For Lindelöf, letU be an open cover of LH,b�. Each LF,b� is a separable metrisable

space, hence Lindelöf, with its inherited topology. Let (Fn) be a cofinal sequence of
elements of F(H). For each n ∈ �, there is therefore a countable subfamily of U which
covers LFn,b�. As LH,b� is the union of the countable family {LFn,b�}, the union of
these countable subfamilies is a covering family and is also countable.

Paracompactness now follows as every regular Lindelöf space is paracompact, as
does normality. �

The other properties that are firmly in the realm of functional analysis come from
a closer examination of the maps:

λt : LH,b� → ��

that were defined in Proposition 5.6.

PROPOSITION 5.15. As in the proof of Proposition 5.6, for H ⊆ S1 let λH : LH,b� →∑
t∈H �� be the map

∑
t∈H λt. This is a quotient map with kernel L�.

Proof. It is clearly well-defined. Borel’s theorem together with the existence of
smooth bump functions shows that it is surjective. We already know it to be continuous.
Therefore all that remains is to show that it is open.

Now, L� sits inside LH,b� as a topological subspace. Therefore, we can consider
the quotient with its quotient topology. We can also consider this quotient as the
inductive limit of the family:

{LF,b�/L� : F ∈ F(H)}.

It is not hard to see that these two topologies are the same using the universal property
of inductive limits (which includes quotients). Chasing this around shows that with both
topologies a map from LH,b�/L� is continuous if and only if it induces a continuous
map from each LF,b�; applying this to the identity map shows that the topologies are
the same.

Now, for F ∈ F(H), LF,b� and
∑

t∈F �� are Fréchet spaces and λF is a continuous
surjection. It is therefore open by Banach’s homomorphism theorem. The kernel is
clearly L� and so λF induces an isomorphism:

LF,b�/L� →
∑
t∈F

��.

Hence LH,b�/L� is isomorphic to the inductive limit of the spaces
∑

t∈F ��. This is
precisely

∑
t∈H ��. �
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The quotient map LH,b� → ∑
H �� does not split. However if we further project∑

H �� to
∑

H � using the first-term projection �� → � then we do get a splitting
map.

LEMMA 5.16. The map LH,b� → ∑
H �, γ �→ (γ ′

+(t) − γ ′
−(t)), splits.

Proof. Let α0 be a loop in � with a single break which is at 0 such that α′
0,+(0) = 1

and α′
0,−(0) = 0. For t ∈ S1, let αt be the result of rotating α0 so that the break lies at

t. Regard an element of
∑

H � as an H–indexed family of real numbers, all but a finite
number of which vanish. Define

∑
H � → LH,b� by (νt) �→ ∑

νtαt. This is continuous
as any linear map from

∑
H � is continuous. The composition

∑
H � → LH,b� →∑

H � is easily seen to be the identity. We therefore have the required splitting. �
Using these two quotient maps, we can deduce facts about the larger space from

the quotient spaces. Let us start with the positive result.

COROLLARY 5.17. The space LH,b�n is complete.

Proof. For this, we use the first quotient mapping.

L� ↪→ LH,b� �
∑
t∈H

��,

where the first map is a topological embedding and the second an open surjection
(quotient). Moreover, the first and third spaces are complete.

Let us generalise this to ease the notation. Suppose we have a short exact sequence

X
i−→ Y

q−→ Z,

where X , Y , and Z are locally convex topological vector spaces, i is a topological
embedding, q a quotient map (whence open), and X and Z are complete.

By taking duals and adjoints, we obtain a sequence

Z′ q′
−→ Y ′ i′−→ X ′.

Let us show that this is algebraically exact (that is, we shan’t concern ourselves with
topologies). The Hahn–Banach theorem shows that i′ : Y ′ → X ′ is surjective. That
q′ : Z′ → Y ′ is injective is a direct consequence of the surjectivity of q : Y → Z. For
g ∈ Z′, i′q′g is the linear functional X → � given by x �→ gqi(x). Since qi(x) = 0 and g
is linear, this is zero. Hence i′q′ = 0. Finally, if i′f = 0, then f |i(X)= 0. Define f̂ : Z → �

by f̂ (z) = f (y), where q(y) = z. If y′ is another choice of lift then y − y′ = i(x) for some
x ∈ X whence f (y) = f (y′). Clearly f̂ is linear and q′ f̂ = f . This also demonstrates that
it is continuous since f = f̂ q is continuous and q is a quotient mapping. We therefore
have exactness at Y ′.

Now we consider completeness. For a contradiction, suppose that Y is not
complete. Let Ŷ be its completion and j : Y → Ŷ the canonical embedding. As Z is
complete, there is a continuous linear map q̂ : Ŷ → Z such that q̂j = q. By assumption,
Y is not complete so there is some y1 ∈ Ŷ �j(Y ). As q : Y → Z is surjective, there
is some y2 ∈ Y such that q(y2) = q̂(y1). Let y0 = y1 − j(y2). Then y0 ∈ Ŷ �j(Y ) and
q̂(y0) = 0. As i and j are topological embeddings, the composition ji : X → Ŷ is also
a topological embedding. As X is complete, ji(X) is closed in Ŷ . Since y0 /∈ j(Y ),
y0 /∈ ji(X) and so by the Hahn–Banach theorem, there is some g ∈ Ŷ ′ such that
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g(y0) �= 0 and g|ji(X)= 0. Consider gj ∈ Y ′. Since g|ji(X)= 0, i′(gj) = 0. Hence gj = q′f
for some f ∈ Z′. Consider g − f q̂ ∈ Y ′. For y ∈ Y ,

(g − f q̂)j(y) = gj(y) − f q̂j(y) = gj(y) − f q(y) = 0.

However,

(g − f q̂)(y0) = g(y0) − f q̂(y0) = g(y0) �= 0.

Hence g is a non-zero linear functional on Ŷ with g|j(Y )= 0. Thus j(Y ) ⊆ ker g �= Ŷ
contradicting the fact that Y is dense in its completion.

Thus Y is complete. �

Using the splitting from earlier, we can deduce some negative results.

COROLLARY 5.18. For H infinite, the space LH,b�n is not metrisable. If H is
uncountable, it is neither nuclear, separable, nor Lindelöf.

Proof. The properties of being separable and Lindelöf are preserved by quotients.
For locally convex topological spaces, metrisability and nuclearity are preserved by
(separated) quotients; see [3, 4.2.3, 21.2.3] and [12, I.6.3, III.7.4]. Or for metrisability
and nuclearity we could use the fact that these are inherited by subspaces. Either way,
it is sufficient to prove that

∑
H � does not have the stated properties.

For metrisable, we note that as H is infinite,
∑

H � contains as a topological
subspace the non-metrisable space �(�) of all finite sequences.

For nuclear, separable, and Lindelöf, we assume that H is uncountable. The proof
for nuclearity reduces to that of separability using the result, as stated in [10, 3.1.6],
that if T : E → F is a continuous linear map from a nuclear space to a normable space
then the range of T must be separable. Therefore, we look for a norm on

∑
H � such

that the resulting normed vector space is not separable. As a normed vector space is
metrisable, such a topology will not be Lindelöf either. The identity map on

∑
H � will

automatically be continuous from the usual topology to the norm topology, whence
we deduce that

∑
H � is neither nuclear, separable, nor Lindelöf.

A suitable norm on
∑

H � is given by ‖(at)‖1
..= ∑|at|. This is well-defined as

there are only finitely many non-zero terms in this sum. It is clearly a norm. For
s ∈ H, let xs ∈ ∑

H � be the vector with a 1 in the s–place and zero elsewhere. We have
‖xs − xr‖1 = 2 and hence there are pairwise disjoint ‖·‖1–open sets Ws with xs ∈ Ws.
Hence

∑
H � is not separable with the ‖·‖1–topology. �

5.4.2. The c∞–topology. We now turn to considering the smooth structure of
LH,b�. The smooth topology on a locally convex topological vector space is the
inductive topology for the smooth curves. That is, a set is c∞–open if and only if
its preimage under every smooth curve is open in �. This is the topology we impose on
a locally convex topological vector space when we wish to do calculus. There are two
important things to note about this topology. First, we need to start with the locally
convex topology to define the smooth curves. Therefore the c∞–topology depends
on the locally convex one. Second, it may not itself be a locally convex topology, or
even a topological vector space topology. In fact, for LH,b� it is neither by [5, I.4.26].
Nonetheless, we are able to identify this topology.
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PROPOSITION 5.19. The c∞–topology on LH,b� is the inductive topology from the
family {LF,b� : F ∈ F(H)} in the category of topological spaces.

Proof. From [5, I.4.28], we see that the c∞–topology on LF,b� is the trace of the
c∞–topology on LH,b� (note that if a subspace is closed for the locally convex topology
then it is closed for the c∞–topology). As LF,b� is a Fréchet space, its c∞–topology
agrees with its locally convex topology, [5, I.4.11]. Hence the inclusions LF,b� → LH,b�

are continuous for the c∞–topology on the target. Thus the c∞–topology on LH,b� is
at least as coarse as the inductive topology as a topological space.

Let U ⊆ LH,b� be open for the inductive topology. By definition, therefore, for
each F ∈ F(H), U ∩ LF,b� is open. Let c : � → LH,b� be a smooth curve and assume
without loss of generality that c−1(U) is not empty. Let t ∈ c−1(U). Let I ⊆ � be a
bounded open neighbourhood of t. Let K ⊆ � be a compact set containing I . As
c is smooth, it is continuous and hence c(K) is compact. By the characterisation
of bounded subsets of LH,b�, there is some finite F ⊆ H such that c(K) ⊆ LF,b�.
Moreover, c̃ : I → LF,b�, the restriction of c, is smooth. Thus c̃−1(U ∩ LF,b�) is an
open neighbourhood of t. This is contained in c−1(U) whence, as t was arbitrary,
c−1(U) is open. Thus U is c∞–open and so the c∞–topology agrees with the inductive
topology. �

COROLLARY 5.20. If H is countable, the c∞–topology on LH,b� is separable and
Lindelöf.

Proof. The proof is the same as that for the locally convex topology. �
It is simple to deduce from this that the c∞–topology is not metrisable for any

infinite H.

COROLLARY 5.21. For H infinite, the c∞–topology on LH,b� is not metrisable.

Proof. First, we observe that if H1 ⊆ H2, then the inclusion LH1,b� → LH2,b� is
a topological embedding for the c∞–topologies on both. Thus, it is sufficient to prove
this for H countable. If the c∞–topology on LH,b� were metrisable, then it would be
second countable as it is separable. Since the c∞–topology is finer than the locally
convex topology, the locally convex topology would then be second countable and
thus, as it is a regular Hausdorff topology, metrisable. This contradicts Corollary 5.18.
Hence the c∞–topology on LH,b� for H infinite is not metrisable. �

We would like to deduce, again for H countable, that LH,b� is smoothly
paracompact. For convenience in the following discussion, we quote two results from
[5].

LEMMA 5.22 [5, III.16.6]. Let E be the strict inductive limit of a sequence of C∞–
normal convenient vector spaces En such that En → En+1 is closed and has the extension
property for smooth functions. Then E is C∞–regular.

THEOREM 5.23 [5, III.16.10]. If X is Lindelöf and S–regular, then X is S–
paracompact. In particular, all nuclear Fréchet spaces and strict inductive limits of
sequences of such spaces are C∞–paracompact.

Here, S is a subalgebra of the algebra of continuous functions on X satisfying a
certain condition. This condition is spelt out in the remark following the statement of
this theorem: for each g ∈ S, there exists an h : � → [0, 1] with h ◦ g ∈ S, h(t) = 0 for
t ≤ 0, and h(t) = 1 for t ≥ 1.
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Theorem 5.23 appears to cover our situation as we have a strict inductive limit of
nuclear Fréchet spaces. However, careful examination of this part of the proof shows
that it relies on Lemma 5.22 for the smooth regularity of the limit. Therefore, we need
to assume that the limit is such that we have the extension property at each stage.
There is a classic example expounded in [5, V.21.5ff] of spaces which do not have this
extension property and this example is easily modified to our spaces. Therefore, we
need to adapt [5, III.16.6] to our situation whereupon we can use [5, III.16.10] to
deduce that LH,b� is smoothly paracompact.

LEMMA 5.24. Let E be the strict inductive limit of a sequence of convenient vector
spaces En such that En → En+1 is closed. Let Sn be the algebra consisting of those smooth
functions on En which extend to a smooth function on E. If each En is Sn–normal then E
is C∞–regular.

Proof. This is merely a matter of replacing a few symbols in the proof of [5,
III.16.6]. For convenience, we carry this out. We intentionally keep the same notation
and language to highlight the necessary changes.

Let U be open in E and 0 ∈ U . Then Un
..= U ∩ En is open in En. We choose

inductively a sequence of functions fn ∈ Sn such that supp(fn) ⊆ Un, fn(0) = 1, and
fn|En−1 = fn−1. If fn is already constructed, we may choose bySn+1–normality a function
g : En+1 → � with g ∈ Sn+1, supp(g) ⊆ Un+1, and g|supp(fn)= 1. Since fn ∈ Sn, it extends
to a function in C∞(E, �). This in turn restricts to an element f̃n of Sn+1 which, by
construction, itself restricts to fn on En. As Sn+1 is an algebra, fn+1

..= g · f̃n has the
required properties.

The rest of the proof proceeds unaltered. Now, we define f : E → � by f |En
..= fn

for all n. It is smooth since any c ∈ C∞(�, E) locally factors to a smooth curve into
some En by [5, (1.8)] since a strict inductive limit is regular by [5, (52.8)], so f ◦ c
is smooth. Finally, f (0) = 1, and if f (x) �= 0, then x ∈ En for some n, and we have
fn(x) = f (x) �= 0, thus x ∈ Un ⊆ U . �

PROPOSITION 5.25. Let H ⊆ S1 be countable. The space LH,b� is smoothly regular.

Proof. We will use Lemma 5.24. To do so, we need to show that LF,b� is SF –
normal, where SF is the algebra of smooth functions which extend to smooth functions
on LH,b�. We start by showing that it is SF –regular. From this, we will use [5, III.16.10]
to deduce that it is SF –paracompact, whence from [5, III.16.2], it is SF –normal as
required.

The c∞–topology on LF,b� agrees with the locally convex topology as it is a
Fréchet space, [5, I.4.11]. We have already shown that this is the topology inherited by
LF,b� from its inclusion in LH,b�, where the latter is given its locally convex topology.
This topology is nuclear and so is defined by Hilbertian semi-norms. The square of
such a norm is smooth by [5, III.13.10]. Let U be a 0–neighbourhood in LF,b�, then
there is some 0–neighbourhood V in LH,b� with V ∩ LF,b� ⊆ U . We can thus find
a Hilbertian semi-norm p : LH,b� → � such that p−1([0, 1]) ⊆ V . Composition of p2

with a suitable bump function on � results in a smooth function f : LH,b� → � with
support in V . The restriction of f to LF,b� is thus in SF and has support in U . Hence
LF,b� is SF –regular.

To apply [5, III.16.10], we need to show that SF satisfies the required condition,
namely that for each g ∈ SF , there exists an h : � → [0, 1] with h ◦ g ∈ SF , h(t) = 0 for
t ≤ 0, and h(t) = 1 for t ≥ 1. We will actually show that if f ∈ SF and h ∈ C∞(�, �),
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then h∗f ..= h ◦ f ∈ SF . Let f ∈ SF and h ∈ C∞(�, �); as f is smooth, h∗f : LF,b� → �

is smooth, therefore we just need to show that it extends to a smooth function on
LH,b�. Let f̃ : LH,b� → � be an extension of f , then h∗ f̃ is an extension of h∗f .

We now deduce that LF,b� is SF –paracompact, whence SF –normal. Hence by
Lemma 5.24, LH,b� is C∞–regular. �

COROLLARY 5.26. Let H ⊆ S1 be countable, then LH,b� is C∞–paracompact.

Proof. As it is Lindelöf and C∞–regular, we can apply [5, III.16.10]. �

5.4.3. Uncountability. In proving that LH,b� is C∞–paracompact, we have used
the countability of H at almost every stage. We therefore cannot readily adapt it to
uncountable H, specifically to the case H = S1. Thus, we are forced to leave open the
question as to whether or not Lpsb� itself is smoothly paracompact.

We conjecture that Lpsb� is not even C∞–regular. Let us explain the rationale
behind this conjecture.

Recall that the direct sum
∑

H � sits inside Lpsb� as a splitting subspace. Therefore,
any results which hold for Lpsb� will hold for

∑
H �. On the other hand, the space ��

is well-behaved with respect to the theory of smooth spaces and so there is no reason to
doubt that a technique that works for

∑
H � will fail for

∑
H ��. Similarly, although

the extension

L� → LH,b� →
∑

H

��

does not split, one would expect a general construction for
∑

H �� to be modifiable to
work for LH,b�.

Thus, a negative result for
∑

H � certainly implies the corresponding negative for
LH,b�, whilst it seems reasonable that a positive result for

∑
H � could be adapted to

one for LH,b�. Thus, we may turn our attention to
∑

H �, at least for the purposes of
this discussion.

Here, we see the difference between countable and uncountable index sets. For H
countable,

∑
H � is nuclear and thus its locally convex topology is determined by a

family of Hilbertian semi-norms. It is easy to build smooth bump functions from these
and this is what we used in Proposition 5.25. However, for H uncountable, this is no
longer the case. The locally convex topology on

∑
H � for H uncountable is not given

by Hilbertian semi-norms but rather by norms equivalent to that on 
1(H). As H is
uncountable, such a norm is nowhere even Gâteaux differentiable, see [5, III 13.11].
Indeed, for any infinite H, 
1(H) is not even C1–regular, [5, III 14.9].

What remains is to show that if
∑

H � is C∞–regular then a suitable smooth bump
function extends to some Banach completion of

∑
H �. The discussion at the start

of [5, III 13] is relevant here. There the issue of smooth semi-norms is discussed and
reason is given for considering only Banach spaces because any semi-norm on a locally
convex topological vector space defines an associated Banach space. However, if the
original semi-norm is smooth, it may not be the case that its extension is everywhere
smooth.

An alternative approach would be to attempt a smooth version of the Hahn–
Banach theorem. One could view Proposition 5.25 as the separable case. By analogy,
one would attempt to extract from Proposition 5.25 and from Lemma 5.24 the “one-
step extension lemma” crucial to the proof of the full Hahn–Banach theorem. However,
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there are difficulties with showing that the resulting family satisfies the requirements
of Zorn’s Lemma and so adapting the proof of the Hahn–Banach theorem is not a
simple task.

In the light of the other difficulties with the spaces of piecewise-smooth and
bounded loops—as detailed in the next section—we defer settling this conjecture to a
later date.

6. The diffeomorphism group. In this section, we examine the action of the
diffeomorphism group of the circle. This acts on the space of piecewise-smooth
bounded loops by precomposition. We shall see that this action is fairly bad, both
in terms of the continuity of the map:

Diff(S1) → L(Lpsb�)

and in terms of the continuity of the maps:

Diff(S1) → Lpsb�, σ �→ α ◦ σ

for a fixed α.
The action does not become any nicer when restricted to the circle, acting by rigid

rotation. Therefore, we also consider the possibility of improving the circle action.
However, we find that improving the circle action leads to a considerable worsening of
the topology and we doubt whether the trade-off is worthwhile.

6.1. The action of the diffeomorphism group. There are many different topologies
that one might wish to put on the space of continuous linear maps of a locally convex
topological vector space. As we are expecting negative results, we shall use what is
known as the weak or simple topology. This is the coarsest topology that one would
sanely think of using. Our negative results will therefore propagate backwards to any
other sensible topology.

Let E be a locally convex topological vector space. Let L(E) be the space of
continuous linear maps from E to itself. The weak topology on L(E) is the topology of
pointwise convergence, or uniform convergence on finite sets. To define a 0–basis for
this topology, for X, Y ⊆ E, let N(X, Y ) ⊆ L(E) be the set:

N(X, Y ) ..= {T ∈ L(E) : T(X) ⊆ Y}.
Then, a 0–basis for the weak topology on L(E) is the family of those N(X, U) with X
finite and U a 0–neighbourhood. We write Ls(E) when we wish to emphasise that we
are considering L(E) with the weak, or simple, topology.

This topology is closely related to the notion of separate continuity. For topological
spaces X, Y, Z, a map f : X × Y → Z is separately continuous if the maps x �→ f (x, y0)
and y �→ f (x0, y) are continuous for all x0 ∈ X and y0 ∈ Y . We are interested in the
special case where Y = Z = E and the maps y → f (x0, y) are continuous and linear.
We therefore have an induced map f ∨ : X → L(E) and, under these conditions, it is
easy to see that the separate continuity of f is equivalent to the continuity of f ∨ with
the weak topology on the target.

Let us return to the diffeomorphism group acting on piecewise-smooth bounded
loops.
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PROPOSITION 6.1. Let σ : S1 → S1 be a diffeomorphism. Let H ⊆ S1 be a subset.
The induced map σ ∗ : γ �→ γ ◦ σ is a linear homeomorphism from Lσ (H),b� onto LH,b�.

Proof. Let γ ∈ LF,b�. As γ and σ are continuous, γ ◦ σ is continuous. Since γ is
smooth on S1

�F , γ ◦ σ is smooth on σ−1(S1
�F). As σ is a bijection, σ−1(S1

�F) =
S1

�σ−1(F) and σ−1(F) is a finite subset of σ−1(σ (H)) = H. Hence γ ◦ σ is piecewise-
smooth with breaks in σ−1(F).

As σ is a diffeomorphism on S1, each derivative is bounded. For each k ∈ �, let
mk

..= sup{|σ (j)(t)| : t ∈ S1, 0 ≤ j ≤ k}. From Faà di Bruno’s formulæ for the chain rule
for higher derivatives, we see that there is some constant Nk depending only on k such
that for t ∈ S1

�σ−1(F):

∣∣∣(γ ◦ σ )(k)(t)
∣∣∣ ≤ Nkmk max{

∣∣∣γ (j)(σ (t))
∣∣∣ : 0 ≤ j ≤ k}.

Hence,

sup{
∣∣∣(γ ◦ σ )(j)(t)

∣∣∣ : t ∈ S1
�σ−1(F), 0 ≤ j ≤ k}

≤ Nkmk sup{
∣∣∣γ (j)(t)

∣∣∣ : t ∈ S1
�F, 0 ≤ j ≤ k}.

Thus the derivatives of γ ◦ σ are bounded on their domains of definition and so γ ◦ σ

is piecewise-smooth and bounded. Moreover, as the left and right limits exist, we have

sup{
∣∣∣(γ ◦ σ )(j)

± (t)
∣∣∣ : t ∈ S1, 0 ≤ j ≤ k}

≤ Nkmk sup{
∣∣∣γ (j)

± (t)
∣∣∣ : t ∈ S1, 0 ≤ j ≤ k},

whence the map LF,b�n → Lσ−1(F),b�n, γ �→ γ ◦ σ , is continuous. As its inverse is
γ �→ γ ◦ σ−1, it is therefore a linear homeomorphism.

Using the characterisation of LH,b�n as an inductive limit, we deduce that σ

induces a linear homeomorphism of Lσ (H),b�n onto LH,b�n for any H. �

We shall shortly see that this is the best statement that can be made about this
action. To continue our analysis, we need some suitable open sets in Lpsb�. We
will use these to define open sets of the form N({α}, V ) which will separate our
diffeomorphisms. Let sign: ��{0} → {−1, 1} be the sign function, sign(x) = x/|x|.

LEMMA 6.2. Let W ⊆ Lpsb� be the set of all piecewise-smooth loops with first
derivative bounded away from 0 (on its domain of definition). Define a relation on W by:
α ∼ β if sign(α′(t)) = sign(β ′(t)) for all t where both sides are defined. Define another
relation by α ≈ β if α ∼ β or α ∼ −β. Let σ : S1 → S1 be a diffeomorphism.

(1) W is a non-empty σ ∗–invariant open set.
(2) The relations ∼ and ≈ are equivalence relations.
(3) The equivalence classes of ∼ are open convex cones. Each equivalence class of ≈ is

the union of two equivalence classes of ∼.
(4) The equivalence classes of ∼ are indexed by two copies of the family of finite subsets

of S1 of even size. Those of ≈ are indexed by the family of finite subsets of S1 of even
size.
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(5) The diffeomorphism σ induces a permutation on the equivalence classes of ∼ and
≈. If V (F) is the ≈–equivalence class corresponding to a finite subset F ⊆ S1 then
σ ∗V (F) = V (σ−1(F)).

Proof.

(1) Let α ∈ W . Then there is some M ≥ 0 such that |α′(t)| ≥ M for all t where it is
defined. Let β ∈ α + U((1, M/2)). Then |β ′(t) − α′(t)| < M/2 wherever both are
defined. Hence |β ′(t)| ≥ M/2 for all t where both β ′(t) and α′(t) are defined. As
this is a finite subset of the domain of definition of β ′ and β ′ is continuous on this
domain, we must have |β ′(t)| ≥ M/2 wherever β ′(t) is defined. Hence β ∈ W .
Again let α ∈ W . By the chain rule, (σ ∗α)′(t) = α′(σ (t))σ ′(t) wherever this is
defined. As σ is a diffeomorphism, σ ′(t) is bounded away from 0. By assumption,
α′(σ (t)) is bounded away from zero. Hence σ ∗α ∈ W .

(2) Start with the relation ∼. Reflexivity and symmetry are straightforward. For
transitivity, the only difficulty is the domain of definition. First, note that for
α ∈ W , sign(α′(t)) is defined whenever α′(t) is defined as it is bounded away from
zero. Also t �→ sign(α′(t)) is a locally constant function on the domain of α′,
which is an open subset of S1. Now from α ∼ β and β ∼ γ , we readily deduce
that sign(α′(t)) = sign(γ ′(t)) for all but a finite number of points where both
sides make sense. But then we can extend this to those points since both sides
are continuous and constant in a neighbourhood of each missing point. Thus
sign(α′(t)) = sign(γ ′(t)) wherever both sides are defined.
The properties of ≈ follow almost immediately from those for ∼. The only extra
fact we need is the obvious one that α ∼ −β if and only if −α ∼ β.

(3) To show that an equivalence class of ∼ is open, we need to show that for each
β ∈ W there is an open neighbourhood V of β such that if γ ∈ V then β ∼ γ . So
let β ∈ W . Then there is some K > 0 such that |β ′(t)| ≥ K whenever it is defined.
Let γ ∈ W be such that β − γ ∈ U((1, K)). Then |β ′(t) − γ ′(t)| < K whenever both
are defined. Hence, as |β ′(t)| ≥ K , γ ′(t) and β ′(t) have the same sign. Thus β ∼ γ .
For the cone, let λ,μ > 0 and α, β ∈ W be such that α ∼ β. Then, for all t where
both are defined, α′(t) and β ′(t) are either both positive or both negative. Thus,∣∣λα′(t) + μβ ′(t)

∣∣ = λ
∣∣α′(t)

∣∣ + μ
∣∣β ′(t)

∣∣ .
Since both α′(t) and β ′(t) are bounded away from 0, there is some K > 0 such that
|α′(t)| ≥ K and |β ′(t)| ≥ K . Then,∣∣λα′(t) + μβ ′(t)

∣∣ ≥ (λ + μ)K

and (λ + μ)K > 0. Hence λα + μβ ∈ W . Moreover, λα′(t) + μβ ′(t) has the same
sign as, say, α′(t) and thus α ∼ λα + μβ.
Finally, it is obvious that the ≈–equivalence class of α is the union of the
∼–equivalence classes of α and −α.

(4) Let α ∈ W . The ∼–equivalence class of α is clearly completely determined by the
points in S1 where α′ changes sign. As α′ is bounded away from zero these points
must be a subset of the breaks of α and hence a finite subset of S1. Moreover, there
must be an even number as we have to return to our starting point after a circuit of
S1. For any finite subset of S1 of even size, we can find an α corresponding to this
set. That there are two copies comes from the fact that α and −α have the same
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set of sign-shifts. This doubling disappears when we consider the ≈–equivalence
classes.

(5) The ∼–equivalence classes are open convex cones in W . As they are cones, they
are path-connected. As they partition W each is the complement (in W ) of the
others whence is closed. Thus they are the connected components of W . As σ ∗

is a self-homeomorphism of Lpsb�, it induces a self-homeomorphism of W and
thus a permutation on the connected components. Moreover, as σ ∗ is linear we see
that σ ∗α ∼ −σ ∗β if and only if α ∼ −β whence σ ∗ induces a permutation on the
≈–equivalence classes.
By the chain rule, (σ ∗α)′(t) = α′(σ (t))σ ′(t). As σ is a diffeomorphism, σ ′ is mono-
signed. Therefore (σ ∗α)′ has a sign-change at t0 if and only if α′ has a sign-
change at σ (t0). Hence if V (F) is the ≈–equivalence class corresponding to F ⊆ S1,
σ ∗V (F) = V (σ−1(F)).

�
The ≈–equivalence classes are very useful open sets for examining the action of

the diffeomorphism group.

PROPOSITION 6.3. Let A ⊆ Diff(S1) be a family of diffeomorphisms for which there
is some finite F0 ⊆ S1 of even size with the property that if σ, τ ∈ A are such that
σ−1(F0) = τ−1(F0), then σ = τ .

For any α ∈ V (F0), there is a family of pairwise disjoint open sets in E which covers
the set {σ ∗α : σ ∈ Diff(S1)} with the property that each member of this family contains
at most one element of {σ ∗α : σ ∈ A}.

Proof. Consider the family V ..= {V (F) : |F | = |F0|}. These are pairwise disjoint
open sets in E. From Lemma 6.2, we know that σ ∗α ∈ V (σ−1(F0)) for σ ∈ Diff(S1).
As σ is a bijection, |σ−1(F0)| = |F0| and hence V (σ−1(F0)) ∈ V . Thus V covers the set
{σ ∗α : σ ∈ Diff(S1)}) as required.

Now, if σ and τ are distinct elements ofA, we know that σ−1(F0) �= τ−1(F0). Hence
V (σ−1(F0)) and V (τ−1(F0)) are distinct. Since σ ∗α ∈ V (σ−1(F0)), we deduce that each
element of V can contain at most one element of the set {σ ∗α : σ ∈ A}. �

From this technical result, we can determine just how bad is the action of the
diffeomorphism group, and even of the circle acting by rigid rotations.

COROLLARY 6.4.

(1) LetA, F0, and α be as in the statement of Proposition 6.3. Then the set {σ ∗α : σ ∈ A}
is discrete in Lpsb�.

(2) Let A satisfy the conditions of Proposition 6.3. Then, the set {σ ∗ : σ ∈ A} is discrete
in Ls(Lpsb�).

(3) The set {σ ∗ : σ ∈ Diff(S1)} is totally disconnected in Ls(Lpsb�).
(4) For t ∈ S1 let Rt : S1 → S1 be rotation by t. The family {Rt : t ∈ S1} satisfies the

conditions of Proposition 6.3 for any non-periodic finite subset F0 ⊆ S1 of even size.

To say that a set F ⊆ S1 is periodic means that there is some t ∈ (0, 1) such that
F + t = F . For F finite this is equivalent to saying that F is the union of a finite number
of cosets of Cn

..= {k/n : 0 ≤ k < n}, for some n.

Proof.

(1) By Proposition 6.3 for τ ∈ A, the set {τ ∗α} is open in {σ ∗α : σ ∈ Diff(S1)}.
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(2) Let F0 and α be as in the statement of Proposition 6.3. From the proof of
Proposition 6.3, the sets {N({α}, V (F)) : |F | = |F0|} are pairwise disjoint sets, open
in Ls(Lpsb�) which cover the set {σ ∗ : σ ∈ Diff(S1)}. Moreover, each N({α}, V (F))
can contain at most one element of the set {σ ∗ : σ ∈ A}.

(3) Let σ, τ be distinct diffeomorphisms. Let A = {σ, τ }. As they are distinct, there
is some t0 ∈ S1 such that σ−1(t0) �= τ−1(t0). Choose another point t1 ∈ S1 such
that σ−1(t1) �= τ−1(t0). Let F0 = {t0, t1}. The pair (A, F0) satisfy the conditions of
Proposition 6.3. Thus we have a family of pairwise disjoint open setsV inLs(Lpsb�)
with the property that σ ∗ and τ ∗ lie in two distinct ones. Divide the family V into
two parts such that the set containing σ ∗ is in one part and that containing τ ∗ in
the other. Let U and V be the unions of the sets in these two parts. Then U and
V are disjoint open sets in Ls(Lpsb�) such that U ∪ V contains {ρ∗ : ρ ∈ Diff(S1)}
and σ ∗ ∈ U , τ ∗ ∈ V . Hence {ρ∗ : ρ ∈ Diff(S1)} is totally disconnected.

(4) Let F0 be a non-empty, non-periodic subset of S1 of finite even size. Let s, t ∈ S1

be such that Rt(F0) = Rs(F0). Then F0 = Rs−t(F0) = F0 + (s − t). Hence, as F0 is
non-periodic, s = t.

�
COROLLARY 6.5. The action of the circle on Lpsb� is not separately continuous. Let

F ⊆ S1 be an even, non-empty, non-periodic subset. Let α ∈ V (F). Then the rotation
orbit {Rt

∗α : t ∈ S1} is discrete in Lpsb�.

In fact, we can do better than this last statement. It is not hard to show that the
map t �→ Rt

∗α has discrete image if, and only if, α has a genuine break.

6.2. Fixing the circle action. In the last section, we saw that the topology on Lpsb�

is particularly ill-behaved with regard to the action of the diffeomorphism group, and
in particular with regard to the natural circle action. Due to the importance of this
circle action, it is tempting to try to fix this problem. Unfortunately, we shall see in this
section that there is no truly satisfying solution.

Let T be a locally convex topology on Lpsb� with the following properties:

(1) The maps LF,b� → Lpsb� and Lpsb� → L0� are all continuous for the topology
T .

(2) The topology is Hausdorff.
(3) The circle action is separately continuous.

To investigate this topology, we consider the following piecewise-linear loop. Let
α0 : S1 → � be the loop

α0(t) =
{

t − 1
4 0 ≤ t < 1

2 ,
3
4 − t 1

2 ≤ t < 1

illustrated in Figure 7.
Note that α0(t) + α0(t + 1

2 ) = 0 for all t ∈ S1. This is a useful property so we shall
give it a name.

DEFINITION 6.1. We call a loop β : S1 → � S1–odd, if it satisfies the condition
β(t) + β(t + 1

2 ) = 0 for all t ∈ S1.

The set of such loops has certain obvious properties.
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Figure 7. The loop α0.

LEMMA 6.6.

(1) A linear combination of S1–odd loops is again S1–odd.
(2) A rotated S1–odd loop is again S1–odd.
(3) The only S1–odd constant loop is the zero loop.
(4) If β is an integrable S1–odd loop, then there is a unique constant c (depending on β)

for which the loop t �→ ∫ t
0 β(s)ds + c is S1–odd. This constant is − 1

2

∫ 1
2

0 β(s)ds.

Let us return to α0. By assumption, the circle action is separately continuous.
Therefore, the map t �→ Rtα0 is a continuous map S1 → (Lpsb�, T ). The image is thus
compact. Let A be the convex circled hull of this set. By [12, 2.4.3], this has precompact
closure and hence is bounded. Let EA

..= ⋃
n∈� nA. This is a subspace of Lpsb� and we

equip it with the norm ‖·‖A defined by the gauge of A. That is,

‖x‖A
..= inf{λ > 0 : x ∈ λA}.

The pair (EA, ‖·‖A) is then a normed vector space which injects continuously into
(Lpsb�, T ). We transfer our attention to (EA, ‖·‖A).

LEMMA 6.7. The normed vector space (EA, ‖·‖A) is the space of S1–odd piecewise-
linear loops. The set {Rtα0 : t ∈ [0, 1

2 )} is a basis for EA. The map (ξt) → ∑
ξtRtα0 is an

isometric isomorphism (�([0, 1
2 )), ‖·‖1) → (EA, ‖·‖A).

Proof. Since Rtα0 is S1–odd and piecewise-linear for any t ∈ S1, every element
of EA is S1–odd and piecewise-linear. To prove the converse, let β be an S1–odd,
piecewise-linear loop. Let t1, . . . , tk−1 ∈ (0, 1

2 ) with ti < ti+1 be such that { 1
2 − ti : 1 ≤

i ≤ k} is the set of breaks of β which lie in (0, 1
2 ). Put t0 = 0 and tk = 1

2 . Choose
points si ∈ ( 1

2 − ti,
1
2 − ti−1) for 1 ≤ i ≤ k. Let V ⊆ EA be the linear span of the set

{Rtiα0 : 0 ≤ i ≤ k − 1}.
The breaks of γ ∈ V lie in the set { 1

2 − ti, 1 − ti : 0 ≤ i ≤ k} and so γ is
differentiable at si. Define a linear transformation D : V → �k by γ → (γ ′(si)). The
image of Rtiα0 is the vector (1, . . . , 1,−1, . . . ,−1) where −1 occurs with multiplicity
i. These vectors form a basis of �k, whence dim V = k, the Rtiα0 are a basis for V , and
D is an isomorphism.

In particular, there are ξi ∈ �, 0 ≤ i ≤ k − 1, such that putting γ = ∑
ξiRtiα0,

then D(γ ) = (β ′(s1), . . . , β ′(sk)). By construction, γ and β are both S1–odd, piecewise-
linear loops with the same break points in (0, 1

2 ) and the same derivatives on [0, 1
2 ].
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Thus β − γ is an S1–odd, piecewise-linear loop with zero derivative on [0, 1
2 ]. Hence

β − γ = 0 whence β ∈ EA.
This also proves the claim that {Rtα0 : t ∈ [0, 1

2 )} is a basis for EA since we cover
every choice of (t1, . . . , tk−1) by this means.

For β ∈ EA with expansion β = ∑
ξjRtj α0, we have the obvious inequality ‖β‖A ≤∑|ξj|. To show the converse, assume without loss of generality that

∑|ξj| = 1. If
‖β‖A < 1, then there is some λ > 1 with λβ ∈ A. Thus λβ = ∑

ζiRsiα0 for some si ∈
[0, 1

2 ) and ζi ∈ � with
∑|ζi| ≤ 1. As the Rtα0 are a basis for EA, we must have that the

two expressions for β are one and the same. Thus
∑|λξj| = ∑|ζi| ≤ 1. But

∑|λξj| =
λ

∑|ξj| = λ > 1. Thus we see that ‖β‖A = 1 = ∑|ξj|.
Moreover, this demonstrates that the map (ξt) → ∑

ξtRtα0 is an isometric
isomorphism (�([0, 1

2 )), ‖·‖1) → (EA, ‖·‖A). �

Our next task is to identify the completion of this space. It will simplify matters if
we differentiate everything involved and chose some convention for the points where
our piecewise-linear maps have breaks. Let β0 : S1 → � be the step function

β0(t) =
{

1 0 ≤ t < 1
2

−1 1
2 ≤ t < 1.

Then β0 = α′
0 at all but finitely many points. Let EB be the linear span of the family

{Rtβ0 : t ∈ [0, 1
2 )} with norm

∥∥∥∥∥∥
k∑

j=1

ξjRtj β0

∥∥∥∥∥∥
B

=
k∑

j=1

∣∣ξj
∣∣ .

The uniqueness of S1–odd integrals shows that S1–odd integration defines an isometric
isomorphism from EB to EA. To identify the completion of EB, we need to reformulate
the norm in terms of values of the loop.

LEMMA 6.8. Let γ = ∑k
j=0 ξjRtj β0 and assume, without loss of generality, that tj <

tj+1 and t0 = 0. Let t ∈ [0, 1
2 ). Let i be the maximum of the set {j : 1

2 − tj > t}. Then
γ (t) = ξ0 + · · · + ξi − ξi−1 − · · · ξk.

Proof. For s ∈ [0, 1
2 ), we have by definition, (Rsβ0)(t) = β0(t + s) which is 1 if t + s ∈

[0, 1
2 ) and is −1 if t + s ∈ [ 1

2 , 1). Therefore (Rsβ0)(t) = 1 if t < 1
2 − s and (Rsβ0)(t) = −1

if t ≥ 1
2 − s.

Let i be as in the statement. Note that i is well-defined as 1
2 − t0 = 1

2 > t. Then,
for j ≤ i, t < 1

2 − tj so (Rtj β0)(t) = 1; whilst for j > i, t ≥ 1
2 − tj so (Rtj β0)(t) = −1.

Substituting in yields the given expression. �

COROLLARY 6.9. Let γ = ∑k
j=0 ξjRtj β0 with, as above, tj < tj+1 and t0 = 0. Then,

ξj =
{

1
2γ ( 1

2 − tj+1) − 1
2γ ( 1

2 − tj) j �= k
1
2γ (0) − 1

2γ ( 1
2 − tk) j = k

.
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Proof. For j ∈ {0, . . . , k − 1} let sj = 1
2 − tj+1. Let sk = 0. By construction, max{i :

1
2 − ti > sj} = j. Thus,

γ (sj) = ξ0 + · · · + ξj − ξj−1 − · · · − ξk.

Hence, for j ≥ 1, γ (sj) − γ (sj−1) = 2ξj and γ (s0) + γ (sk) = 2ξ0. Now sk = 0 so as γ is
S1–odd, γ (sk) = −γ ( 1

2 ). Thus, for 0 ≤ j < k, 2ξj = γ ( 1
2 − tj+1) − γ ( 1

2 − tj) and 2ξk =
γ (0) − γ ( 1

2 − tk). �
PROPOSITION 6.10. The loops in EB are of bounded variation and the total variation

of γ ∈ EB is 4 ‖γ ‖B.

Proof. Let γ = ∑k
j=0 ξjRtj β0 be an element of EB with tj < tj+1 and t0 = 0 as before.

Let P be a partition of S1 and assume without loss of generality that 1
2 − tj ∈ P for all

j and P + 1
2 = P . As γ is constant on the intervals [tj, tj+1) and on [tk,

1
2 ), it is easy to

see that the variation of γ with respect to the partition P is

∣∣∣∣γ (0) − γ (
1
2

− tk)

∣∣∣∣ +
k−1∑
j=0

∣∣∣∣γ (
1
2

− tj+1) − γ (
1
2

− tj)

∣∣∣∣
+

∣∣∣∣γ (
1
2

) − γ (1 − tk)

∣∣∣∣ +
k−1∑
j=0

∣∣γ (1 − tj+1) − γ (1 − tj)
∣∣ .

As γ (t) = −γ (t + 1
2 ), we can shorten this expression to twice the first half. Then, we

substitute in from Corollary 6.9 to find that the total variation with respect to P is

4 |ξk| + 4
k−1∑
j=0

∣∣ξj
∣∣ = 4

k∑
j=0

∣∣ξj
∣∣ = 4 ‖γ ‖B .

As this is independent of P , we see that γ is of bounded variation with total variation
4 ‖γ ‖B. �

COROLLARY 6.11. The completion of EB is the space of S1–odd loops of bounded
variation, whence the completion of EA is the space of differentiable S1–odd loops with
derivative of bounded variation.

Had we assumed that the map S1 → (Lpsb�, T ), t �→ Rtα0 was Lipschitz, we would
have obtained the space L1,1(S1, �) of differentiable S1–odd loops with Lebesgue
integrable derivative.

PROPOSITION 6.12. Let T be a locally convex topological vector space topology on
Lpsb� satisfying the following conditions:

(1) The maps LF,b� → Lpsb� and Lpsb� → L0� are continuous with respect to T .
(2) The completion of (Lpsb�, T ) injects into L0�.
(3) The circle action is separately continuous.
Then the restriction of T to the subspace of S1–odd loops is at least as coarse as the
topology given by the norm

∫
S1 |γ (2)(s)|ds + ∑

t∈S1 |γ (2)
+ (t) − γ

(2)
− (t)|.

Proof. The image in L0� of the completion of EA contains the subspace of S1–odd
piecewise-smooth loops hence by the injectivity assumption the completion of EA in
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the completion of (Lpsb�, T ) must contain the subspace of S1–odd piecewise-smooth
loops. Thus EA is dense in the subspace of S1–odd piecewise-smooth loops and so
the topology on this subspace is completely determined by its restriction to EA. This
topology is normable with norm given by the total variation of the first derivative. For
a smooth loop, this is

∫
S1 |γ (2)(s)|ds whilst for a piecewise-smooth loop we merely need

to add in the absolute values of the breaks in γ (2). �
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