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Abstract

Recently, Chen defined an invariant &M of a Riemannian manifold M. Sharp inequalities for this
Riemannian invariant were obtained for submanifolds in real, complex and Sasakian space forms, in
terms of their mean curvature. In the present paper, we investigate certain C-totally real submanifolds of
a Sasakian space form M2m+\c) satisfying Chen's equality.

1991 Mathematics subject classification (Amer. Math. Soc): 53C15, 53C40, 53C25.

1. Introduction

We consider C-totally real submanifolds M" of a Sasakian space form A/^+'Cc); let
H denote the mean curvature vector field of M" in M2"1"1"1^- Precise definitions of
the concepts used are given in Sections 2 and 3.

In [7] a general best possible inequality was obtained between the main intrinsic
invariants of the submanifold M" on one side, namely its sectional curvature function
K and its scalar curvature function T, and its main extrinsic invariant on the other side,
namely its mean curvature function \H\.

More precisely, in the Sasakian case, Chen's inequality, relating K, x and H, reads:

T '
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[2] C-totally real submanifolds 121

[7] also classifies the C-totally real submanifolds M" of M2/I+1 (c) with constant scalar
curvature for which Chen's inequality becomes an equality.

In [6] a similar inequality for 8M was established for totally real submanifolds
of a complex space form; [6] and [4] contain also a classification of certain such
submanifolds satisfying the equality.

In the present paper, we enlarge the investigation of [7] to the class of C-totally
real submanifolds having nonconstant scalar curvature. Following [5], we consider
C-totally real submanifolds M" in M2""1"1 (c), satisfying Chen's equality, under some
additional integrability condition. This extra condition then appropriately singles
out, and conversely characterizes in some sense, a specific class of C-totally real
submanifolds of M2""1"^) capturing the particular example with nonconstant scalar
curvature, that fell outside the range of the classification result of [7]. This condition is
stated in terms of some distribution, introduced in this context in [2]. More precisely,
we prove the following theorem.

THEOREM 1. Let M2""1"1^ be a Sasakian space form and M" an n-dimensional
(n > 2) C-totally real submanifold with nonconstant scalar curvature such that the
subspaces

9(p) = {X e TpM
n; h(X, Y) = 0, VF € TpM

a], p e M",

define a differentiable subbundle and its complementary orthogonal subbundle 3>L is
involutive. Then M" satisfies

(n
SM = T - in f K =

if and only if M" is locally congruent to an immersion

f : (0, \TC) XCOS, M2 xsin, Sn~3 -» S2"*1, rj/(t, p, q) = (cos t)p + (sin t)q,

where M1 is a C-totally real minimal surface ofS5.

We remark that the example of a C-totally real submanifold with nonconstant scalar
curvature satisfying Chen's equality given in [7] is included as a particular case of the
above theorem, for n = 3.

2. C-totally real submanifolds of a Sasakian space form

Let M2"1*1 be an odd dimensional Riemannian manifold of class C°° with Rieman-
nian metric tensor field g.
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Let <j> be a (l,l)-tensor field, £ a vector field, and r) a 1-form on M2m+], such that

<t>2X = -X + n(X)$, 0 1 = 0 , r)(<t>X) = O, !?(£) = 1,

= *(X, Y) - f)(X)r,(Y), r,(X) =

If, in addition, dr)(X, Y) = g(4>X, Y) for all vector fields X, Y on M3m+\ then
is said to have a contact metric structure (<j>, §, r), g), and A/2"1"1"1 is called a contact
metric manifold.

If moreover the structure is normal, that is if [<pX, <pY] + <p2[X, Y] - <p[X, <pY] —
0[0X, y] = —2dr)(X, y)£, then the contact metric structure is called a Sasakian
structure (normal contact metric structure) and M2"1"1"1 is called a Sasakian manifold.
For more details and background, see the standard references [1, 10].

A plane section a in TpM2"1*1 of a Sasakian manifold M2m+I is called a <f>-section
if it is spanned by X and <pX, where X is a unit tangent vector field orthogonal to
£. The sectional curvature K(a) with respect to a 0-section a is called a ^-sectional
curvature. If a Sasakian manifold M2m+l has constant 0-sectional curvature c, M2"1"1"1

is called a Sasakian space form and is denoted by A/2"1"1"1 (c).
The curvature tensor R of a Sasakian space form M2m+l (c) is given by [1]:

^ , Z)X - g(X, Z)Y)

- r)(Y)r,(Z)X + g(X, Z)r)(Y)t; - g(Y,

g(4>Y, Z)d>X - g(<pX, Z)<PY - 2g(4>X,

for any tangent vector fields X, Y, Z to M2"1"1"' (c).
An n-dimensional submanifold M" of a Sasakian space form M2"1*1 (c) is called a

C-totally real submanifold of M2"1"1"1 (c) if | is a normal vector field on M". A direct
consequence of this definition is that <f>(TM") C T±M", which means that M" is an
anti-invariant submanifold of M2m+i(c), (hence their name of 'contact'-totally real
submanifolds); see for example [9].

The Gauss equation implies that

R(X, Y, Z, W) = i ( c + 3)(g(Y, Z)g(X, W) - g(X, Z)g(Y, W))

(2) + g(h(X, W), h(Y, Z)) - g(h(X, Z), h(Y, W)),

for all vector fields X, Y, Z, W tangent to M", where h denotes the second fundamental
form and R the curvature tensor of M".

It is easily seen that

(3) 2 r = f l W _ , , , | P + ^L
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3. Chen's inequality

Let M" be an n-dimensional Riemannian manifold. Denote by K(n) the sectional
curvature of the plane section n C TPM", p e M". For any orthonormal basis
{C| , . . . , en] of the tangent space TPM", the scalar curvature x at p is defined by

r =

For each point p € A/', we put

(inf A' n JM = inf{A:(7r); n C ^,M",dim7r = 2}.

The function inf K i> a well-defined function on M". Let <5M denote the difference
between the scalar curvature and inf K, that is

Su{p) = r(p) — (inf K)(p);

8M is a well-defined Rienianman invariant, which is trivial when n — 2. The invariant
8M was introduced h\ ("hen in [2], where he gave a sharp inequality for 8M for
submanifolds in real VJVKI ti»rms and also obtained a classification of the minimal
submanifolds satistxiru- the equality-case (see also [3]).

We now state the itK-quahu ol Chen for the situation where the ambient space is a
Sasakian space turrti i"" |

THEOREM 2 / / : »f N- j r n dimensional (n > 2) C-totally real submanifold of
a (2m + l)-dtmrn\um^. S^iuikian space form A/2"1"1"1^). Then

( 4 ) . . . . . . . . . . , 1

Moreover, the equalit\ hoU\ at a point p € M" if and only if there exist a tangent
basis [e\,..., en) C Tr M' and a normal basis {en+l,..., e-im, I} C T^M" such that
the shape operators take the following forms

0

0 . . .
Ar = | h\, -h'u 0 . . .

0 0 0B.2

= 0.
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4. Submanifolds with maximal dimension

We recall the following results, which we will need in the proof of Theorem 1.

PROPOSITION 3. Let M", (n > 2), be a C-totally real submanifold of a Sasakian
space form M2m+\c) which satisfies Chen's equality (4). Then for all X tangent to
M", 4>X is perpendicular to H.

From now on, we restrict our attention to the totally real submanifolds M" of a
Sasakian space form M2"1"1"1 (c) with lowest possible codimension or equivalently with
maximal dimension, that is, we assume that m = n.

In this case, under the assumptions of Proposition 3, it follows that the mean
curvature vector field H is in the direction of £ along M". Hence, we have the
following corollary.

COROLLARY 4. Every C-totally real submanifold M" (n > 2), of a Sasakian
space form M2""1"1 (c) which satisfies Chen's equality is minimal.

For a proof of these, as well as of the following Proposition 5, we refer to [7].

PROPOSITION 5. Let M" be an n-dimensional (n > 2) minimal C-totally real
submanifold of a (2n + I)-dimensional Sasakian space form M2n+l(c). Then

(n
S M < ,

and the equality holds at a point p e M" if and only if there exists a tangent basis
\ex,..., en\ c TPM" such that

h{e\,ex) = k<f>eu h(et,e2) = -X<pe2, h(e2, e2) = -X<j>eu h{et, ej) = 0, i, j > 2,

where A. > 0 is given by

Next, we prove Theorem 1. Before doing so, we remark that the conditions under
which this theorem is stated, can be formulated in a slightly more explicit form.
Indeed, let M" be a minimal C-totally real submanifold of a Sasakian space form

1 (c). For each p e AT, we put

= {X e TpM
n; h(X, Y) = 0, VY € TPM"}.
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The geometric meaning of ^ is clear, namely Si is the kernel of the second fundamental
form h. In [2], it was shown that if dim^(p) is constant, then it is completely
integrable and its dimension is either norn — 2.

In view of this last result, we can restate Theorem 1 in the following equivalent
form, which is better suited for technical application.

THEOREM 2. Let M2n+[(c) be a Sasakian space form and M" an n-dimensional
(n > 2) C-totally real submanifold with nonconstant scalar curvature such that:

(i) 8M = |(n — 2)(n + l)(c + 3);
(ii) the distributions $ and S)L are both completely integrable.

Then M" is, up to a homothety, locally congruent to an immersion

xjr : (0, ^-) xcos, M
2 xsin, 5""3 -* S2"*1, f{t, p, q) = (cost)p + (sinr)<?,

where M2 is a C-totally real minimal surface ofS5.

PROOF. By Corollary 4, we know that M" is actually a minimal submanifold.
Hence, by Proposition 5, there exists at every point p € M" an orthonormal basis
{€,,. . . , en\ C TpM

n such that

h(eu eO = X<J>eu h{eue2) = -X4>e2, h(e2, e2) = ~X<f>eu h{et, e,-) = 0, i, j > 2,

with X ^ 0. We remark that in contrast to the situation studied in [7], X need not
be a constant. Following the line of proof of the Lemmas 4.2 and 4.3 of [6], we can
extend {e{, ...,en) to vector fields {£ , , . . . , £„} , which satisfy the above relations on
a neighborhood of the point p e M".

We observe that M" cannot be totally geodesic. Indeed, if M" were totally geodesic,
(2) shows that in this case M" should in fact be a real space form. This would however
imply that its scalar curvature is constant, which is excluded by assumption. Since we
know from [2] that dim @ = n only occurs when M" is totally geodesic, we conclude
that the dimension of ® is n — 2.

Hence, we may assume that locally, @x is spanned by {£,, £2}. So, there exists
£ 3 e ^ (unique up to sign) such that

V£|£, =bE2 + aE3,

where a, b are C°°-functions with a 96 0.
We must have c ^ —3. Otherwise, M2"+1 is locally Euclidean and from the

Gauss equation it follows that R(EU £3, £1, £3) = 0. This implies that M" is totally
geodesic, which leads to a contradiction, as already remarked above. By a homothety,
we can arrange that the ambient space has normalized c = 1.
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We denote y*. — 8(^£,£/> £*)• Using the Codazzi equation, we find

Yu = Yu=0, y/, = y i , y/2 = y', = 0, 3^ =

Indeed, let i, y" > 3. The equation (V£,/i)(£,, Ej) — (V£./z)(£,, £ , ) is equivalent to
/ I ( £ I , V£.£,) = 0, which implies y\ = 0. Analogously, y,2 = 0.

Similarly, ( V £ , / I ) ( £ I , £ i ) = (V£,/i)(£2, £j) leads to y,'2 = -y2', . Since moreover
£?- is involutive, we also have that y,'2 = y2'|. Therefore y,'2 = 0. Finally, from
(VE /!)(£,, £,) = (V£|A)(£,, £ i ) it follows that £,(>-) = A.y,'',, which together with
(V£ /i)(£2, £2) = (V£:/z)(£,, £2) implies y2'2 = y/,.

In a similar way, we obtain

• 6) E,(A) = -3Xy2'2, £2(A.) = 3Xy,2,.

Denoting /̂ = y2
2,, by the above relations we may write

V£ 2£, = dE2, V £ ,£ 2 = -dEx + aE3, V£,£, = V £ i £ 2 = 0.

Here, we clearly see that the assumption for the scalar curvature T to be nonconstant
i*. essential for the present proof. Indeed with r constant, (2) shows that X would also
tx- constant in this case. However, the above would then imply diat a = b = d = 0.
But with a = b = d = 0, the following final part of the proof is no longer applicable.

In order to finish the proof, it suffices to check Hiepko's condition from [8].
We denote by Sf\ = span{£3} and ^ = span{£4, . . . , £ „ } . So, it is sufficient to

prme that:

i u i J, is totally geodesic;
ihi S: is spherical and @ is totally geodesic;
ICI 9"L is spherical and ^ © 2)L is totally geodesic in M".

Indeed, we have 0 = fl(£i, £ 3 , £,, £ i ) = —ay^, Vi > 4, which implies y^ = 0.
So. we have that S?\ is totally geodesic, thus proving (a).

Next, we prove (b). For /, j > 4

Su = /?(£,, £ , , Ej, £ , ) = g(VEi(bE2+aE3) + VV £ | £ ,£, , £ , ) = ay(v

Then V £ £ 7 = - ( l / a ) 3 , 7 £ 3 + y, K e ^ . ^$ is spherical if and only if a is constant.
But E,(a) = R(Ej, £ , , £3, £,) = 0.

For (c), obviously «̂ I ® f̂ x is totally geodesic. It remains to show that ^ x is
spherical. Let p, q e {1,2}; then V£j>£, = a<Sp<?£3 + Z, Z € @x. It follows that
Q)^ is totally umbilical and its mean curvature vector a £ 3 is parallel. Thus @L is
spherical.

https://doi.org/10.1017/S1446788700039434 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700039434


[8] C-totally real submanifolds 127

Using Hiepko's result [8], it follows that M" is locally isometric to a warped product
manifold

M" = Mo xPl Mi x f t M2.

Recall that by a result of [2], @ is integrable and has dimension n — 2. Since now both
^ and Si are totally geodesic in S2""1"1 and £?i is totally umbilical in S2""1"1, dim Mo = 1
and dim A/2 = n — 3. So, in fact, M2 is locally a totally geodesic sphere of dimension
n — 3 : M2 = S"~3. Then, by counting dimensions, we see that Mx being spherical is
lying in S5; since M" is minimal, Af, is minimal in S5 too. The warping functions can
be determined from the equations (6), but we do not need explicit calculations. As
the decomposition of S2""1"' into a warped product whose first factor is 1-dimensional
is unique up to isometries (see [5]), following a similar argument as in [4], we can
assume that

P\ = cos/, P2 = sin?.

Therefore, we obtain that M" is indeed immersed as desired. •
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