
Can. J. Math., Vol. XL, No. 1, 1988, pp. 38-54 

N SUBSPACES 

V. S SUNDER 

Introduction. It is a well-known fact (cf., for instance Lemma 7.3.1 of 
[8], and also [2] and [4] ) that if M and N are closed subspaces of a 
finite-dimensional Hilbert space, and if M and N are in 'generic' position 
(i.e., any two of the four subspaces M, M , N, N have trivial 
intersection), then N is the graph of a linear isomorphism of M onto M . 
To be sure, there exist infinite-dimensional versions of this, where one 
must allow for unbounded operators in case the 'gap' between M and TV is 
zero, in the sense of Kato [7]. (There is an extensive literature on pairs of 
subspaces, [2], [3], [4], [6] and [7], to cite a few; for a fairly extensive 
bibliography, see [3].) 

This paper addresses itself to the case of n (2 ^ n < oo) subspaces. 
Theorem 1 generalises the assertion of the preceding paragraph as follows: 
if Mj, . . . , Mn are closed subspaces of a Hilbert space H such that H is the 
algebraic direct sum of the M/s, then there exists an orthogonal direct sum 
decomposition 

/ / = Lx © . . . 0 Ln 

such that Mk looks like the graph of a bounded linear transformation from 
Lk into Lx © . . . © Lk_x for 1 ^ k ^ n. 

The orthogonal projection onto Mk is explicitly computed in terms of 
the above operator, and this description is used to attack the problem 
of unitary equivalence for «-tuples of closed subspaces. In a certain 
'generic' case (see Definition 1), the above problem reduces to the unitary 
equivalence problem for single operators. As a by-product of the above 
computations, one has a concrete description of the commutant 
{Px, . . . , PnY (where Pi = projection on Mt), which leads easily to 
examples of sets {Pb . . . , Pn } of n projections, with n ^ 3, such that 38(H) 
is generated as a von Neumann algebra by ( P b . . . , Pn} but by no proper 
subset. (For a specific example with n = 3, see [1].) 

The final section of the paper applies the machinery developed earlier to 
solve the statistical problem of computing the canonical partial correlation 
coefficients between three sets of random variables (cf. [9] ). 

Acknowledgement. Some of the results, as well as the title, of this paper 
are inspired by (and constitute natural generalisations of) [4]. The author 

Received April 9, 1985 and in revised form July 2, 1985. 

38 

https://doi.org/10.4153/CJM-1988-002-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-002-0


N SUBSPACES 39 

would like to acknowledge his gratitude to S. K. Mitra for several 
stimulating conversations, particularly in connection with the statistical 
application in the last section of the paper. The author would also like to 
thank the referee for some helpful comments as well as for bringing some 
of the references to his awareness. 

Notation. Throughout this paper, the symbols M1? . . . , Mn will denote 
closed subspaces of a (real or complex) Hilbert space H such that 

H = Mx + . . . + Mn 

and (*) 

Ml: H 2 Mj = {0}. 

(As a matter of convention, we shall employ the symbol 

H = 0 L 
/ = i ' 

only when the subspaces Li are mutually orthogonal and together span. To 
distinguish from such an orthogonal direct sum, we shall say that 

n 

H = 2 M, 
i=\ 

is an algebraic direct sum if the closed subspaces M1? . . . ,Mn satisfy 
condition (*) ). For 1 ^ ^ n, define 

k 

sk = 2 Mj9 Lk = sk n si_, 
7 = 1 

with the understanding that S0 = {0}, so that Lx = Sx. It is clear that the 
Lf/s are pairwise orthogonal subspaces of H such that 

k k 

2 M: = 0 L..; 
.7 = 1 J J = x J 

in particular, 

H = 9 L . 
k = \ k 

(The passage from the Mks to the Lk
9s may be viewed as a 

Gram-Schmidt orthogonalisation process for subspaces.) 
The orthogonal projections onto Mk and L will be denoted by Pk and ir­

respectively. For 1 ^ j ^ k ^ n, define 

https://doi.org/10.4153/CJM-1988-002-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-002-0


40 V. S. SUNDER 

by 

Ajk-Mk->Lj 

Ajkx = Ejx. 

Thus, A:k is just the operator E-, but viewed as operating between the 
Hilbert spaces Mk and L-. 

Finally, with respect to the decomposition 

H = 0 L„ 
.7 = 1 J 

let Pk be represented by the operator matrix Pk = ( (CAvy), where of course, 
CA /y is the unique operator from L- to L, satisfying 

<Q-,i/^' ^> = <PAX ' J7) f o r a11 x i n Ly> y i n A-

The main result. 

LEMMA 1. Fix k ^ n. Then, 

c .. = [A^ lfx =<<J = k 

kjj [0 otherwise. 
Proof. Since Mk. Q Lx ® . . . 0 LA, it is clear that CklJ = 0 if / > k or 

/ > k. So, fix /,y ^ A:. Note first that AikA% is an operator from L- to L7; 
for arbitrary x e L and _y G L7, note that 

( A A ^ * ^ ) = (EiA*kx>y) 
= (Afkx,y) (since y e L,) 

= < ^ hy) 

= < ^ ^ A - V > 

= (x, i\.y) (since (x e L ) 

= <n^>'>-
LEMMA 2. For 1 ^ A' ^ n, Akk is an invertible operator from Mk to Lk. 

Proof. Since 
A 

Lk Q 2 My, 

t follows that £A maps 2 , = i M- onto LA. However, 
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and hence Ek annihilates 2 y d My It follows that Ek maps Mk onto 
Lk\ i.e., Akk is onto. 

Next, if x G Mk is such that Ekx = 0, it follows that 

A : - l 

x ^ Mk n L^ = Mk D 2 A/,-, 
7 = 1 

which contradicts the standing assumption that H is the algebraic direct 
sum of the M's, unless x = 0; i.e., ^4^ is one-to-one. 

THEOREM 1. Let Mt, Lt be as above. Then, there exist bounded operators 
Bjk\Lk —» L for 1 ^ j ^ k = n such that, with respect to the 
decomposition 

H = S Ly 

one has, for \ = k < n, 

(1) Mk = { (Blkx, B2kx, . . . , Bk_hkx, x, 0, . . . , 0):x G L*}. 

Proof With the notation already established, define 

Bjk=AJkoAû\ îorl^j^k^n. 

The boundedness of l?^ follows from Lemma 2 and the open mapping 
theorem. Observe also that, by the definition of the A-ks and the B:ks, 

Mk = {(Alkx,...,Ak_lkx,Akkx,0,0,...,0):x e Mk} 

= { (Blkx,. . . , Bk_lkx, x, 0 , . . . , 0):* e L*}, 

again by Lemma 2. 

Remark 1. (a) Note that J9M = 7L . 
(b) In the converse direction to Theorem 1, note that if 

H = 0 L, 
y'=i J 

is an orthogonal direct sum decomposition of H, if B-k:Lk —» L are 
arbitrary bound operators, for 1 t=z j < k ^ n, and if M^ is defined by (1), 
then H is the algebraic direct sum of the Mks and the above process 
applied to the Mks will yield the given L-'s and B:ks. 

LEMMA 3. With respect to the decomposition 
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the projection Pk onto Mk is given by the operator matrix (CkiX where 

C * * = 
* J 2 BrkBlk)

 XBfk fori tzij^k 
7 = 1 

0 otherwise. 

Proof. Note first that Bkk = IL and hence the operator 

2 BfkB, 
/ = 1 

Ik»Ik 

is invertible. 
For y ^ k, we have 4̂ -̂  = B k o ,4^ , by definition. So Lemma 1 shows 

that 

ck,j = Bik ° Akk o Atk o Bfk for 1 ^ z,y ^ /:, 

and Cki- = 0 if / > k or y > k. Hence, to prove the lemma, it suffices to 
establish that 

AkkoA*kk = 2 BfkBlk 
v=i 

To see this, start from the obvious equality 

2 Afk o Ajk = /M/, 
.7 = 1 

y* u ^ /7c - AMk 

and substitute ^ = Bjk o Akk to conclude 

k ( k \ 

IMk = 2 A*kk o ^ o 2?y, o Akk = ^ 2 BfkBjk]Akh 
.7 = 1 7 = 1 7 

whence 

Atk ' Akk — 2J B*kBjk, 
j = \ 

i.e., 

^kkA*kk 

as desired. 

>~i 2 2%A 
7 = 1 

\jk»jh 
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2. The unitary equivalence problem. 

THEOREM 2. Let Mx, . . ., Mn (resp., M\,.. . , M,'7) be closed subspaces of 
H such that H is the algebraic direct sum of the M;'s (resp., M['s). Let 

H-frLj (resp., H ^ S l j ) 

be the associated orthogonal decomposition, and let B-k.Lk —» L (resp., 
B'k\L'k —> Lj) be the operators given by Theorem 1. 

(a) If U is a unitary operator on H such that U(Mi) = M^for 1 = / = n, 
then U(Lt) = L\ for 1 ^ i ^ n. If Ui.Li —> L- w the restriction of U to 
Lf, then 

Vfiik = ^ [ 7 , for\^i<k^n. 

(b) Conversely, if Ui\Li —> L,' are unitary operators such that 

U,Blk = 2 ? ^ / f l r l s / < ^ „ , 

//z /̂7, //zere exists a unitary operator U on H such that 

U\Lt = Vl and U(Mt) = M\ for 1 I i g w. 

Proof, (a) If t / is a unitary operator on H such that U(Mt) = M\ for each 
/, it is easy to see that U(Lt) = L\ for each i. The hypothesis U(Mk) = Mk 

is clearly equivalent to UPk = PkU (where, of course Pk is the projection 
onto Mk). It follows now from Lemma 3, that, for 1 ^ i,j ^ k, 

(2) ^ j ^p* ) V 4 ? , w ) 'w-
Since Bkk = IL and i ?^ = IL,, setting i = j = k in (2) yields 

(3) £4(2 5^) ' = ( 2 B K ) V 

Setting j = k in (2) and applying (3), we get 

% ( 2 */£*,*) ' = 5 4 ( 2 ^ / * ) '«4 

and consequently 

(4) ^ = B'ikUk. 

(b) Since 

https://doi.org/10.4153/CJM-1988-002-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-002-0


44 V. S. SUNDER 

// = é L, = ê L;, 

it is clear that if Ui\Li —» L7- are unitary operators, then there exists a 
unique unitary operator U on H whose restriction to Lt is Ut. Suppose, 
further, that the Lf-'s satisfy (4). Taking adjoints yields 

multiplying this equation on the left and right by Uk and Uh respectively, 
we get 

(5) UkB*k = B'*kU, 

Hence, 

UkBfkBlk = B'*kU,Bik = B'*kB,'kUk, 

for each /', whence, 

inversion now gives 

pre and post multiplying this last equation by Uk yields equation (3). A 
successive application of equations (4), (3) and (5) to the left side of 
equation (2) shows that equation (2) is valid. Hence, we have shown 
that 

UiCkjj = CkJj Uj9 

where, of course, (C'ki) the matrix of Pk in the decomposition 

H = e n. 
i=\ i 

It follows at once that UPk = P'kU, or, equivalently, that U(Mk) = Mk for 
each k. 

Notation. If M l5 . . . , Mtv L h . . . , Ln and the Bjks are as in Theorem 1, 
let B be the operator on H given, with respect to the decomposition 

H = é L„ 
7 = 1 7 

by the upper-triangular operator matrix 
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Bu Bu . . . Bln 

0 B23 . . . B2n 

0 0 ... B3n 

|_0 0 0 . . . 0 J 

Theorem 2 has the following obvious reformulation: If {Ml5 . . . , Mn } and 
{M|, . . . , M'n) are two «-tuples of subspaces, both yielding algebraic direct 
sum decomposition of H, if B and B' are the operator matrices associated 
to the two «-tuples via (6), then the «-tuples (M 1 ? . . . ,M W ) and 
(M], . . . , M'n) are unitarily equivalent if and only if the matrices B and B' 
are unitarily equivalent via a 'block-diagonal' unitary matrix. 

Since it would be desirable, if possible, to identify the unitary equiv­
alence problem for the «-tuple ( M l s . . . , Mn) with the unitary equivalence 
problem for the associated ^-operator, we shall now investigate the 
condition of block-diagonality of a unitary operator intertwining two 
^-operators. 

LEMMA 4. Let B be the operator matrix given by (6). Suppose Bk_x k is 
one-to-one, for 1 < k = n. Then, 

ker Bk = Lx 0 . . . 0 Lh for 1 ^ k ^ «. 

Proof. First consider ker B. Let Bx = 0, where x is given by the col­
umn vector x = (x b . . . , xnJ (the prime denoting transpose). Then, for 
l S ; g / i - l , 

n 

2 Bjkxk = 0. 
k=j+\ 

Fory = « — 1, this is 2?w_i nxn = 0, which implies xn = 0, by the assumed 
injectivity. If, inductively, it has been shown that xn = . . . = x.-+2

 = ®> 
the above equation becomes 

*,•,, +i*y+i = °> 

which again forces x + 1 = 0. Thus, we conclude that x2 = . . . = xn = 0, 
or in other words, that ker B = Lv 

To discuss the case k > 1, the following bit of terminology will help; for 
any « X « matrix (At) and 1 ^ j ^ n, let us call (Ay,A2j+\,. • •, 
An_- + Xn) they-th diagonal of the matrix. Thus, for instance, the matrix 

|~1 2 3] 
4 5 6 
7 8 9 

(6) B = 
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has (1, 5, 9), (2, 6) and (3) as its first, second and third diagonals. 
Coming back to the proof, fix a /c, with 1 ^ k ^ n. It is not hard 

to show (by induction, for instance) that (a) the first k diagonals of Bk 

are identically zero; and (b) the (k -f l)-st diagonal of B is 

(^12^23 • • • ^A,A + b ^23 • • • ^A + l,£ + 2> • • • » Bn-k+\,n-k + 2 ' • • ^ « - 1 , « ) - T h e 

hypothesis ensures now that every entry in this diagonal is an injective 
operator. Now, arguing exactly as in the case k = 1, it may be shown 
that 

ker Bk = Lx © . . . 0 Lk. 

The relationship between the Mks and the ^ , ' s reveals that injectivity 
of Bk_xk is equivalent to the condition 

(M, + . . . + M , _ 2 + Mfc) n (M, + . . . + Mk_x)
x = {0}. 

This prompts the following definition. 

Definition 1. The ordered «-tuple (Mj, . . . , Mn) of closed subspaces of 
H is said to be generic if, for 1 < k ^ ft, 

(M, + . . . + MA_2 + Mk) n (M, + . . . + Mk_l)
± = (0). 

Remark 2. (a) For n = 2, this gives only one condition: 

M,1 n M2 = {0}. 

This is a weaker condition than the one defined by Halmos (cf. [4] ]; he 
calls a pair (M}, M2) of subspaces to be in generic position if 

M} n M2 = Mj- n M2 = M} n M^ == M^ n M2 = {0}. 

For one thing, his notion is a symmetric one; i.e., the order in the pair 
(M b M2) is irrelevant. It is not hard to see that, for finite dimensional //, a 
pair of subspaces (M l5 M2) is in generic position in the sense of Halmos if 
and only if (i) H is the algebraic direct sum of Mx and M2, and (ii) both the 
ordered pairs (M b M2) and (M2, Mx) are generic in the sense of Definition 
1 above. 

(b> if 

n 

H = 2 Ml 
\ = \ 

is an algebraic direct sum, and if the operators B-k are constructed as in 
Theorem 1, then, genericity of (Ml5 . . . , Mn) is equivalent to injectivity of 
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each Bk_xk. In particular, if dim H < oo, then dim Mt = dim Mj for ally, 
and dim H = n dim Mx. 

(c) The term 'generic' is apt, in the following sense: if 

n 

H = 2 Ml 
i = \ 

is an algebraic direct sum, if dim H < oo and dim Mt = dim M- for all /,y, 
then, for any c > 0, there exists an algebraic direct sum decomposition 

n 

H = 2 M; 

such that (Mj, . . . , M^) is generic and 

||/> - P;|| < € for 1 ^ / ë w, 

where î  and P- are the orthogonal projections onto Mi and Af-
respectively. (Reason: if 

H = ® L: 
i = \ ' 

is the orthogonal direct sum decomposition associated with 

n 

H = 2 Mz, 
/ = i 

and if {5^:1 ^ 7 < k = n) are the operators given by Theorem 1, 
let (M'i, . . . , M'n) be the «-tuple determined by the orthogonal decom­
position 

H = 0 L: 
1 = 1 ' 

and the operators {Bjk :1 ^âj<k^kn}, where Bjk = B k ifj<k— 1, and 
B'k_xk is an invertible operator from Lk to Lk_x such that 

| | ^ _ u - B'k_Uk\\<8 for all A:, 

where ô is chosen small enough to ensure 

\\pk - mi < «; 
this is possible by the representations of Pk and Pk given by Lemma 3). 

(d) The observation in (c) above can be strengthened to the following 
more symmetric assertion (the proof being identical): with the notation of 
(c), one can choose the M\ such that 

||/J - P;|| < c for all/ , 
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and such that 

{ M ; ( 1 ) , . . . , M'0(n)) 

is 'generic', for each permutation a. Thus, the remark (c) is not meant as a 
justification for the asymmetry of Definition 1; that justification and, in 
fact, the raison d'être of Definition 1 lies in the next proposition, where 
the reader may observe that genericity plays a crucial role, and is in fact, 
quite close to being a necessary condition (though not quite) for the 
validity of the assertion. 

THEOREM 3. Let 

n n 

be two algebraic direct sum decompositions of H. Suppose both the n-tuples 
(M b . . . , Mn) and (M\, . . . , Mn) are generic. Let B and Bf be the operators 
associated to these n-tuples via equation (6). For a unitary operator U on H, 
the following conditions are equivalent: 

(i) U(Mt) = M\ for \ ^ i ^ n \ 
(ii) UBU* = B'. 

Proof The implication (i) => (ii) is a direct consequence of Theorem 2. 
For the converse implication, it suffices (again, by Theorem 2) to prove 
that any U as in (ii) must be in 'block-diagonal' form, i.e.; we must 
show that if UBU* = B\ then U must necessarily map Lk onto L'k for 
1 ^ k ^ n. However, if UBU* = B\ then it is clear that 

£/(ker Bk) = ker B'k. 

By Lemma 4, this says that 

U{LX ®...®Lk) = L'®...@L'k 

for each k. Since the L/s (respectively, the L-'s) are mutually orthogonal 
subspaces, this ensures that U(Lk) = Lk for all /c, as desired. 

3. Generators of @(H). For any subset S of &(H), let us write W*(S) 
for the von-Neumann algebra generated by S. In [1], Davis shows that (a) 
if Px and P2 are orthogonal projections on a Hilbert space H with 
dim H > 2, then 

W\ {/V P2} ) ç <g(H); 

while (b) if H is a separable infinite-dimensional Hilbert space, there exist 
three orthogonal projections Ph P2 and P3 on H such that 

W*({Ph P2, P3}) = @(H). 
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It will be shown below, using the results of the preceding sections, that 
if n ^ 3, and if H is a separable Hilbert space which is either infinite 
dimensional or finite-dimensional with dimension a multiple of n, there 
exist n orthogonal projections P]9 . . . , Pn on H such that 

(i) W*( {P]9 . . . , Pn} ) = @(H) and 

(ii) W*(S) * âS(H) whenever S Ç {?! ?„}. 

THEOREM 4. Let L be a separable Hilbert space and let H be the Hilbert 
space direct sum of n copies of L. Let 

{Bjk:\ ^j<k^n} Q38(L) 

satisfy (a) Bin has dense range, for 1 ^ / < n\ and 

(b) W*({BfnBm:\^i<n}) = Sd(L). 

{If n ^ 3, these conditions can be met by an appropriate choice of the B-ks). 
Then, if Pk denotes the orthogonal projection onto the subspaces Mk of H 
defined by 

Mk = { (BXkx,..., Bk_ukx, x, 0 , . . . , 0):x e L), 

the following assertions hold: 
(i) W*({Pl9...9Pn}) = &(H)9 

(ii) W*(S) c @(H), whenever S £ [p^ ...9Pn). 

Proof First, let us prove the parenthetical statement which ensures 
that the above theorem is not a vacuous statement. To see this, 
note first that since L is separable, there exists C G &(L) such that 
W*( {C} ) = ^ (L) . (For example, if dim L = S0, so that L may be taken 
as / , we may take C to be the unilateral shift; if dim L = m, and if 
[e{9 . . . , em} is an orthonormal basis for L, let C be the operator 
defined by Cem = 0, Cet = ei+l9 for 1 ^ / < m.) Let C = Ax + iA2 be 
the cartesian decomposition of C. Define Bjk = I9 if 1 ^ j < k < n9 or 
if 2 < j < n (this is where n > 2 is required), and define 

Bjn = [Aj + 2|U7 | | /]1 / 2 for7 = 1, 2. 

This choice of Bjks satisfies conditions (a) and (b). 
For the proof of the theorem, if Mk is defined via the B-ks as above, 

then 

n 

H = 2 Mt 

is an algebraic direct sum (cf. Remark 1 (b) ). It is clear that if 
S £ { P „ . . . , P „ } , 
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then 2 {Mi:Pi e S} is a non-trivial invariant subspace for each Pt in S, so 
that, by the double commutant theorem, W*(S) must be properly 
contained in &(E); thus (ii) is established. 

In order to establish (i), since each Pt is self-adjoint, it suffices, in 
view of the double commutant theorem and the fact that any C*-algebra 
(in this case, the commutant of W*( {P1? . . . , Pn) ) ) is linearly spanned 
by its unitary elements, to show that if U is a unitary operator on H 
such that UPk = PkU for all k, then U = OJI for some complex number 
co of unit modulus. So, suppose U is a unitary operator on H such that 
UPk = PkU for all k. Clearly then, U(Mk) = Mk for all k. It follows 
from Theorem 2 (choosing M\ = Mt) that with respect to the de­
composition H = L ®. . . © L, U has a block-diagonal matrix 
U = diag(L^). Theorem 2 then asserts that 

U,Blk = BlkUk lox\îki<k^n. 

Exactly as in the proof of Theorem 2, it may now be deduced that 

UnBfnBin = BfnBmUn for 1 ^ / < »; 

i.e., 

U„ e {B*,BmA ^ ' • < " } ' -

It follows from hypothesis (b) and the double commutant theorem that 
Un = ooIL for some complex number u of unit modulus. Then, the 
equation 

Ufiin = BinU„ = <*Bm 

and the hypothesis (a) guarantees that Ut = coIL for each /; in other words 
U = colff, as desired. 

4. Canonical (partial) correlation coefficients. Let Xx, . . . , X and 
Yj,. . . , Y be two sets of random variables on a probability space 
(12, ^ , P), each with finite variance and mean zero. Hotelling proposed (in 
[5] ) the 'canonical correlation coefficients' as a measure of the strength of 
linear association between the two sets of random variables, as follows: 

Let M (respectively, N) be the space of linear combinations of the X^s 
(respectively, the Y?s). (Then, of course, by the assumed existence of finite 
variances, the spaces M and N are linear subspaces of L (12, ^ , P). In the 
sequel, the inner product and norm used will be the ones on L2(P); thus, 
(X, y) = E(XY). (In the real case, of course, there is no need for complex 
conjugation).) Define 

P, = sup{ I (X, Y)\:X G M, Y e N, \\X\\ = 1 = | | r | | }. 

Pick X\ in M and Y\ in N such that 
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H^ll = \\Y\\\ = 1 and (X\9 Y\) = P l . 

Next, let 

M , = { I G M:(X, X\) = 0} and 

Nx = {Y e N:(Y9 Y\) = 0}, 

and define 

p2 = sup{ | (X, Y) \:X e M b 7 e Nx, \\X\\ = 1 = | |y | | }. 

Pick X'2 in Mx and Y'2 in JV, such that 

\\X2\\ = | | r2 | | = 1 and (X2, Y'2) = p2. 

Then, let 

M2 = {X G M:<X, X;> = 0 for 1 ^ / ^ 2} and 

7V2 = {Y e 7V:<7, 7;> = 0 for 1 ë / ^ 2}, 

and pick ^ in M2 and 73 in N2 such that 

II^H = 1 = ||r3|| and (X3, 7̂ > = p3, 

where 

p3 = sup{ I (X, Y) \:X e M3, 7 G N3, \\X\\ = 1 = | | 7 | | }. 

Continuing this process to its logical conclusion results in sequences 
{pb . . . , pk}9 {X\, . . . , Xk) and {Y\, . . . , Yk}9 where k is the minimum of 
dim M and dim TV. The non-zero p/s are called the canonical correlation 
coefficients (they do not depend on the choice of the X-'s and 7-'s) and the 
Xfs and 7-'s are called the canonical variables. 

This notation was extended by Roy (in [9] ) to three sets of random 
variables as follows: Let Xl9. . . , X \ 7l5 . . . , Y ; Zv . . . , Zr be three 
sets of random variables of finite variance and mean zero. Let M b 

M2, M3 denote the linear spaces spanned by these sets, respectively. 
Roy defined the canonical partial correlation coefficients between 
{YJ, . . . , Y } and {Z l5 . . . , Zr) as the canonical correlation coefficients 
between { 7 b . . . , Y } and {Z1? . . . , Z r } , where 

Yt; = Yt - Px(Yt) and Zl = Z, - Px(Zt\ 

the symbol Px denoting the orthogonal projection (in L ) onto Mv 

In this section, we shall apply Theorem 1 to the problem of determining 
these correlation coefficients. 

(a) Canonical correlation coefficients. Let X]9 . . . , X and Y{ , . . . , Y be 
two collections of random variables of finite variance and mean zero. Let 
M and N denote the linear spaces spanned by them, respectively, and let 
H = M + N (equipped with the inner product coming from L ). 
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Case (i). M n N = (0). In this case, H = M + N is an algebraic direct 
sum decomposition, and so, by Theorem 1, there exists a linear operator 
B:M —» M (in case n = 2), we have L, = M, L2 = M^) such that 

with respect to the decomposition H = M ® M . Then, by definition, 

P l = sup{ | < (x, 0), (By, y) ):x G M, j ; e M^, ||x||2 = 1 

= \\By\\2 + 

= sup{ | ((x, By) \:x G M,> e M x , ||.x||2 = 1 

= HSyll2 + |b!|2} 

= sup{ 11^11:^ G M x , II^H2 + \\By\\2 = 1} 

:>> G M-1, < ( / + £*£)>>,>>> = 1} = sup{ \\By\\: 

= sup{ \\By\\: 

= sup{ \\B(I + B*B)~U2z\\:z G M"1, ||z|| = 1}. 

y G M±, | | ( / + B*U),/2yll = 1} 

It follows, by a successive application of arguments similar to the ones 
used in obtaining the above string of equalities, that if {Y\, . . . , Y't} is an 
orthonormal basis for M such that 

B*By\ = a2y'„ 

with a, è . . . § « , è 0, then the canonical variables are given by 

\—(B/i, 0): / = 1, 2, . . . , * } and 

ITTV1'*'"^ '" '•2 *1 
while the canonical correlation coefficients are given by 

Pi = a7(l + «z
2)"1/2 , for / = 1, . . . , A:, 

where /: is the rank of B. 
Case (ii). M n N ^ (0). Let 

M' = M n (M O JV)-1, Nf = N D (M n N^ and 

7/' = Af + N'. 

Then / / ' = M' + TV is an algebraic direct sum; let 

B':Mf± -* M 

(here, the orthogonal complement is taken relative to H') such that, in the 
decomposition H' = M © M the subspace N' is described by 
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N' = {(B'y,y):y e M x } . 

If the singular values of B' are ax,.. ., aj (written in decreasing order), and 
if kf is the rank of B\ it is not hard to see, using case (i), that the canonical 
correlation coefficients are given by 

{1, 1 , . . . , l,a,.(l + ct)-\...9ak,(\ + 4 ) - 1 } , 

where the length of the initial string of l's is equal to dim (M Pi N). 

(b) Canonical partial correlation coefficients. Let Xx, . . . , X \ Yx, . . . , Y \ 
Zx, . . . , Z r be three sets of random variables of finite variance and mean 
zero. Let Mx, M2, M3 be the linear spaces spanned by the three sets, 
respectively. We shall compute the canonical partial correlation coeffi­
cients between the Y and Z sets. Let H = Mx -f M2 + M3. 

Case (i): # - 2 ,Li M / 
is an algebraic direct sum. Let the spaces L b 

L2, L3 and the operators Bjk{\ ^ j < /c ^ 3) be constructed as in Theorem 
1. Since the projection onto Mx sends M2 and M3 to the subspaces M2 

and M3 of L2 © L3 given by 
^ 2 = { ( ^ 0 ) ^ G L2Î a n d ^ 3 = { C#23z> z ) : z G L3>> 

it can be shown, exactly as in Case (i) of (a), that the canonical partial 
correlation coefficients between the Y^s and the Z/s are given by 

pt = «,(1 + a2
i)~\ 1 ^ i ^ k, 

where k is the rank of B23 and (a l 5 . . . , «/) is an enumeration, in 
decreasing order, of the singular values of B23. 

Case (ii). H = 2 / = i Af,- is not an algebraic direct sum. It is easy to see 
that 

3 

H = 2 M7 
/ = i 

is an algebraic direct sum if and only if 

Mx n M2 = {0} = (Mx + M2) n M3. 

It is, hence, natural in this case to define the subspaces 

M2 = M2 O (M2 O M^-1 and 

M^ = Af3 O (M3 O (M, + M2))-1. 

It is clear that Mx + M2 = Mx + M2 and that H = Mx + M2 + M3 is an 
algebraic direct sum decomposition. Apply Theorem 1 to the subspaces 
Mj, M2, M3 to get an orthogonal decomposition 

H = Lx® L2® L3 
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and the operators 

Bjk:Lk -> Lj for 1 =i j < k fk 3. 

It is not too hard then to show that if ax è . . . = a/ = 0 are the singu­
lar values of B23, then the canonical partial correlation coefficients of 
{Y,,. . . , Yq) and {Z,, . . . , Zr) are given by 

1, 1 , 1, a,(l + a])-\...,am(l + a^,)"1, 

where the length of the initial string of l's is equal to 

dim((M, + M2) n (Mx + M3) n M | ) , 

and m is the rank of B23. 
It may be advisable to point out that replacing B23 by Bn (for instance) 

in the above discussion would not lead to the canonical partial correlation 
coefficients between the X/s and the Y/s. To apply the above procedure, 
the span of the set of random variables, whose linear effect is to be 
ignored, must be taken as Ml9 while the second and third subspaces must 
be taken as the spans of the sets of random variables whose canonical 
partial correlation coefficients are to be computed. 
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