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Abstract
We prove that the minimal exponent for local complete intersections satisfies an Inversion-of-Adjunction property.
As a result, we also obtain the Inversion of Adjunction for higher Du Bois and higher rational singularities for local
complete intersections.

1. Introduction

1.1. Main results

The minimal exponent �̃�(𝑋, 𝐷) of a hypersurface D in an irreducible and smooth complex algebraic
variety X was introduced by Saito in [Sai94] as the negative of the largest root of the reduced Bernstein-
Sato polynomial �̃�𝐷 (𝑠). It is a refinement of the ubiquitous invariant, log canonical threshold, of the
pair (𝑋, 𝐷), which is equal to min{�̃�(𝑋, 𝐷), 1} by results of [Kol97, Lic89]. When D has isolated
singularities, the minimal exponent has the name Arnold exponent or complex singularity index, studied
in [Var82, Loe84, Ste85]. Some important features, such as the Restriction Theorem and semicontinuity
for the log canonical threshold, were extended into the minimal exponent via the theory of Hodge ideals
[MP19a, MP19b] developed by Mustaţă and Popa. Recent generalizations to local complete intersections
have been made in [CDMO24], where the minimal exponent �̃�(𝑋, 𝑍) for a local complete intersection
closed subscheme Z was introduced using Hodge filtration and V-filtration, and the same nice properties
for the minimal exponent were established. Similar to the case of hypersurfaces, the minimal exponent
�̃�(𝑋, 𝑍) refines the log canonical threshold of the pair (𝑋, 𝑍) as showed in [BMS06], and it can be
characterized by the reduced Bernstein-Sato polynomial �̃�𝑍 (𝑠) defined in [BMS06], recently proved in
[CDMO24, Dir23]. We refer to Section 2.2 for the definition of the minimal exponent and review of its
properties.

In this paper, we prove the following Inversion of Adjunction for the minimal exponent:

Theorem 1.1. Let X be an irreducible and smooth complex algebraic variety and Z be a local complete
intersection closed subscheme in X. If there is a hypersurface H in X containing no irreducible component
of Z and a positive rational number c such that,

�̃�(𝑋 \ 𝐻, 𝑍 \ 𝐻) > 𝑐 and �̃�(𝑋, 𝑍 ∩ 𝐻) ≥ 𝑐 + 1,

then we have �̃�(𝑋, 𝑍) > 𝑐.

This theorem justifies the intuition that the ambient variety has milder singularities than the special
hypersurface sections. Consider the following motivating situation. Let 𝑓 : 𝑋 → 𝑆 be a smooth proper
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morphism to a curve and Z be a local complete intersection subvariety in X of pure codimension and flat
over S. If there exists a number c such that �̃�(𝑋, 𝑍) > 𝑐, then by Theorem 2.3 below, there are at most
finitely many points s such that �̃�(𝐻𝑠 , 𝑍𝑠) ≤ 𝑐, where 𝑍𝑠 and 𝐻𝑠 denote the fiber of Z and X over s,
respectively. Conversely, if for general 𝑡 ∈ 𝑆, we have �̃�(𝐻𝑡 , 𝑍𝑡 ) > 𝑐 but �̃�(𝐻𝑠 , 𝑍𝑠) = 𝑐 for some 𝑠 ∈ 𝑆,
then 𝑍𝑠 must be a ‘special fiber’, and the ambient space Z is expected have better singularities. Now
Theorem 1.1 guarantees that �̃�(𝑋, 𝑍) > 𝑐, noting that �̃�(𝑋, 𝑍𝑠) = �̃�(𝐻𝑠 , 𝑍𝑠) + 1 by Remark 2.1 below.

The minimal exponent �̃�(𝑋, 𝑍) is closely related to higher Du Bois and higher rational singular-
ities. These singularities have been recently studied as a generalization of classical Du Bois and ra-
tional singularities [MOPW23, JKSY22, FL22, FL24a, FL24b, MP22a, MP22b, CDMO24, CDM24a,
SVV23]. It has been shown that if the local complete intersection Z has pure codimension r in X, then
�̃�(𝑋, 𝑍) ≥ 𝑘 + 𝑟 (resp. �̃�(𝑋, 𝑍) > 𝑘 + 𝑟) is equivalent to that Z having at worst k-Du Bois singularities
(resp. k-rational singularities) in [MP22a, CDMO24, CDM24a]. We refer to Section 2.3 for the precise
definitions of higher Du Bois and higher rational singularities.

As a consequence of Theorem 1.1, we obtain Inversion of Adjunction for k-Du Bois singularities and
k-rational singularities for local complete intersections:

Theorem 1.2. Let Z be a complex algebraic variety with local complete intersection singularities. If
there is an effective Cartier divisor D in Z and a nonnegative integer k such that 𝑍 \ 𝐷 has k-rational
singularities and that D has k-Du Bois singularities, then Z has k-rational singularities.

Theorem 1.1 and Theorem 1.2 can be applied to the setting where Z has a unique isolated singular
point at 𝑃 ∈ 𝑍 and H is a hypersurface in X containing P. In this case, we deduce that �̃�(𝑋, 𝑍) >
�̃�(𝑋, 𝑍 ∩ 𝐻) + 1. If we further assume that Z is a hypersurface in X and H is smooth, an improvement
was obtained in [Loe84] and [DM23].

Example 1.3.

(a) If Z is an affine cone in A𝑛 over a smooth projective hypersurface of degree d, then it is known that
�̃�(𝑋, 𝑍) = 𝑛/𝑑. If H is a hyperplane in A𝑛 containing no irreducible components of Z and passing
through the origin, then �̃�(𝐻, 𝑍 ∩ 𝐻) = (𝑛 − 1)/𝑑, agreed with Theorem 1.1

(b) Let Z be a complete intersection in the affine space A9 defined by smooth homogeneous hypersur-
faces 𝐻1, 𝐻2 of degree 2 and 3, respectively. Assume that Z only has an isolated singularity at the
origin. Let H be a hyperplane of A8 containing no irreducible components of Z and passing through
the origin. It follows from [CDO24, Corollary D] that 𝑍 ∩ 𝐻 has 1-Du Bois singularities but non-
1-rational singularities; in particular, �̃�(𝐻, 𝑍 ∩ 𝐻) = 3. Theorem 1.1 and Theorem 1.2 state that
�̃�(A9, 𝑍) > 3 and Z has 1-rational singularities. If we further assume that 𝐻1, 𝐻2 meet transversely
away from the origin, a concrete computation

�̃�(A9, 𝑍) = 2 +
9 − 2 − 3

3
=

10
3

was given by [CDM24b, Theorem 1.1].

The main theorems of this paper have two applications so far: (1) RJ Acuña and Kerr used Theorem 1.2
in their study of the variation of Hodge structure for a proper smoothing of k-Du Bois local complete
intersections [AK], and (2) Theorem 1.1 was applied in [CM25] to show that the constancy of the
minimal exponent in a proper family of hypersurfaces that admit a simultaneous log resolution.

The Inversion of Adjunction for Du Bois and rational singularities was proved by Schwede [Sch07,
Theorem 5.1] under the assumption that 𝑍 \ 𝐷 is smooth but no need that Z is a local complete
intersection. A more general statement on Inversion of Adjunction of Du Bois and rational pairs was
proved in [KS16] and [MSS17]. A Hodge theoretic proof can be found in a recent paper [Par23]. The
Inversion of Adjunction property for higher Du Bois and higher rational singularities in the isolated
local complete singularities was obtained in [FL24b].
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Statements similar to Theorem 1.1 and Theorem 1.2 have been proved in many related situations. For
instance, log canonical Inversion of Adjunction was proved in [Kaw07, Hac14], F-regular Inversion of
Adjunction was proved in [OD15], and recently, F-pure Inversion of Adjunction was proved in [PST23].

Recently, higher Du Bois and higher rational singularities beyond local complete intersections were
discussed in [SVV23]. We ask the following:

Question 1.4. Does Inversion of Adjunction for higher Du Bois and higher rational singularities hold
without the local complete intersection assumption? Or what are the definitions of these singularities
with the Inversion of Adjunction property?

1.2. Outline

We first review the related notions of the minimal exponent and the tools from mixed Hodge modules
in Section 2. In Section 3.1, we reduce the proof of Theorem 1.1 to a special form (Theorem 3.3) of
Theorem 1.2 using several properties of the minimal exponent proved in [CDMO24]. Lastly, we make
use of mixed Hodge modules with ideas in [Sch07] to prove Theorem 3.3 through a new characterization
(Lemma 2.6) of higher rational singularities.

2. Background

2.1. Mixed Hodge modules

We briefly recall some facts concerning mixed Hodge modules for the reader’s convenience and lay
down some notation which will be used. We refer to Saito’s original papers [Sai88, Sai90] for details.
A good reference for 𝒟-modules is [HTT07].

We will mainly work with left𝒟-modules. Let X be a smooth complex algebraic variety of dimension
n. A typical example of a pure Hodge module is the constant Hodge module Q𝐻

𝑋 [𝑛], whose filtered
𝒟𝑋 -module is 𝒪𝑋 with the Hodge filtration such that Gr𝐹𝑝𝒪𝑋 = 0 for any 𝑝 ≠ 0. Sometimes, we will
abuse the mixed Hodge module with the its underlying 𝒟-module. For a filtered left 𝒟-module (M, 𝐹)
underlying a mixed Hodge module, the associated graded de Rham complex of (M, 𝐹)

Gr𝐹𝑝DR𝑋 (M) :=
[

Gr𝐹𝑝M︸��︷︷��︸
degree −𝑛

→ Ω1
𝑋 ⊗ Gr𝐹𝑝+1M︸�������������︷︷�������������︸

degree −𝑛+1

· · · → 𝜔𝑋 ⊗ Gr𝐹𝑝+𝑛M︸�������������︷︷�������������︸
degree 0

]
(1)

is a complex of coherent 𝒪𝑋 -modules. For example, Gr𝐹𝑝DR𝑋 (𝒪𝑋 ) = Ω𝑝
𝑋 [𝑛− 𝑝]. The definition can be

easily carried over to the derived category of mixed Hodge modules D𝑏 (MHM(𝑋)).
The six-functor formalism for mixed Hodge modules [Sai90, Theorem 0.1], extending the same

formalism for the perverse sheaves, established by Saito, is crucial in this paper. We will frequently use
adjunction and duality, which will be briefly reviewed.

Denote by D𝑋 the duality functor in D𝑏 (MHM(𝑋)). A polarization on a Hodge module M of weight
w induces an isomorphism 𝑀 � D𝑋 (𝑀) (𝑤). Here, (𝑤) denotes the Tate twist: on the level of filtered
𝒟𝑋 -module (M, 𝐹), by definition, (M, 𝐹•)(𝑤) = (M, 𝐹•−𝑤 ). The functor D𝑋 is compatible with
Grothendieck duality in the sense that [Sai88, 2.4.3]

Gr𝐹𝑝DR𝑋 (D𝑋 (−)) � RH𝑜𝑚𝒪𝑋 (Gr𝐹−𝑝DR𝑋 (−), 𝜔𝑋 [𝑛])

for every 𝑝 ∈ Z as functors from D𝑏 (MHM(𝑋)) to D𝑏
coh (𝑋). If it is clear from the context, we will also

denote by D𝑋 the Grothendieck duality RH𝑜𝑚(−, 𝜔𝑋 [𝑛]). Then the above becomes

Gr𝐹𝑝DR𝑋 ◦ D𝑋 � D𝑋 ◦ Gr𝐹−𝑝DR𝑋 . (2)
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For a morphism 𝑓 : 𝑋 → 𝑌 between smooth complex algebraic varieties, we will use
𝑓∗ : D𝑏 (MHM(𝑋)) → D𝑏 (MHM(𝑌 )) to denote the direct image functor of mixed Hodge modules.
Sometimes we will abuse it with the direct image functor 𝑓+ : D𝑏

rh (𝒟𝑋 ) → D𝑏
rh(𝒟𝑌 ) on their regular

holonomic 𝒟-modules. The functor 𝑓∗ is the right adjoint of the inverse image functor 𝑓 ∗. Denote by
𝑓! := D𝑌 ◦ 𝑓∗ ◦D𝑋 the proper direct image functor; it coincides with 𝑓∗ when f is proper. Lastly, we have
the proper inverse image functor 𝑓 ! := D𝑋 ◦ 𝑓 ∗ ◦D𝑌 which is the right adjoint of 𝑓!. These functors are
all compatible with the underlying Q-complexes. When f is proper, for every 𝑝 ∈ Z, we have a natural
isomorphism between functors

R 𝑓∗ ◦ Gr𝐹𝑝DR𝑋 � Gr𝐹𝑝DR𝑌 ◦ 𝑓+, (3)

where R 𝑓∗ : D𝑏
coh (𝑋) → D𝑏

coh(𝑌 ) is the derived direct image functor, as functors from D𝑏 (MHM(𝑋))

to D𝑏
coh (𝒪𝑌 ) by [Sai88, 2.3.7].

We end this part by recalling the excision distinguished triangles [Sai90, 4.4.1]. For any closed
immersion 𝑖 : 𝑍 → 𝑋 from a closed subvariety and the open immersion 𝑗 : 𝑋 \ 𝑍 → 𝑋 , we have the
distinguished triangles

𝑗! 𝑗
! → id → 𝑖∗𝑖

∗ +1
−−→ and 𝑖!𝑖

! → id → 𝑗∗ 𝑗
∗ +1
−−→

in D𝑏 (MHM(𝑋)). In this case, 𝑗 ! and 𝑗∗ are just the restriction to the open subset 𝑋 \ 𝑍 . If it is clear
from the context, we use 𝑗! and 𝑗∗ as shorthand for 𝑗! 𝑗

! and 𝑗∗ 𝑗
∗, respectively.

2.2. The minimal exponent

Suppose that X is an irreducible and smooth complex algebraic variety and 𝑓1, . . . , 𝑓𝑟 ∈ 𝒪𝑋 (𝑋) are
nonzero regular functions which define a closed subscheme Z of X. Let f := ( 𝑓1, 𝑓2 . . . , 𝑓𝑟 ) and let

𝜄 : 𝑋 ↩→ 𝑋 × A𝑟 , 𝜄(𝑥) =
(
𝑥, 𝑓1 (𝑥), . . . , 𝑓𝑟 (𝑥)

)
be the graph embedding along f. Let 𝐵f = 𝜄+𝒪𝑋 be the 𝒟-module direct image of 𝜄. If 𝑡1, . . . , 𝑡𝑟 denote
the standard coordinates on A𝑟 , then we can write

𝐵f =
⊕
𝛼∈Z𝑟

≥0

𝒪𝑋 · 𝜕𝛼𝑡 𝛿f ,

where 𝜕𝛼𝑡 = 𝜕𝛼1
𝑡1

· · · 𝜕𝛼𝑟𝑡𝑟 for 𝛼 = (𝛼1, . . . , 𝛼𝑟 ) with the natural action of 𝒪𝑋 and of 𝜕𝑡𝑖 . The actions of a
vector field 𝜉 on X and of the 𝑡𝑖 are given by

𝜉 · ℎ𝜕𝛼𝑡 𝛿f = 𝜉 (ℎ)𝜕𝛼𝑡 𝛿f −
𝑟∑
𝑖=1

𝜉 ( 𝑓𝑖)ℎ𝜕
𝛼+𝑒𝑖
𝑡 𝛿f

and

𝑡𝑖 · ℎ𝜕
𝛼
𝑡 𝛿f = 𝑓𝑖ℎ𝜕

𝛼
𝑡 𝛿f − 𝛼𝑖ℎ𝜕

𝛼−𝑒𝑖
𝑡 𝛿f ,

where 𝑒1, . . . , 𝑒𝑟 is the standard basis of Z𝑟 . In fact, 𝐵f underlies the pure Hodge module 𝜄∗Q𝐻
𝑋 [dim 𝑋],

with the Hodge filtration (𝐹𝑝𝐵f)𝑝∈Z given by

𝐹𝑝𝐵f =
⊕

|𝛼 | ≤𝑝−𝑟

𝒪𝑋 · 𝜕𝛼𝑡 𝛿f ,

where |𝛼 | = 𝛼1 + . . . + 𝛼𝑟 . Note that 𝐹𝑝𝐵f = 0 if 𝑝 < 𝑟 .
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Let (𝑉𝜆𝐵f)𝜆∈Q be the V-filtration along 𝑋 × {0} ⊂ 𝑋 × A𝑟 , introduced by Kashiwara [Kas83] and
Malgrange [Mal83]. We refer to [BMS06, CD23] for the definition and properties of V-filtrations along
a subvariety of any codimension. The minimal exponent �̃�(𝑋, 𝑍) defined [CDMO24] is the unique
positive rational number or ∞ determined by the following condition: for some positive integer q and
rational number 𝛼 in [0, 1),

�̃�(𝑋, 𝑍) ≥ 𝑞 − 𝛼 ⇐⇒

{
𝐹𝑟𝐵f ⊆ 𝑉𝑞−𝛼𝐵f , if 𝛿f ∉ 𝑉𝑟𝐵f ;

𝐹𝑞𝐵f ⊆ 𝑉𝑟−𝛼𝐵f , if 𝛿f ∈ 𝑉𝑟𝐵f ,
(4)

Note that the convention for Hodge filtration in [CDMO24] is non-standard: what we denote by 𝐹𝑞𝐵f
here is denoted by 𝐹𝑞−𝑟𝐵f in [CDMO24]. If Z is define by a single regular function f, then the minimal
exponent �̃�(𝑋, 𝑍) is also denote by �̃�( 𝑓 ).

Alternatively, the minimal exponent �̃�(𝑋, 𝑍) can be defined as the negative of the largest root of the
reduced Bernstein-Sato polynomial �̃�f (𝑠) := 𝑏f (𝑠)/(𝑠+𝑟), where 𝑏f (𝑠) is the Bernstein-Sato polynomial
of f; see [BMS06]. The fact that this agrees with the characterization (4) is a consequence of [Sai16]
and [Dir23].

Remark 2.1. The minimal exponent �̃�(𝑋, 𝑍) depends on the embedding 𝑖 : 𝑍 → 𝑋 in a predicted way
as pointed out by [CDMO24, Proposition 4.14]: if Z is embedded in another irreducible and smooth
complex algebraic variety Y, then

�̃�(𝑋, 𝑍) − dim 𝑋 = �̃�(𝑌, 𝑍) − dim𝑌 .

In the global setting, if Z is a local complete intersection closed subscheme of pure codimension r,
we can cover X by affine open subsets 𝑈1,𝑈2, . . . ,𝑈𝑁 and put

�̃�(𝑋, 𝑍) := min
𝑖;𝑍∩𝑈𝑖≠∅

�̃�(𝑈𝑖 , 𝑍 ∩𝑈𝑖).

As showed in [BMS06], the log canonical threshold lct(𝑋, 𝑍) is min{�̃�(𝑋, 𝑍), 𝑟}.
It is also convenient for us to use the local version of the minimal exponent: for any point 𝑥 ∈ 𝑍 ,

define

�̃�𝑥 (𝑋, 𝑍) := max �̃�(𝑈, 𝑍 ∩𝑈), (5)

where the maximum runs over any open neighborhoods U of the point x. The fact that it can achieve the
maximum not only supremum is pointed in [CDMO24, Definition 4.16].

The following is a rephrasing of the main Theorem in [CDMO24].

Theorem 2.2. Let Z be a closed subscheme of an irreducible and smooth complex algebraic variety
X defined by a regular sequence ( 𝑓1, 𝑓2, . . . , 𝑓𝑟 ), let [𝑦1 : 𝑦2 : · · · : 𝑦𝑟 ] be a system of homogeneous
coordinates on P𝑟−1 and let 𝑍 ′ be the hypersurface in 𝑋 ′ := 𝑋 × P𝑟−1 defined by the function 𝑔 =
𝑦1 𝑓1 + 𝑦2 𝑓2 + · · · 𝑦𝑟 𝑓𝑟 . Then we have �̃�(𝑋 ′, 𝑍 ′) = �̃�(𝑋, 𝑍).

This rephrasing has already been used in [CDMO24] to study the Restriction Theorem and the
semicontinuity for the minimal exponent [CDMO24, Theorem 1.2i) and ii)]:

Theorem 2.3. Let X be an irreducible and smooth complex algebraic variety and let Z be a local
complete intersection closed subscheme of X of pure codimension r.

i) If H is a smooth hypersurface in X that contains no irreducible component of Z, then for every
𝑥 ∈ 𝑍 ∩ 𝐻, we have

�̃�𝑥 (𝐻, 𝑍 ∩ 𝐻) ≤ �̃�𝑥 (𝑋, 𝑍).
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ii) Given a smooth morphism 𝜇 : 𝑋 → 𝑇 such that for every 𝑡 ∈ 𝑇 , 𝑍𝑡 := 𝑍 ∩ 𝜇−1(𝑡) ↩→ 𝑋𝑡 = 𝜇−1(𝑡)
has pure codimension r, then the following hold:
(ii1) For every 𝛼 ∈ Q>0, the set {

𝑥 ∈ 𝑍 | �̃�𝑥 (𝑋𝜇 (𝑥) , 𝑍𝜇 (𝑥) ) ≥ 𝛼}

is open in Z.
(ii2) There is an open subset 𝑇0 of T such that for every 𝑡 ∈ 𝑇0 and 𝑥 ∈ 𝑍𝑡 , we have

�̃�𝑥 (𝑋𝑡 , 𝑍𝑡 ) = �̃�𝑥 (𝑋, 𝑍).

In particular, the set
{
�̃�𝑥 (𝑋𝜇 (𝑥) , 𝑍𝜇 (𝑥) ) | 𝑥 ∈ 𝑍

}
is finite. Moreover, if 𝑠 : 𝑇 → 𝑋 is a section of

𝜇 such that 𝑠(𝑇) ⊆ 𝑍 , then the set
{
𝑡 ∈ 𝑇 | �̃�𝑠 (𝑡) (𝑋𝑡 , 𝑍𝑡 ) ≥ 𝛼

}
is open in T for every 𝛼 ∈ Q>0.

2.3. Higher Du Bois and higher rational singularities

Let Z be a complex algebraic variety and let (Ω•
𝑍 , 𝐹) be the Du Bois complex of Z, introduced in [DB81]

using hyperresolutions. We list some properties of the Du Bois complex:
(a) Ω•

𝑍 is a resolution of the constant sheaf C𝑍 ;
(b) Ω𝑝

𝑍 := Gr𝑝𝐹 (Ω
•
𝑍 ) [𝑝] is a complex of coherent sheaves and is acyclic unless 0 ≤ 𝑝 ≤ dim 𝑍;

(c) there is a natural filtered morphism from the de Rham complex Ω•
𝑍 , with the ‘stupid’ filtration to

(Ω•
𝑍 , 𝐹);

(d) the filtered morphism in (c) is filtered isomorphism over the smooth locus of Z.
The Du Bois complex plays a fundamental role in the Hodge theory for singular varieties; see [PS08,
Chapter 7.3]. We say that Z has (at worst) k-Du Bois singularities, following [JKSY22], if the natural
morphism in the bounded derived category of coherent sheaves on Z

Ω𝑝
𝑍 → Ω𝑝

𝑍

is an isomorphism for 0 ≤ 𝑝 ≤ 𝑘 . Clearly, 0-Du Bois singularities are the same as Du Bois singularities.
We say a proper morphism 𝜇 : 𝑍 → 𝑍 from a smooth variety is a strong log resolution if 𝜇 is

isomorphic over 𝑍reg := 𝑍 \ 𝑍sing and 𝐸 = 𝜇−1(𝑍sing) is a simple normal crossing divisor. For a
nonnegative integer k, we say that Z has (at worst) k-rational singularities, following [FL22], if there
exists one (hence for any; see [MP22b, Lemma 1.6]) strong log resolution 𝜇 : 𝑍 → 𝑍 , such that the
canonical morphism

Ω𝑝
𝑍 → R𝜇∗Ω

𝑝

𝑍
(log 𝐸) (6)

is an isomorphism for all 𝑝 ≤ 𝑘 . The 0-rational singularities are the same as the classical notion of
rational singularities.

In summary, we have the following theorem relating the minimal exponent and higher Du Bois and
higher rational singularities:
Theorem 2.4. Let X be an irreducible and smooth complex algebraic variety and Z be a local complete
intersection closed subscheme in X of pure codimension r. Then, for any non-negative integer k,
(a) �̃�(𝑋, 𝑍) ≥ 𝑘 + 𝑟 if and only if Z has k-Du Bois singularities.
(b) �̃�(𝑋, 𝑍) > 𝑘 + 𝑟 if and only if Z has k-rational singularities.
In particular, if Z has k-rational singularities, then Z has k-Du Bois singularities; and if Z has k-Du
Bois singularities, then Z has (𝑘 − 1)-singularities.

The case when Z is a hypersurface was treated in [MOPW23, JKSY22, FL22, FL24a, MP22b], and
the case for local complete intersection was obtained in [MP22a, CDMO24, CDM24a]
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We recall a useful bound of the codimension of the singular locus for higher Du Bois and higher
rational singularities [MP22a, Corollary 3.40 and Theorem F] and [CDM24a, Corollary 1.3].

Theorem 2.5. Let Z be a local complete intersection variety. If Z has k-Du Bois singularities, then
codim𝑍 (𝑍sing) ≥ 2𝑘 + 1; if Z has k-rational singularities, then codim𝑍 (𝑍sing) ≥ 2𝑘 + 2.

Saito’s theory of mixed Hodge modules [Sai88, Sai90] is a convenient tool to study higher Du Bois
and higher rational singularities. Let X be an irreducible and smooth n-dimensional complex algebraic
variety and Z be a pure d-dimensional closed subscheme of X. Let 𝑖 : 𝑍 ↩→ 𝑋 be the closed inclusion
and 𝑟 = 𝑛 − 𝑑 be the codimension of Z in X. Let Q𝐻

𝑍 := 𝑎∗𝑍Q𝐻
★ , as an object in D𝑏 (MHM(𝑍)) where

𝑎𝑍 : 𝑍 → ★ is the morphism to a point and Q𝐻
★ is the Hodge structure of weight 0 on the field Q. It is

a consequence of [Sai00, Theorem 0.2] (see also [MP22a, Proposition 5.5] for a simpler proof) that for
every 𝑝 ∈ Z, we have a natural isomorphism

Ω𝑝
𝑍 [𝑑 − 𝑝] � Gr𝐹−𝑝DR𝑋 (𝑖∗Q𝐻

𝑍 [𝑑]) (7)

in D𝑏
coh(𝑋). In general, 𝑖∗Q𝐻

𝑍 [𝑑] = 𝑖∗𝑖
∗Q𝐻

𝑋 [𝑑] is an object in D𝑏 (MHM(𝑋)) but when Z is a local
complete intersection, we know that 𝑖∗Q𝐻

𝑍 [𝑑] is a mixed Hodge module as Q𝑍 [𝑑] is a perverse sheaf.
Because of (7), the scheme Z has k-Du Bois singularities if and only if the induced morphism

Ω𝑝
𝑍 [𝑑 − 𝑝] → Gr𝐹−𝑝DR𝑋 (𝑖∗Q𝐻

𝑍 [𝑑])︸���������������������︷︷���������������������︸
�Ω𝑝

𝑍 [𝑑−𝑝]

(8)

is a quasi-isomorphism for every 𝑝 ≤ 𝑘 .
The log de Rham complex is also related to mixed Hodge modules. Let 𝜇 : 𝑍 → 𝑍 be a strong log

resolution such that 𝐸 = 𝜇−1 (𝑍sing) is a divisor with simple normal crossing support. By the result of
[Del06] and [Sai90, 3.11], we have

Ω𝑘
𝑍
(log 𝐸) [𝑑 − 𝑘]

�
−→ Gr𝐹−𝑘DR𝑍

(
𝒪𝑍 (∗𝐸)

)
.

Let 𝑗 ′ : 𝑋 \ 𝑍sing → 𝑋 be the open immersion. To simplify the notation, denote by 𝑖∗Q𝐻
𝑍reg

[𝑑] the object
𝑗 ′∗ 𝑗

′∗𝑖∗Q𝐻
𝑍 [𝑑] in the derived category of mixed Hodge modules. There is a natural morphism induced

by the adjunction id → 𝑗 ′∗ 𝑗
′∗ in D𝑏 (MHM(𝑋)),

𝑖∗Q𝐻
𝑍 [𝑑] → 𝑖∗Q𝐻

𝑍reg
[𝑑] . (9)

Putting �̃� : 𝑍 \ 𝐸 → 𝑍 for the open immersion, because of

𝑖∗Q𝐻
𝑍reg

[𝑑] = 𝑖∗𝜇∗ �̃�∗Q𝐻
𝑍\𝐸

[𝑑],

it follows from (3) that

R𝜇∗Ω
𝑘
𝑍
(log 𝐸) [𝑑 − 𝑘] � R𝜇∗Gr𝐹−𝑘DR𝑍

(
𝒪𝑍 (∗𝐸)

)
�Gr𝐹−𝑘DR𝑋

(
𝜇+𝒪𝑍 (∗𝐸)

)
� Gr𝐹−𝑘DR𝑋

(
𝑖∗Q𝐻

𝑍reg
[𝑑]

) (10)

as 𝒪𝑍 (∗𝐸) is the filtered 𝒟-module of the underlying mixed Hodge module �̃�∗Q𝐻
𝑍\𝐸

[𝑑]. Hence, the
scheme Z has k-rational singularities if and only if

Ω𝑘
𝑍 [𝑑 − 𝑘] → Gr𝐹−𝑘DR𝑋

(
𝑖∗Q𝐻

𝑍reg
[𝑑]

)
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is quasi-isomorphic for 𝑝 ≤ 𝑘 . Deriving from Theorem 2.4, the local complete intersection variety Z
has k-rational singularities if and only if Z has k-Du Bois singularities and the natural morphism

Gr𝐹−𝑘DR𝑋

(
𝑖∗Q𝐻

𝑍 [𝑑]
)

︸���������������������︷︷���������������������︸
�Ω𝑘

𝑍 [𝑑−𝑘 ]

→ Gr𝐹−𝑘DR𝑋

(
𝑖∗Q𝐻

𝑍reg
[𝑑]

)
︸�����������������������︷︷�����������������������︸
�R𝜇∗Ω𝑘

𝑍
(log𝐸) [𝑑−𝑘 ]

(11)

is a quasi-isomorphism.

2.4. A preparation lemma

We conclude this section by the following criterion of k-rational singularities.

Lemma 2.6. Let X be an irreducible and smooth complex algebraic variety and let Z be a local complete
intersection closed subscheme of X. The closed subscheme Z has k-rational singularities if and only if
it has k-Du Bois singularities and the canonical morphism induced by the dual of (11)

𝜋 : H0D𝑋

(
Gr𝐹−𝑘DR𝑋

(
𝑖∗Q𝐻

𝑍reg
[𝑑]

))
→ H0D𝑋

(
Gr𝐹−𝑘DR𝑋

(
𝑖∗Q𝐻

𝑍 [𝑑]
))

(12)

is a surjection.

Remark 2.7. If we work out (12) using (11) and the compatibility of the duality functors (2), assuming
that Z has pure dimension d, the lemma implies that Z has k-rational singularities if and only if Z has k-Du
Bois singularities and there exists a strong log resolution 𝜇 : 𝑍 → 𝑍 such that the canonical morphism

𝑅𝑘𝜇∗Ω
𝑑−𝑘

𝑍
(log 𝐸) (−𝐸) → E𝑥𝑡𝑘𝒪𝑍

(Ω𝑘
𝑍 , 𝜔𝑍 )

is surjective, where 𝜔𝑍 is the dualizing sheaf of Z.

Lemma 2.6 is crucial in the proof for the main theorems. We discuss its usage here. The proof of
Theorem 1.1 will be reduced to Theorem 3.3 which is a special case of Theorem 1.2 in 3.1. More
precisely, it suffices to prove Theorem 1.1 when H is smooth, Z is a hypersurface and 𝑐 = 𝑘 + 1 for some
nonnegative integer k. Then the cohomological description of the minimal exponent (Theorem 2.4) is
helpful. By Lemma 2.6, to prove Z has k-rational singularities, we just need to prove a single surjection
(12).

Before giving the proof, we review a construction in [Sai90, 4.5.12], which was used in [CDM24a]
to study the k-rational singularities for local complete intersections.

Let Z be a local complete intersection closed subscheme of pure dimension d in an irreducible and
smooth complex algebraic variety X of dimension n. Put 𝑟 = 𝑛 − 𝑑. Then Q𝐻

𝑍 [𝑑] has the top weight d,
while H𝑟

𝑍 (𝒪𝑋 ) has the lowest weight 𝑛 + 𝑟 as constructed in [Sai90, 4.5.2]. Here, abusing the notation,
we use the 𝒟-module H𝑟

𝑍 (𝒪𝑋 ) to denote the mixed Hodge module H𝑟 (𝑖!𝑖
!Q𝐻

𝑋 [𝑛]) where 𝑖 : 𝑍 → 𝑋 is
the closed immersion. Indeed, we have

D𝑋 (𝑖∗Q𝐻
𝑍 [𝑑]) = 𝑖!𝑖

!Q𝐻
𝑋 [𝑛 + 𝑟] (𝑛) = H𝑟

𝑍 (𝒪𝑋 ) (𝑛). (13)

We also point out that Gr𝑊𝑑 𝑖∗Q𝐻
𝑍 [𝑑] is canonically isomorphic to the intersection Hodge module 𝑖∗IC𝐻

𝑍 .
The morphism

𝜏 : 𝑖∗Q𝐻
𝑍 [𝑑] Gr𝑊𝑑 𝑖∗Q𝐻

𝑍 [𝑑] 𝑊𝑛+𝑟H𝑟
𝑍 (𝒪𝑋 ) (𝑟) H𝑟

𝑍 (𝒪𝑋 ) (𝑟),
𝛾𝑍 � 𝛾∨𝑍 (14)

obtained by composing the surjection 𝛾𝑍 , an isomorphism induced by any polarization

Gr𝑊𝑑 𝑖∗Q𝐻
𝑍 [𝑑]

�
−→ D𝑋

(
Gr𝑊𝑑 𝑖∗Q𝐻

𝑍 [𝑑]
)
(𝑑) �

(
𝑊𝑛+𝑟H𝑟

𝑍 (𝒪𝑋 )
)
(𝑟),
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and 𝛾∨𝑍 := D𝑋 (𝛾𝑍 ) (−𝑑), plays an important role in this paper. Note that 𝜏 is isomorphic over the
complement of the singular locus 𝑋 \ 𝑍sing and D𝑋 (𝜏) = 𝜏(𝑑) by (13).

Here are two basic facts from [CDM24a] regarding the morphism 𝜏.

Lemma 2.8 [CDM24a, Lemma 3.5]. If 𝐹𝑝𝑊𝑛+𝑟H𝑟
𝑍 (𝒪𝑋 ) = 𝐹𝑝H𝑟

𝑍 (𝒪𝑋 ) for some 𝑝 ∈ Z, then the
surjective map

𝐹𝑝+𝑟+1𝛾𝑍 : 𝐹𝑝+𝑟+1𝑖∗Q𝐻
𝑍 [𝑑] → 𝐹𝑝+𝑟+1Gr𝑊𝑑 𝑖∗Q𝐻

𝑍 [𝑑]

is an isomorphism; in particular, if 𝐹𝑝+𝑟𝜏 is an isomorphism, then 𝐹𝑝+𝑟+1𝜏 is injective.

It is a direct corollary of [CDM24a, Theorem 2.3, 2.5 and 3.1] that

Theorem 2.9. The closed subscheme Z has k-rational singularities if and only if Z has k-Du Bois
singularities and

𝐹𝑘+𝑟𝜏 : 𝐹𝑘+𝑟 𝑖∗Q𝐻
𝑍 [𝑑] → 𝐹𝑘H𝑟

𝑍 (𝒪𝑋 )

is an isomorphism.

Proof of Lemma 2.6. The ‘only if’ part is clear by the discussion in the end of Section 2.3.
We prove the ‘if’ part. Let 𝑖′ : 𝑍sing → 𝑍 be the closed immersion from the singular locus, 𝑗 : 𝑍reg → 𝑍

and 𝑗 ′ : 𝑋 \ 𝑍sing → 𝑋 be the open immersions. Because the morphism 𝜏 : 𝑖∗Q𝐻
𝑍 [𝑑] → H𝑟

𝑍 (𝒪𝑍 ) (𝑟),
constructed as (14), is isomorphic over 𝑋 \ 𝑍sing, the natural map 𝑖∗Q𝐻

𝑍 [𝑑] → 𝑖∗Q𝐻
𝑍reg

[𝑑] is factored
through 𝜏 due to the commutative diagram

𝑖∗Q𝐻
𝑍 [𝑑] H𝑟

𝑍 (𝒪𝑋 ) (𝑟)

𝑖∗Q𝐻
𝑍reg

[𝑑] 𝑗 ′∗ 𝑗
′∗H𝑟

𝑍 (𝒪𝑋 ) (𝑟)

𝜏

𝜀
(15)

obtained by applying adjunction id → 𝑗 ′∗ 𝑗
′∗ to 𝜏, recalling that 𝑖∗Q𝐻

𝑍reg
[𝑑] := 𝑗 ′∗ 𝑗

′∗𝑖∗Q𝐻
𝑍 [𝑑]. Taking the

dual, combined with (2), gives the following commutative diagram:

Gr𝐹𝑘−𝑑DR𝑋

(
𝑖∗ 𝑗!Q𝐻

𝑍reg

)
D𝑋

(
Gr𝐹−𝑘DR𝑋

(
𝑖∗Q𝐻

𝑍reg
[𝑑]

))

Gr𝐹𝑘−𝑑DR𝑋 (𝑖∗Q𝐻
𝑍 [𝑑]) D𝑋

(
Gr𝐹−𝑘−𝑟DR𝑋

(
H𝑟

𝑍 (𝒪𝑋 )
) )

Gr𝐹𝑘−𝑛DR𝑋
(
H𝑟

𝑍 (𝒪𝑋 )
)

D𝑋
(
Gr𝐹−𝑘DR𝑋

(
𝑖∗Q𝐻

𝑍 [𝑑]
) )

� by (18) induced by 𝜀

Gr𝐹𝑘−𝑑DR𝑋 (𝜏) induced by 𝜏

. (16)

The morphism 𝜂 = D𝑋 (𝜀) [−𝑑] (−𝑑), can be fitted into the distinguished triangle in D𝑏 (MHM(𝑍)):

𝑖∗ 𝑗!Q𝐻
𝑍reg

𝜂
−→ 𝑖∗Q𝐻

𝑍 → 𝑖∗𝑖
′
∗Q𝐻

𝑍sing

+1
−−→, (17)

due to 𝑖∗ 𝑗!Q𝐻
𝑍reg

[𝑑] (𝑑) = D𝑋

(
𝑖∗Q𝐻

𝑍reg
[𝑑]

)
and 𝑖∗Q𝐻

𝑍 [𝑑] (𝑑) = D𝑋 (H𝑟
𝑍 (𝒪𝑋 ) (𝑟)).
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Because Z has k-Du Bois singularities, dim 𝑍sing ≤ 𝑑−2𝑘 −1 < 𝑑− 𝑘 thanks to Theorem 2.5. Hence,
it follows from (7) that Gr𝐹𝑘−𝑑DR𝑋 (𝑖∗𝑖

′
∗Q𝐻

𝑍sing
)�Ω𝑑−𝑘

𝑍sing
is acyclic. Then by (17), we have

Gr𝐹𝑘−𝑑DR𝑋 (𝑖∗ 𝑗!Q𝐻
𝑍reg

)
�
−→ Gr𝐹𝑘−𝑑DR𝑋 (𝑖∗Q𝐻

𝑍 ). (18)

This isomorphism has already been observed in [FL24a, MP22b].
Therefore, via the diagram (16), the surjectivity of (12) is equivalent to that

H0Gr𝐹𝑘−𝑑DR𝑋 (𝜏) : H0Gr𝐹𝑘−𝑑DR𝑋 (𝑖∗Q𝐻
𝑍 [𝑑]) → H0Gr𝐹𝑘−𝑛DR𝑋 (H𝑟

𝑍

(
𝒪𝑋 )

)
(19)

is surjective.
As Z has k-Du Bois singularities (in particular, (𝑘 − 1)-rational singularities), if we expand the

morphism of complexes

Gr𝐹𝑘−𝑑DR𝑋 (𝜏) : Gr𝐹𝑘−𝑑DR𝑋

(
𝑖∗Q𝐻

𝑍 [𝑑]
)
→ Gr𝐹𝑘−𝑛DR𝑋

(
H𝑟

𝑍 (𝒪𝑋 )
)

(20)

as the commutative diagram

0 Gr𝐹𝑘−𝑑 (𝑖∗Q𝐻
𝑍 [𝑑]) · · · 𝜔𝑋 ⊗ Gr𝐹𝑘+𝑟 (𝑖∗Q𝐻

𝑍 [𝑑]) 0

0 Gr𝐹𝑘−𝑛
(
H𝑟

𝑍 (𝒪𝑋 )
)︸���������������︷︷���������������︸

degree−𝑛

· · · 𝜔𝑋 ⊗ Gr𝐹𝑘
(
H𝑟

𝑍 (𝒪𝑋 )
)︸���������������������︷︷���������������������︸

degree 0

0,

we see that (20) is isomorphism in cohomological degree −𝑛,−𝑛+1, . . . ,−1 and is injective in cohomo-
logical degree 0 by Lemma 2.8 and Theorem 2.9. Therefore, the morphism (19) is an isomorphism. Then
an application of the 5-lemma implies that (20) is a term-wise isomorphism, which gives that 𝐹𝑘+𝑟𝜏 is
an isomorphism because of [CDM24a, Lemma 2.1]. Hence, we conclude the proof by Theorem 2.9. �

3. Proof of main results

3.1. Some reductions

We now proceed to prove Theorem 1.1. The argument in this section was pointed out by Mircea Mustaţă
to the author. We are now in the following setting of Theorem 1.1:

Setting 3.1. Assume that X is an irreducible and smooth complex algebraic variety, Z is a local complete
intersection closed subscheme in X, H is a hypersurface of X containing no irreducible component of Z
and c is a positive rational number such that

�̃�(𝑋 \ 𝐻, 𝑍 \ 𝐻) > 𝑐 and �̃�(𝑋, 𝑍 ∩ 𝐻) ≥ 𝑐 + 1. (21)

We first perform a useful reduction:

Lemma 3.2. To prove Theorem 1.1, it suffices to assume that the hypersurface H is smooth.

Proof. Suppose that we are in Setting 3.1 but the subset Σ ⊂ 𝑍 consisting of the points 𝑥 ∈ 𝑍 such that
�̃�𝑥 (𝑋, 𝑍) ≤ 𝑐 is nonempty. By the definition (5) of local minimal exponent, we know that Σ is a closed
subvariety.

To achieve a contradiction, we can assume that Σ has dimension 0 because cutting down (𝑋, 𝑍, 𝐻)

by general hyperplanes passing through Σ does not change �̃�𝑥 (𝑋, 𝑍) for x in the hyperplane sections
according to Theorem 2.3(i). Shrinking X if necessary, we can further assume that Σ contains exactly
one point P, Z is cut out by a regular sequence ( 𝑓1, 𝑓2, . . . , 𝑓𝑟 ) and H is defined by a regular function
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h. Let W be a general smooth hyperplane, defined by a regular function w, passing through the point
P. Consider the family of hyperplane sections of Z: S ⊂ 𝑋 × A1 defined by the regular functions
𝑓1, 𝑓2, . . . , 𝑓𝑟 , 𝑡 ·𝑤 + (1− 𝑡) · ℎ, where t is the coordinate on A1. Denote by the general fiber S𝑡 = 𝑍 ∩𝐻𝑡 ,
where 𝐻𝑡 is the hypersurface defined by 𝑡 · 𝑤 + (1 − 𝑡) · ℎ in X. Note that the central fiber of S → A1 is
S0 = 𝑍 ∩ 𝐻.

Applying Theorem 2.3(ii) to the second projection 𝑋 × A1 → A1 with the section 𝑠 : A1 →

𝑋 × A1, 𝑡 ↦→ (𝑃, 𝑡) and the local complete intersection closed subscheme S ⊂ 𝑋 × A1, we deduce that

�̃�𝑃 (𝑋,S𝑡 ) ≥ �̃�𝑃 (𝑋,S0) ≥ 𝑐 + 1

holds for any t in a neighborhood 𝑈 ⊂ A1 of 0. Because 𝑋 \𝐻𝑡 does not contain P, the hypersurface 𝐻𝑡

is smooth and contains no irreducible component of Z for general 𝑡 ∈ 𝑈, if we replace H by a general 𝐻𝑡

we are still in Setting 3.1. Hence, if we have Theorem 1.1 for the tuple (𝑋, 𝑍, 𝐻𝑡 , 𝑐), then �̃�𝑃 (𝑋, 𝑍) > 𝑐,
which is a contradiction. Thus, the closed subvariety Σ is empty (i.e., �̃�(𝑋, 𝑍) > 𝑐). �

Theorem 1.1 can be further reduced to the following special case of Theorem 1.2:

Theorem 3.3. Let Z be a hypersurface of dimension d in an irreducible and smooth complex algebraic
variety X of dimension 𝑛 = 𝑑 + 1. If there is a smooth hypersurface H in X containing no irreducible
component of Z and a nonnegative integer k such that 𝑍 \𝐻 has k-rational singularities and that 𝑍 ∩𝐻
has k-Du Bois singularities, then Z has k-rational singularities.

Proof of Theorem 1.1 assuming Theorem 3.3. Suppose we are in the Setting 3.1. We can assume that
H is smooth by Lemma 3.2. Since the statement is local, we may and will assume that there is a regular
sequence ( 𝑓1, 𝑓2, . . . , 𝑓𝑟 ) cutting out Z. Let 𝑋 ′ := 𝑋×P𝑟−1 and let 𝑍 ′ be the hypersurface in 𝑋 ′ defined by

𝑔 = 𝑦1 𝑓1 + 𝑦2 𝑓2 + · · · + 𝑦𝑟 𝑓𝑟 ,

where [𝑦1 : 𝑦2 : · · · : 𝑦𝑟 ] are homogeneous coordinates on P𝑟−1. Then by Theorem 2.2, we have
�̃�(𝑋, 𝑍) = �̃�(𝑋 ′, 𝑍 ′).

Denote by 𝐻 ′ the smooth hypersurface 𝐻 × P𝑟−1 in 𝑋 ′. Clearly, 𝐻 ′ contains no irreducible
component of 𝑍 ′. By Theorem 2.2 again, we also have

�̃�(𝑋 ′ \ 𝐻 ′, 𝑍 ′ \ 𝐻 ′) = �̃�(𝑋 \ 𝐻, 𝑍 \ 𝐻) > 𝑐.

Moreover, since 𝑍 ′ ∩ 𝐻 ′ is defined by

𝑔 |𝐻 ′ = 𝑦1 𝑓1 |𝐻 + 𝑦2 𝑓2 |𝐻 + · · · + 𝑦𝑟 𝑓𝑟 |𝐻

another application of Theorem 2.2 gives �̃�(𝐻 ′, 𝑍 ′ ∩ 𝐻 ′) = �̃�(𝐻, 𝑍 ∩ 𝐻). Then, as H and 𝐻 ′ are
smooth, together with Remark 2.1,

�̃�(𝑋 ′, 𝑍 ′ ∩ 𝐻 ′) = �̃�(𝐻 ′, 𝑍 ′ ∩ 𝐻 ′) + 1
= �̃�(𝐻, 𝑍 ∩ 𝐻) + 1 = �̃�(𝑋, 𝑍 ∩ 𝐻) ≥ 𝑐 + 1.

Hence, replacing (𝑋, 𝑍, 𝐻) by (𝑋 ′, 𝑍 ′, 𝐻 ′), we are still in the Setting 3.1; together with
�̃�(𝑋, 𝑍) = �̃�(𝑋 ′, 𝑍 ′), we may and will assume that Z is a hypersurface in X.

If c is a positive integer, writing 𝑐 = 𝑘 +1, Theorem 2.4 implies that 𝑍 \𝐻 has k-rational singularities
and 𝑍 ∩ 𝐻 has k-Du Bois singularities. Theorem 3.3 shows that Z has k-rational singularities, and thus,
�̃�(𝑋, 𝑍) > 𝑐.

Otherwise, assume that Z is defined by a regular function f. Suppose that �𝑐� − 𝑐 = 𝑚
𝑁 for some

positive integers m and N. Let 𝑍 ′′ be the hypersurface in 𝑋 ′′ := 𝑋 × A𝑚 defined by

𝑓 + 𝑤𝑁
1 + 𝑤𝑁

2 + · · · + 𝑤𝑁
𝑚 ,
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12 Q. Chen

where (𝑤1, 𝑤2, . . . , 𝑤𝑚) is a system of coordinates on A𝑚. Note that the singular locus 𝑍 ′′
sing of 𝑍 ′′

is exactly 𝑍sing × {0}; in particular, for 𝑥 ∈ 𝑍 and 𝑦 ∈ A𝑚, �̃�(𝑥,𝑦) (𝑋
′′, 𝑍 ′′) = ∞ unless 𝑥 ∈ 𝑍sing and

𝑦 = 0. Also, by the Thom-Sebastiani theorem for minimal exponents [Sai94], combined with the fact
that �̃�0(𝑤

𝑁
𝑖 ) = 1

𝑁 , we have

�̃�(𝑥,0) (𝑋
′′, 𝑍 ′′) = �̃�𝑥 (𝑋, 𝑍) +

𝑚

𝑁
(22)

holds for any 𝑥 ∈ 𝑍sing. Denote by 𝐻 ′′ the hypersurface 𝐻 × A𝑚 in 𝑋 ′′ which clearly contains no
irreducible component of 𝑍 ′′. It follows from the inequality

�̃�(𝑥,0) (𝑋
′′, 𝑍 ′′) = �̃�𝑥 (𝑋, 𝑍) +

𝑚

𝑁
> 𝑐 +

𝑚

𝑁
= �𝑐�,

for any point (𝑥, 0) in 𝑍 ′′
sing\𝐻

′′, that �̃�(𝑋 ′′\𝐻 ′′, 𝑍 ′′\𝐻 ′′) > �𝑐�. Moreover, since 𝑍 ′′∩𝐻 ′′ is defined by

𝑓 |𝐻 + 𝑤𝑁
1 + 𝑤𝑁

2 + · · · + 𝑤𝑁
𝑚 ,

whose singular locus is exactly (𝑍 ∩ 𝐻)sing × {0}, we can apply the Thom-Sebastiani theorem again for
𝑍 ′′ ∩ 𝐻 ′′:

�̃�(𝑥,0) (𝐻
′′, 𝑍 ′′ ∩ 𝐻 ′′) = �̃�𝑥 (𝐻, 𝑍 ∩ 𝐻) +

𝑚

𝑁

for any 𝑥 ∈ (𝑍 ∩ 𝐻)sing. Arguing as above, we find that

�̃�(𝐻 ′′, 𝑍 ′′ ∩ 𝐻 ′′) ≥ 𝑐 +
𝑚

𝑁
= �𝑐� .

Theorem 3.3, combined with Theorem 2.4, applying to (𝑋 ′′, 𝑍 ′′, 𝐻 ′′) and �𝑐� implies that
�̃�(𝑋 ′′, 𝑍 ′′) > �𝑐�; in particular, for any singular point x of Z, we have

�̃�𝑥 (𝑋, 𝑍) = �̃�(𝑥,0) (𝑋
′′, 𝑍 ′′) −

𝑚

𝑁
> �𝑐� −

𝑚

𝑁
= 𝑐

by (22), which completes the proof. �

3.2. Proof of Theorem 3.3

By the Restriction Theorem for the minimal exponent (Theorem 2.3(i)) and the assumption that 𝑍 \ 𝐻
is k-rational, the subscheme Z has k-Du Bois singularities. It suffices to prove that the natural map

𝜋 : H0D𝑋

(
Gr𝐹−𝑘DR𝑋

(
𝑖∗Q𝐻

𝑍reg
[𝑑]

))
→ H0D𝑋

(
Gr𝐹−𝑘DR𝑋

(
𝑖∗Q𝐻

𝑍 [𝑑]
))

is surjective, thanks to Lemma 2.6. We briefly explain the plan for the proof below.

3.2.1. Plan for the proof
Let T be the union of H with the singular locus 𝑍sing of Z. The Cartesian diagram of open immersions
of varieties

𝑋 \ 𝑇 𝑋 \ 𝐻

𝑋 \ 𝑍sing 𝑋

𝑗𝑇 𝑗

𝑗′
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induces the following commutative diagram in D𝑏 (MHM(𝑋)):

𝑖∗Q𝐻
𝑍\𝑇

[𝑑] 𝑖∗Q𝐻
𝑍\𝐻

[𝑑]

𝑖∗Q𝐻
𝑍reg

[𝑑] 𝑖∗Q𝐻
𝑍 [𝑑] .

𝛼

𝛽

Here, 𝑖 : 𝑍 → 𝑋 is the closed immersion and, abusing the notation, denote by 𝑖∗Q𝐻
𝑍\𝐻

[𝑑] the object
𝑗∗ 𝑗

∗𝑖∗Q𝐻
𝑍 [𝑑], by 𝑖∗Q𝐻

𝑍reg
[𝑑] the object 𝑗 ′∗ 𝑗 ′∗𝑖∗Q𝐻

𝑍 [𝑑] and by 𝑖∗Q𝐻
𝑍\𝑇

[𝑑] the object 𝑗𝑇 ∗ 𝑗
∗
𝑇 𝑖∗Q

𝐻
𝑍 [𝑑] in

D𝑏 (MHM(𝑋)). Taking 0-th cohomology of the dual of Gr𝐹−𝑘DR𝑋 of the above commutative diagram
gives

H0D𝑋

(
Gr𝐹−𝑘DR𝑋 (𝑖∗Q𝐻

𝑍\𝑇
[𝑑])

)
H0D𝑋

(
Gr𝐹−𝑘DR𝑋 (𝑖∗Q𝐻

𝑍\𝐻
[𝑑])

)

H0D𝑋

(
Gr𝐹−𝑘DR𝑋 (𝑖∗Q𝐻

𝑍reg
[𝑑])

)
H0D𝑋

(
Gr𝐹−𝑘DR𝑋 (𝑖∗Q𝐻

𝑍 [𝑑])
)
.

H0D𝑋 (Gr𝐹
−𝑘DR𝑋 (𝛼))

H0D𝑋 (Gr𝐹
−𝑘DR𝑋 (𝛽))

𝜋

Hence, to prove that 𝜋 is surjective, it suffices to prove that

H0D𝑋

(
Gr𝐹−𝑘DR𝑋 (𝛼)

)
and H0D𝑋

(
Gr𝐹−𝑘DR𝑋 (𝛽)

)
are both surjections. The surjection of H0D𝑋

(
Gr𝐹−𝑘DR𝑋 (𝛼)

)
will be proved in 3.2.2. To prove the other

surjection, we further factor 𝛽 into two morphisms

𝛽 : 𝑖∗Q𝐻
𝑍 [𝑑]

𝛾
−→ 𝑀

𝛿
−→ 𝑖∗Q𝐻

𝑍\𝐻 [𝑑]

for an auxiliary mixed Hodge module M as explained in 3.2.3. The surjection of H0D𝑋
(
Gr𝐹−𝑘DR𝑋 (𝛽)

)
reduces to the surjection of

H0D𝑋

(
Gr𝐹−𝑘DR𝑋 (𝛾)

)
and H0D𝑋

(
Gr𝐹−𝑘DR𝑋 (𝛿)

)
.

The proof for the surjectivity of H0D𝑋
(
Gr𝐹−𝑘DR𝑋 (𝛾)

)
will be given in 3.2.4, and the surjectivity of

H0D𝑋
(
Gr𝐹−𝑘DR𝑋 (𝛿)

)
has two steps 3.2.5 and 3.2.6.

3.2.2.
Using the compatibility between the two duality functors (2), we see that D𝑋

(
Gr𝐹−𝑘DR𝑋 (𝛼)

)
is the same

as

Gr𝐹𝑘 DR𝑋 (D𝑋 (𝛼)) : Gr𝐹𝑘−𝑑DR𝑋

(
𝑗𝑇 !𝑖∗Q𝐻

𝑍\𝑇 [𝑑]
)
→ Gr𝐹𝑘−𝑛DR𝑋

(
𝑗!H1

𝑍 (𝒪𝑋 )
)
.

We shall prove that this is a quasi-isomorphism. For this, we make use of the morphism

𝜏 : 𝑖∗Q𝐻
𝑍 [𝑑] → H1

𝑍 (𝒪𝑋 ) (1)
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constructed as (14). As 𝑗 !
𝑇 𝜏 is identity, we have the factorization

𝑗𝑇 !𝑖∗Q𝐻
𝑍\𝑇

[𝑑] 𝑗!𝑖∗Q𝐻
𝑍\𝐻

[𝑑] 𝑗!H1
𝑍 (𝒪𝑋 ) (1)

𝑗𝑇 !H1
𝑍 (𝒪𝑋 ) (1)

𝑗!𝜏

by applying the adjunction 𝑗𝑇 ! 𝑗
!
𝑇 → id to 𝑗!𝜏. Thus, this step can be concluded if we show that both

Gr𝐹𝑘−𝑑DR𝑋 ( 𝑗!𝜏) and

Gr𝐹𝑘−𝑑DR𝑋

(
𝑗𝑇 !𝑖∗Q𝐻

𝑍\𝑇 [𝑑]
)
→ Gr𝐹𝑘−𝑑DR𝑋

(
𝑗!𝑖∗Q𝐻

𝑍\𝐻 [𝑑]
)

are quasi-isomorphisms. The following lemma takes care of the part of Gr𝐹𝑘−𝑑DR𝑋 ( 𝑗!𝜏).
Lemma 3.4. The canonical morphisms

𝐹ℓ+1 𝑗!𝜏 : 𝐹ℓ+1 𝑗!𝑖∗Q𝐻
𝑍\𝐻 [𝑑] −→ 𝐹ℓ 𝑗!H1

𝑍 (𝒪𝑋 )

and

𝐹ℓ+1 𝑗∗𝜏 : 𝐹ℓ+1 𝑗∗𝑖∗Q𝐻
𝑍\𝐻 [𝑑] −→ 𝐹ℓ 𝑗∗H1

𝑍 (𝒪𝑋 )

are isomorphisms for ℓ ≤ 𝑘 . In particular, Gr𝐹𝑘−𝑑DR𝑋 ( 𝑗!𝜏) and Gr𝐹𝑘−𝑑DR𝑋 ( 𝑗∗𝜏) are both quasi-
isomorphisms.
Proof of the lemma. Since 𝑍 \ 𝐻 has k-rational singularities,

𝐹ℓ+1 𝑗
!𝜏 : 𝐹ℓ+1 𝑗

!𝑖∗Q𝐻
𝑍 → 𝐹ℓ 𝑗

!H1
𝑍 (𝒪𝑋 )

are isomorphisms for ℓ ≤ 𝑘 by Theorem 2.9. We can assume that H is defined by a regular function t as
the statement is local. For a mixed Hodge module M, by definition [Sai88, 3.2.2],

𝐹ℓ ( 𝑗!𝑀) =
∑
𝑖≥0

𝜕𝑖𝑡 · 𝐹ℓ−𝑖𝑉
1 ( 𝑗!𝑀) and 𝐹ℓ ( 𝑗∗𝑀) =

∑
𝑖≥0

𝜕𝑖𝑡 ·
1
𝑡
𝐹ℓ−𝑖𝑉

1 ( 𝑗∗𝑀), (23)

where 𝑉•𝑀 is the V-filtration along H. Note also that when 𝛼 > 0, we have

𝑉 𝛼𝑀 = 𝑉 𝛼 𝑗∗𝑀 = 𝑉 𝛼 𝑗!𝑀.

By the bistrictness of Hodge filtration and V-filtration [Sai90, 2.5] or [CD23, Corollary 2.9], the sequence

0 → 𝐹ℓ+1𝑉
𝛼 ker 𝜏 → 𝐹ℓ+1𝑉

𝛼𝑖∗Q𝐻
𝑍 → 𝐹ℓ𝑉

𝛼H1
𝑍 (𝒪𝑋 ) → 𝐹ℓ+1𝑉

𝛼 coker 𝜏 → 0

is exact for any 𝛼 ∈ Q and ℓ ∈ Z. But when ℓ ≤ 𝑘 and 𝛼 > 0, both 𝐹ℓ+1𝑉
𝛼 ker 𝜏 and 𝐹ℓ+1𝑉

𝛼 coker 𝜏
vanish because

𝐹ℓ+1𝑉
𝛼 ker 𝜏 = ( 𝑗∗ 𝑗

∗𝐹ℓ+1 ker 𝜏) ∩𝑉 𝛼 ker 𝜏

and

𝐹ℓ+1𝑉
𝛼 coker 𝜏 = ( 𝑗∗ 𝑗

∗𝐹ℓ+1 coker 𝜏) ∩𝑉 𝛼 coker 𝜏

together with the fact that 𝐹ℓ+1 𝑗
∗𝜏 are isomorphisms. We deduce that

𝐹ℓ+1𝑉
𝛼 (𝜏) : 𝐹ℓ+1𝑉

𝛼𝑖∗Q𝐻
𝑍 → 𝐹ℓ𝑉

𝛼H1
𝑍 (𝒪𝑋 )
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is isomorphism for any ℓ ≤ 𝑘 and 𝛼 > 0. This shows that 𝐹ℓ 𝑗!𝜏 and 𝐹ℓ+1 𝑗∗𝜏 are isomorphisms by (23),
and we immediately see that

Gr𝐹𝑘−𝑑DR𝑋 ( 𝑗!𝜏) and Gr𝐹𝑘−𝑑DR𝑋 ( 𝑗∗𝜏)

are both quasi-isomorphisms by (1). �

It remains to prove that the canonical morphism

Gr𝐹𝑘−𝑑DR𝑋

(
𝑗𝑇 !𝑖∗Q𝐻

𝑍\𝑇 [𝑑]
)
→ Gr𝐹𝑘−𝑑DR𝑋

(
𝑗!𝑖∗Q𝐻

𝑍\𝐻 [𝑑]
)

(24)

is a quasi-isomorphism. Recall that 𝑗 ′ : 𝑋 \ 𝑍sing → 𝑋 is the open immersion and 𝑖′ : 𝑍sing → 𝑋 is the
closed immersion. Thanks to the distinguished triangle

𝑗𝑇 !𝑖∗Q𝐻
𝑍\𝑇 → 𝑗!𝑖∗Q𝐻

𝑍\𝐻 → 𝑗!𝑖
′
∗Q𝐻

𝑍sing

+1
−−→,

obtained from applying 𝑗! 𝑗
! to

𝑗 ′! 𝑖∗Q
𝐻
𝑍reg

→ 𝑖∗Q𝐻
𝑍 → 𝑖′∗𝑖

′∗𝑖∗Q𝑍︸�����︷︷�����︸
=𝑖′∗Q𝐻

𝑍sing

+1
−−→,

the assertion that (24) is an isomorphism is now equivalent to the acyclicity of Gr𝐹𝑘−𝑑DR𝑋

(
𝑗!𝑖

′
∗Q𝐻

𝑍sing

)
.

It is sufficient to show that Ω𝑑−𝑘
𝑍sing∩𝐻

and Ω𝑑−𝑘
𝑍sing

are both acyclic, due to the distinguished triangle

Gr𝐹𝑘−𝑑DR𝑋

(
𝑗!𝑖

′
∗Q𝐻

𝑍sing

)
→ Gr𝐹𝑘−𝑑DR𝑋

(
𝑖′∗Q𝐻

𝑍sing

)
︸���������������������︷︷���������������������︸

�Ω𝑑−𝑘
𝑍sing

[𝑑−𝑘 ]

→ Gr𝐹𝑘−𝑑DR𝑋

(
𝑖′𝐻 ∗Q

𝐻
𝑍sing∩𝐻

)
︸����������������������������︷︷����������������������������︸

�Ω𝑑−𝑘
𝑍sing∩𝐻

[𝑑−𝑘 ]

+1
−−→,

where 𝑖′𝐻 : 𝑍sing ∩ 𝐻 → 𝑋 is the closed immersion. This is done by observing that Z has k-Du Bois
singularities, and hence, dim 𝑍sing ∩ 𝐻 ≤ dim 𝑍sing ≤ 𝑑 − 2𝑘 − 1 < 𝑑 − 𝑘 by Theorem 2.5.

3.2.3.
The remaining is to prove that H0D𝑋

(
Gr𝐹−𝑘DR𝑋 (𝛽)

)
is surjective. To this end, we make use of an

auxiliary mixed Hodge module 𝑀 := H−1𝑖∗𝑖
∗ 𝑗∗ 𝑗

∗Q𝐻
𝑋 [𝑛]. Note that M is the same as 𝑖∗Q𝐻

𝑍\𝐻
[𝑑] over

the non-characteristic locus 𝑋 ′, the complement of 𝑍sing and (𝑍∩𝐻)sing in X, with respect to 𝑗∗ 𝑗
∗Q𝐻

𝑋 [𝑛].
Due to the adjunction id → 𝑗∗ 𝑗

∗, we obtain a factorization

𝛽 : 𝑖∗Q𝐻
𝑍 [𝑑]

𝛾
−→ 𝑀

𝛿
−→ 𝑖∗Q𝐻

𝑍\𝐻 [𝑑]︸�������︷︷�������︸
= 𝑗∗ 𝑗∗𝑀

.

This reduces the surjectivity of H0D𝑋
(
Gr𝐹−𝑘DR𝑋 (𝛽)

)
to the surjectivity of

H0D𝑋

(
Gr𝐹−𝑘DR𝑋 (𝛾)

)
and H0D𝑋

(
Gr𝐹−𝑘DR𝑋 (𝛿)

)
.
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3.2.4.
We prove that H0D𝑋

(
Gr𝐹−𝑘DR𝑋 (𝛾)

)
is surjective. Let 𝑖𝐻 : 𝐻 → 𝑋 be the closed immersion. Since H

is smooth, there is a short exact sequence of mixed Hodge modules

0 → Q𝐻
𝑋 [𝑛] → 𝑗∗ 𝑗

∗Q𝐻
𝑋 [𝑛] → 𝑖𝐻 ∗Q𝐻

𝐻 [𝑛 − 1] (−1) → 0. (25)

Applying 𝑖∗𝑖
∗ to (25) and then taking (−1)-th cohomology, we get

0 → 𝑖∗Q𝐻
𝑍 [𝑑]

𝛾
−→ 𝑀 → 𝑖𝐷∗Q𝐻

𝐷 [𝑑 − 1] (−1) −→ 0, (26)

where 𝐷 := 𝑍 ∩ 𝐻 and 𝑖𝐷 : 𝐷 → 𝑋 is the closed embedding. Therefore, the dual of 𝛾 is a surjection of
mixed Hodge modules:

D𝑋 (𝛾) : D𝑋 (𝑀) → D𝑋 (𝑖∗Q𝐻
𝑍 [𝑑]).

Because H0D𝑋 (Gr𝐹−𝑘DR𝑋 (𝛾)) = H0Gr𝐹𝑘 DR𝑋 (D𝑋 (𝛾)) by (2), and the top cohomological degree of
the de Rham complex of a 𝒟-module is 0 (see (1)), we have completed this step.

3.2.5.
We will prove in the remaining steps that

Gr𝐹−𝑘DR𝑋 (𝛿) : Gr𝐹−𝑘DR𝑋 (𝑀) → Gr𝐹−𝑘DR𝑋

(
𝑖∗Q𝐻

𝑍\𝐻 [𝑑]
)

admits a left inverse in D𝑏
coh(𝑋). Here, by a left inverse of a morphism 𝑓 : 𝐴 → 𝐵, we mean a morphism

𝑔 : 𝐵 → 𝐶 such that 𝑔 ◦ 𝑓 : 𝐴 → 𝐵 → 𝐶 is an isomorphism. Clearly, the existence of a left inverse of
Gr𝐹−𝑘DR𝑋 (𝛿) implies that H0D𝑋 (Gr𝐹−𝑘DR𝑋 (𝛿)) is surjective by duality.

The observation is that

Gr𝐹−𝑘DR𝑋 ( 𝑗∗𝜏) : Gr𝐹−𝑘DR𝑋

(
𝑖∗Q𝐻

𝑍\𝐻 [𝑑]
)
�
−→ Gr𝐹−𝑘−1DR𝑋

(
𝑗∗H1

𝑍 (𝒪𝑋 )
)

is a quasi-isomorphism because its dual

D𝑋 (Gr𝐹−𝑘DR𝑋 ( 𝑗∗𝜏)) � Gr𝐹𝑘 DR𝑋 (D𝑋 ( 𝑗∗𝜏)) � Gr𝐹𝑘−𝑑DR𝑋 ( 𝑗!𝜏)

is by Lemma 3.4 and D𝑋 (𝜏) = 𝜏(𝑑). Therefore, to construct a left inverse of Gr𝐹−𝑘DR𝑋 (𝛿), it suffices
to construct a left inverse of the morphism:

Gr𝐹−𝑘DR𝑋 ( 𝑗∗𝜏 ◦ 𝛿) : Gr𝐹−𝑘DR𝑋 (𝑀) → Gr𝐹−𝑘−1DR𝑋

(
𝑗∗H1

𝑍 (𝒪𝑋 )
)
. (27)

3.2.6.
We claim that there is a morphism

Gr𝐹−𝑘−1DR𝑋

(
𝑗∗H1

𝑍 (𝒪𝑋 )
)
→ Gr𝐹−𝑘−1DR𝑋

(
𝑗!H1

𝑍 (𝒪𝑋 )
)
⊗𝒪𝑋 𝒪𝑋 (𝐻), (28)

and it will be shown in the next step that it is a left inverse of (27).
Take a log resolution 𝑓 : 𝑌 → 𝑋 of the pair (𝑋, 𝑍 + 𝐻) such that f is isomorphic over the simple

normal crossing locus 𝑋 ′ of (𝑋, 𝑍 + 𝐻); such log resolutions always exist [Kol13, Theorem 10.45].
In our case, the simple normal crossing locus 𝑋 ′ is the complement of 𝑍sing and (𝑍 ∩ 𝐻)sing in X. Set
𝑍 := ( 𝑓 ∗𝑍)red, 𝐻 := ( 𝑓 ∗𝐻)red and 𝐺 := (𝑍 + 𝐻)red. Taking Gr𝐹−𝑘−1DR𝑋 of the following short exact
sequence of mixed Hodge modules

0 → 𝑗∗ 𝑗
∗𝒪𝑋 → 𝑗∗ 𝑗

∗𝒪𝑋 (∗𝑍) → 𝑗∗ 𝑗
∗H1

𝑍 (𝒪𝑋 ) → 0
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gives a distinguished triangle by (10):

Ω𝑘+1
𝑋 (log 𝐻) →R 𝑓∗Ω

𝑘+1
𝑌 (log𝐺)

→ Gr𝐹−𝑘−1DR𝑋

(
𝑗∗H1

𝑍 (𝒪𝑋 )
)
[𝑘 − 𝑑]

+1
−−→ .

(29)

We also make use of another short exact sequence of mixed Hodge modules:

0 → 𝑗! 𝑗
!𝒪𝑋 → 𝑗! 𝑗

!𝒪𝑋 (∗𝑍) → 𝑗! 𝑗
!H1

𝑍 (𝒪𝑋 ) → 0. (30)

Let U be the complement of 𝑍 + 𝐻 in X. Let 𝑗 : 𝑌 \ 𝐻 → 𝑌 , ℎ̃ : 𝑈 → 𝑌 \ 𝐻 and ℎ : 𝑈 → 𝑋 \ 𝐻 be the
open immersions. Their relations are summarized in the following Cartesian diagram.

𝑈 𝑌 \ 𝐻 𝑌

𝑈 𝑋 \ 𝐻 𝑋.

ℎ̃ 𝑗

𝑓

ℎ 𝑗

Because f is proper, it follows from

𝑗! 𝑗
!𝒪𝑋 (∗𝑍) = 𝑗!ℎ∗𝒪𝑈 = 𝑓+ 𝑗! ℎ̃∗𝒪𝑈 = 𝑓+ 𝑗! 𝑗

!𝒪𝑌 (∗�̃�) = 𝑓+ 𝑗! ℎ̃∗𝒪𝑈

and Lemma 3.5 below that we can compute Gr𝐹−𝑘−1DR𝑋
(
𝑗! 𝑗

!𝒪𝑋 (∗𝑍)
)

by

R 𝑓∗

(
Ω𝑘+1
𝑌 (log𝐺)(−𝐻)

)
[𝑛 − 𝑘 − 1] �−→ Gr𝐹−𝑘−1DR𝑋

(
𝑓+ 𝑗! 𝑗

!𝒪𝑌

(
∗𝑍

))
because of (3). Then applying Gr𝐹−𝑘−1DR𝑋 to (30) gives another distinguished triangle:

Ω𝑘+1
𝑋 (log 𝐻) (−𝐻) →R 𝑓∗

(
Ω𝑘+1
𝑌 (log𝐺)(−𝐻)

)
→ Gr𝐹−𝑘−1DR𝑋

(
𝑗!H1

𝑍 (𝒪𝑋 )
)
[𝑘 − 𝑑]

+1
−−→ .

(31)

Since 𝑓 ∗𝐻 − 𝐻 is effective, there is a canonical map

𝜃 : Ω𝑘+1
𝑌 (log𝐺) → Ω𝑘+1

𝑌 (log𝐺)
(
𝑓 ∗𝐻 − 𝐻

)
.

Combined with the projection formula, we then have the following commutative diagram:

Ω𝑘+1
𝑋 (log 𝐻) R 𝑓∗Ω𝑘+1

𝑌 (log𝐺)

Ω𝑘+1
𝑋 (log 𝐻) (−𝐻) ⊗ 𝒪𝑋 (𝐻) R 𝑓∗

(
Ω𝑘+1
𝑌 (log𝐺)(−𝐻)

)
⊗ 𝒪𝑋 (𝐻).

= R 𝑓∗ 𝜃

Comparing (29) with (31), the above diagram indicates that there is a (non-canonical) morphism by the
axiom TR3 of triangulated categories

Gr𝐹−𝑘−1DR𝑋

(
𝑗∗H1

𝑍 (𝒪𝑋 )
)
→ Gr𝐹−𝑘−1DR𝑋

(
𝑗!H1

𝑍 (𝒪𝑋 )
)
⊗𝒪𝑋 𝒪𝑋 (𝐻) (32)

in D𝑏
coh(𝑋), which is isomorphic over the simple normal crossing locus 𝑋 ′. This is exactly the morphism

we are after.
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3.2.7.
We use the idea in [Sch07, Theorem 5.1] to prove that (32) is a left inverse of (27); that is, the composition
of the morphisms

𝜙 : Gr𝐹−𝑘DR𝑋 (𝑀) −→ Gr𝐹−𝑘DR𝑋

(
𝑖∗Q𝐻

𝑍\𝐻 [𝑑]
)

�
−→Gr𝐹−𝑘−1DR𝑋 ( 𝑗∗H1

𝑍 (𝒪𝑋 )) → Gr𝐹−𝑘−1DR𝑋

(
𝑗!H1

𝑍 (𝒪𝑋 )
)
⊗𝒪𝑋 𝒪𝑋 (𝐻)

is an isomorphism in D𝑏
coh (𝑋).

We first argue that the source and target of 𝜙 are supported in cohomological degree 𝑘 − 𝑑. Taking
Gr𝐹−𝑘DR𝑋 of (26),

0 → 𝑖∗Q𝐻
𝑍 [𝑑]

𝛾
−→ 𝑀 → 𝑖𝐷∗Q𝐻

𝐷 [𝑑 − 1] (−1) −→ 0

gives a distinguished triangle

Ω𝑘
𝑍 → Gr𝐹−𝑘DR𝑋 (𝑀) [𝑘 − 𝑑] → Ω𝑘−1

𝐷

+1
−−→ (33)

by (8) because both Z and 𝐷 = 𝑍∩𝐻 have k-Du Bois singularities. Therefore, Gr𝐹−𝑘DR𝑋 (𝑀) � ℱ[𝑑−𝑘]
for a coherent 𝒪𝑍 -module ℱ. Moreover, if we put 𝑊 := 𝑍 ∩ 𝑋 ′ = 𝑍reg \ 𝐷sing, then

ℱ |𝑊 = Ω𝑘
𝑊 (log 𝐷𝑊 ),

where 𝐷𝑊 := 𝐷 ∩𝑊 , as 𝑀 |𝑋 ′ = 𝑖+𝒪𝑍 (∗𝐷) |𝑋 ′ .
Next, we observe that the morphism

Gr𝐹−𝑘DR𝑋 ( 𝑗!𝜏) : Gr𝐹−𝑘DR𝑋

(
𝑗!𝑖∗Q𝐻

𝑍 [𝑑]
)
→ Gr𝐹−𝑘−1DR𝑋

(
𝑗!H1

𝑍 (𝒪𝑋 )
)

(34)

is a quasi-isomorphism as its dual D𝑋 (Gr𝐹−𝑘DR𝑋 ( 𝑗!𝜏) � Gr𝐹𝑘−𝑑DR𝑋 ( 𝑗∗𝜏) is by Lemma 3.4, recalling
that D𝑋 (𝜏) = 𝜏(𝑑). Then by rotating Gr𝐹−𝑘DR𝑋 of the distinguished triangle

𝑖𝐷∗Q𝐻
𝐷 [𝑑 − 1] → 𝑗!𝑖∗Q𝐻

𝑍 [𝑑] → 𝑖∗Q𝐻
𝑍 [𝑑]

+1
−−→,

we get another distinguished triangle

Gr𝐹−𝑘DR𝑋

(
𝑗!𝑖∗Q𝐻

𝑍 [𝑑]
)
[𝑘 − 𝑑] → Ω𝑘

𝑍 → Ω𝑘
𝐷

+1
−−→ (35)

again thanks to the fact that both D and Z have k-Du Bois singularities. This implies, as Ω𝑘
𝑍 � Ω𝑘

𝐷 , that

Gr𝐹−𝑘−1DR𝑋

(
𝑗!H1

𝑍 (𝒪𝑋 )
)
� Gr𝐹−𝑘DR𝑋

(
𝑗!𝑖∗Q𝐻

𝑍 [𝑑]
)
� ℰ[𝑑 − 𝑘],

where the 𝒪𝑍 -module ℰ is the kernel of Ω𝑘
𝑍 � Ω𝑘

𝐷 . Moreover, we also see that ℰ |𝑊 =
Ω𝑘
𝑊 (log 𝐷𝑊 ) (−𝐷𝑊 ).

3.2.8.
We have reduced the proof of 𝜙 is quasi-isomorphism to that

H𝑘−𝑑 (𝜙) : ℱ →ℰ ⊗𝒪𝑋 𝒪𝑋 (𝐻) =ℰ(𝐷)

is an isomorphism as 𝒪𝑍 -modules. Note that by the discussion in 3.2.7, H𝑘−𝑑 (𝜙) |𝑊 is isomorphic
because 𝛿 and (32) are isomorphic over 𝑋 ′; indeed, it even identifies ℱ |𝑊 and ℰ(𝐷) |𝑊 because both
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are equal to Ω𝑘
𝑊 (log 𝐷𝑊 ). Hence, by the adjunction id → 𝑗𝑊 ∗ 𝑗

∗
𝑊 for𝒪𝑍 -modules, we get the following

commutative diagram:

ℱ ℰ(𝐷)

𝑗𝑊 ∗(ℱ |𝑊 ) 𝑗𝑊 ∗(ℰ(𝐷) |𝑊 ).

H𝑘−𝑑 (𝜙)

Thus, the proof will be concluded if we can show thatℱ = 𝑗𝑊 ∗(ℱ |𝑊 ) and thatℰ(𝐷) is𝒪𝑍 -torsion free.
Clearly, the 𝒪𝑍 -module ℰ(𝐷) is torsion free as ℰ is a subsheaf of the torsion free 𝒪𝑍 -module Ω𝑘

𝑍 .
Recall that for a local complete intersection Y, the 𝒪𝑌 -module Ω𝑝

𝑌 is even reflexive.
Lastly, because the codimension of 𝐷 \𝑊 in D is at least 2 by Theorem 2.5, we have the following

commutative diagram:

0 Ω𝑘
𝑍 ℱ Ω𝑘−1

𝐷 0

0 𝑗𝑊 ∗(Ω
𝑘
𝑍 |𝑊 ) 𝑗𝑊 ∗(ℱ |𝑊 ) 𝑗𝑊 ∗(Ω

𝑘−1
𝐷 |𝑊 ),

= =

obtained by applying the adjunction id → 𝑗𝑊 ∗ 𝑗
∗
𝑊 for𝒪𝑍 -modules to the short exact sequence (33). The

two outermost vertical maps are identity because Ω𝑘
𝑍 and Ω𝑘−1

𝐷 are reflexive as 𝒪𝑍 -module and 𝒪𝐷-
module, respectively. We have concluded the proof because the 5-lemma implies that ℱ = 𝑗𝑊 ∗(ℱ |𝑊 ).

3.2.9. Log comparison
The following can be essentially proved as in [Sai90, 3.11] via compatible V-filtrations on 𝒟-modules
of normal crossing type; see also [Wei20]. We sketch a proof of a simpler (but sufficient for application)
statement for the reader’s convenience.

Lemma 3.5. Let X be a smooth complex algebraic variety of dimension n. Let D and E be two reduced
effective divisors on X such that the divisor 𝐷 + 𝐸 has simple normal crossing support. Denote by
𝑗 : 𝑋 \ 𝐸 → 𝑋 the open immersion. Then, for every 𝑘 ∈ Z, there is a natural quasi-isomorphism

Ω𝑘
𝑋 (log 𝐷 + 𝐸) (−𝐸) [𝑛 − 𝑘]

�
−→ Gr𝐹−𝑘DR𝑋 ( 𝑗! 𝑗

!𝒪𝑋 (∗𝐷)).

Proof. Deleting the common irreducible components from D, we can assume that D and E have no
common components. Put 𝐺 := 𝐷 + 𝐸 .

We argue inductively on the number of the irreducible components of E. When E has 0 irreducible
components (i.e., E is empty), the assertion was proved in [Del06] and [Sai90, 3.11].

Let H be an irreducible component of E and 𝐸 ′ := 𝐸 − 𝐻. Let 𝑖𝐻 : 𝐻 → 𝑋 be the closed immersion
and 𝑗 ′ : 𝑋 \ 𝐸 ′ → 𝑋 be the open immersion. Let N := 𝑗 ′! 𝑗

′!𝒪𝑋 (∗𝐷). By the base change formula,

(N𝐻 , 𝐹) := (H−1𝑖+𝐻N , 𝐹) = 𝑗 ′𝐻 ! 𝑗
′
𝐻

!𝒪𝐻 (∗𝐷𝐻 )

as mixed Hodge modules and H0𝑖+𝐻N vanishes, where 𝑗 ′𝐻 : 𝐻 \ 𝐸 ′ → 𝐻 and 𝐷𝐻 := 𝐷 ∩ 𝐻. We then
have a short exact sequence of mixed Hodge modules

0 → 𝑖𝐻 +N𝐻 → 𝑗! 𝑗
!𝒪𝑋 (∗𝐷)︸���������︷︷���������︸
=N (!𝐻 )

→ N → 0. (36)
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An inductive argument, together with the exact sequence obtained by the strictness of the Hodge filtration

0 → 𝐹0𝑖𝐻 +N𝐻︸������︷︷������︸
=𝜔𝐻/𝑋 ⊗𝐹−1N𝐻

→ 𝐹0 𝑗! 𝑗
!𝒪𝑋 (∗𝐷) → 𝐹0N → 0, (37)

shows that the lowest nonzero piece of the Hodge filtration is 𝐹0 𝑗! 𝑗
!𝒪𝑋 (∗𝐷) and

𝐹0 𝑗! 𝑗
!𝒪𝑋 (∗𝐷) � 𝐹0𝒪𝑋 (∗𝐷) = 𝒪𝑋 (𝐷).

Then we see that there is an inclusion

Ω𝑘
𝑋 (log𝐺) (−𝐸) ↩→ Ω𝑘

𝑋 (𝐷) � Ω𝑘
𝑋 ⊗ 𝐹0 𝑗! 𝑗

!𝒪𝑋 (∗𝐷).

This can be extended to an inclusion of complexes

Ω𝑘
𝑋 (log𝐺) (−𝐸) [𝑛 − 𝑘] ↩→ Gr𝐹−𝑘DR𝑋 ( 𝑗! 𝑗

!𝒪𝑋 (∗𝐷)) (38)

as the right-hand side is

0 → Ω𝑘
𝑋 ⊗ 𝐹0 𝑗! 𝑗

!𝒪𝑋 (∗𝐷)︸���������������������︷︷���������������������︸
degree 𝑘−𝑛

→ · · · → 𝜔𝑋 ⊗ Gr𝐹𝑛−𝑘 𝑗! 𝑗
!𝒪𝑋 (∗𝐷)︸��������������������������︷︷��������������������������︸

degree 0

→ 0.

Consider the distinguished triangle obtained from rotating Gr𝐹−𝑘DR𝑋 of (36):

Gr𝐹−𝑘DR𝑋 ( 𝑗! 𝑗
!𝒪𝑋 (∗𝐷)) → Gr𝐹−𝑘DR𝑋 (N )

𝜀
−→ Gr𝐹−𝑘DR𝐻 (N𝐻 ) [1]︸�������������������︷︷�������������������︸
�Gr𝐹

−𝑘DR𝑋 (𝑖𝐻 +N𝐻 ) [1]

+1
−−→, (39)

where 𝜀 is induced by pull-back of Kähler differentials. Then (38) gives a morphism from the distin-
guished triangle

Ω𝑘
𝑋 (log𝐺) (−𝐸) [𝑛 − 𝑘] →

Ω𝑘
𝑋 (log𝐺 ′) (−𝐸 ′) [𝑛 − 𝑘]

𝜀
−→ Ω𝑘

𝐻 (log𝐺 ′
𝐻 ) (−𝐸

′
𝐻 ) [𝑛 − 𝑘]

+1
−−→

to (39), where 𝐺 ′ := 𝐷+𝐸 ′, 𝐸 ′
𝐻 := 𝐸 ′∩𝐻 and 𝐺 ′

𝐻 := 𝐺 ′∩𝐻. Now because of the induction hypothesis
on N and N𝐻 , an application of the 5-lemma gives

Ω𝑘
𝑋 (log𝐺) (−𝐸) [𝑛 − 𝑘] → Gr𝐹−𝑘DR𝑋 ( 𝑗! 𝑗

!𝒪𝑋 (∗𝐷))

is an isomorphism. �

Remark 3.6. Indeed, there is a natural filtered quasi-isomorphism

Ω𝑛+•
𝑋 (log 𝐷 + 𝐸) (−𝐸) → (DR𝑋 ( 𝑗! 𝑗

!𝒪𝑋 (∗𝐷)), 𝐹).

To prove this, it suffices to upgrade (38) into

𝜎≥𝑘−𝑛Ω
•+𝑛
𝑋 (log𝐺) (−𝐸) → 𝐹−𝑘DR𝑋 ( 𝑗! 𝑗

!𝒪𝑋 (∗𝐷))

an inclusion of a subcomplex, where 𝜎≥𝑝 is the truncation at degree p. This can be checked using the
description 𝑗! 𝑗

!𝒪𝑋 (∗𝐷) = 𝒟𝑋 ⊗𝒟𝑋 (log𝐺) 𝒪𝑋 (𝐷), from which we can see the 𝒟-module structure on
𝑗! 𝑗

!𝒪𝑋 (∗𝐷) clearly.
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We conclude the paper by the following:

3.3. Proof of Theorem 1.2

Since the statement is local on Z, we can assume that there is a closed immersion 𝑖 : 𝑍 → 𝑋 into an
irreducible and smooth complex algebraic variety X such that Z has pure codimension r in X. Then there
is a hypersurface H in X containing no irreducible component of Z such that 𝐷 = 𝑍 ∩ 𝐻. By taking
𝑐 = 𝑘 + 𝑟 in Theorem 1.1 and applying Theorem 2.4, we conclude the proof.
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