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SUFFICIENT CONDITIONS FOR INVEXITY

NGUYEN XUAN HA AND D O VAN LUU

In this paper, we show that the Robinson, Nguyen-Strodiot-Mifflin and Jourani
constraint qualifications are sufficient conditions for invexity of constrained func-
tions with respect to the same scale function in Lipschitzian mathematical pro-
grammings. A Kuhn-Tucker necessary optimality condition is also given under the
constraint qualification on the invexity property of constrained functions.

1. INTRODUCTION

Invexity and its generalisations play an important role in the theory of optimality
conditions and duality. The invex concept was firstly introduced by Hanson [6] and
Craven [2], and has been extensively studied by many authors (see, for example, [2,
3, 4, 6, 7, 8, 1 0 , 1 1 , 14]). In [2], Craven derived second order sufficient conditions
for invexity under the hypotheses on twice differentiability. He showed that the map
/ = hog is invex at x provided that h is invex and g is differentiable with the derivative
g'(x) having full rank. Hanson-Rueda [7] established a sufficient condition for invexity
by showing the existence of scale functions in nonlinear programming through the use
of linear programming. Craven [3] gave a generalisation of the invexity property, not
requiring derivatives, which characterises invexity at a point. In general, in nonlinear
programming, invexity is sufficient for optimality in conjunction with the Kuhn-Tucker
conditions. The invexity of constrained functions yields also the existence of Lagrange
multipliers in Kuhn-Tucker necessary conditions for considering problems. A question
arises as to when the constrained functions are invex with respect to the same scale
function. The purpose of the paper is to answering this question.

In this paper, we establish sufficient conditions for invexity of the constrained
functions with respect to the same scale function in Lipschitzian mathematical pro-
grammings. Section 2 shows that the regular condition of Robinson type is a sufficient
condition for invexity of constrained functions. Sections 3 and 4 are devoted to deriva-
tion of another sufficient conditions for invexity. We prove that the Nguyen-Strodiot-
Mifflin and Jourani constraint qualifications are also sufficient conditions for invexity of
constrained functions with respect to the same scale function. Finally, a Kuhn-Tucker
necessary condition is given under a constraint qualification on the invexity property of
constrained functions.
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2. T H E REGULARITY CONDITION OF ROBINSON TYPE

Let X be a Banach space, and let / , </i, • • • , <?m, hi,... ,hi be real-valued func-
tions defined on X. Let C be a nonempty closed subset of X. We shall be concerned
with the following problem

minimize / (x ) ,

subject to

(P)

x e C.

Denote by M the feasible set of Problem (P)

Throughout this paper, we suppose that f,gi,...,gm, h\,...,ht are locally Lipschitz
at x € M. We define the sets J = { 1 , . . . ,m}, J = {1, . ..,£}, and Io = {i <E I :
gi(x) = 0} . Note that the numbers in / , IQ and J are ordered from small to large.

Recall ([1]) that the Clarke generalised directional derivative of / at x, with respect
to the direction d, is defined as

t
no

Following [1], the following set is called the Clarke generalised gradient of / at x

df(x) = { ( 6 r : tod) < f°(x;d),W € X},

where X* is the topological dual of X. The Clarke tangent cone and the Clarke normal
cone to C at x are denoted by Tc(x) and Nc[x), respectively,

= {v€X:d°c(x;v) = 0},
Nc(x) - {£ € X* : M ^ 0,to e Tc(x)},

where dc(-) is the distance function of C.

Adapting Reiland's definition ([14]), we shall say that a function g is invex at x

if there exists a map w from X into Tc(x) such that for every x € X,

g(x)-g(x)>g°(x;u,(x)).
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Such a map w is called a scale.

For the index set IQ, we denote by |/o| its cardinal, Rl7°l := R x • • • x R (|/o|-

times), and R^0' the positive orthant of R17"1. Note that |70| ^ m. Denote by G7° the

vector-valued function its components are <?< (i € /o) : GIo(x) = (9i(x))ieI • We set

H = {hlt..., ht), Ho(.) = ( fc? (x ; . ) , . . . , h°t(x;.)),

The following theorem shows that the regularity condition of Robinson type [16]
is a sufficient condition ensuring the constrained functions of Problem (P) to be invex
with respect to the same scale.

THEOREM 2 . 1 . Assume that

(1) 0 6 int [FO{TC(X)) + R^0' x {0,}],

where 0i is the origin of Re. Then the functions gi (i € /o) and hj (j € /) iave the
following invexity property: there exists a map w : X -¥ Tc(x) such that for every
xeX,

gi(x) - gi(x) > gf(x; w(x)) (Vt € Jo),

hj(x) - hj{x) = h}{?Mx)) (Vj € J).

PROOF: Since Fo(.) is positively homogeneous, Tc{x) and R+ x {0^} are cones,

it follows that F0(Tc(x)) +R+ x {0*} is a cone. We invoke the regularity condition

(1) to deduce that

(2) F0(Tc(x)) + RV/o1 x {0,} = Rl7°l+<

For any x 6 X, is follows from (2) that

F(x) - F(x) € F0(Tc(x)) + RV/o1 X {0t}.

Hence, there exists d € Tc(x) such that

F(x) - F(x) e F0(d) + R!,/O1 x {0/}-

Putting UJ{X) = d, we obtain

F(x) - F(x) - F0(u(x)) € RV/o1 x {0t}.
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Consequently, for every x € X,

gi(x) -gi(x) > g°i(x;u(x)) (i € 70),

hj(x) - hjQE) = h°(xMx)) (jeJ). Q

COROLLARY 2 . 1 . If condition (1) is replaced by condition (2), then the conclu-
sion of Theorem 2.1 still holds.

PROOF: It is easy to see that (2) implies (1). Moreover, from the proof of Theorem
2.1 we can see that (1) implies (2). Hence, (1) is equivalent to (2), as was to be shown. D

THEOREM 2 . 2 . Assume that

(3) 0€G5>(2b(S))+R!ft!,

where R ^ = {(ri)i€lo G R|/o1 : r< >0,Vi G Io}. Then the functions gt (i € 70) are

invex at x with respect to the same scale, that is, there exists a map u> : X —t Tc{x)

such that for all x € X,

9i(x) - 9i{x) > g?{x; u(x)) (Vt € /«,).

P R O O F : It is obvious that GQ° (TC{X)) + R ^ is an open subset of Rl7°l. Moreover,

Gi0 (Tc(x)) + Rift! C Gi° (Tc(x)) + R!̂ »I

So, it follows readily from (3) that

By an argument analogous to that used for the proof of Theorem 2.1 we deduce that
there exists a map UJ : X -¥ Tc(x) such that for all x € X,

gi(x)-9i(x)2 9i{x;u(x)) (VieJ0). Q

3. THE NGUYEN-STRODIOT-MIFFLIN CONSTRAINT QUALIFICATION

It is well known that the Mangasarian-Fromovitz constraint qualification ([12]) has
been extended by Nguyen-Strodiot-Mifflin [13] to the case where inequality constraints
are Lipschitz. In this section we shall shows that the Nguyen-Strodiot-Miffiin constraint
qualification is a sufficient condition for invexity of the constraint functions with respect
to the same scale function.
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THEOREM 3 . 1 . Assume that hi,...,hi are Fre'chet differentiable at x with
Frechet derivatives V/ii(x),..., Vhi(x). Suppose also that there exists do € int Ic(x)
such that

(i) (Vhj(x),do)=0 (VJ6J) ;
(ii) (Si,do)<0 (V&eaf t ( i ) ,VteI0 ) ;
(Hi) V/ii(x),..., V/if(x) are linearly independent.

Then the functions gi (i e /0) and hj (j € J) have the following invexity property:
there exists a map u> : X -> Tc{x) such that for every x € X,

9i(x) - 9i(x) ^ g? (x; «(x)) (Vi € Jo),

x),u;(x)> (Vj € J).

PROOF: In view of the weak* compactness of dgi(x) (i € /o), it follows from
assumption (ii) that

gf(S;do)= max (^,do)<O (V* e Jo),

which together with assumption (i) implies that for all (i € R+ \ {0} and v e Re,

(4) ^ Wfl?(x; d0) + J2 vi&hi&), d0) < 0,
«e/o

where ^ = (m)ieIo, v= (vj)JeJ.
Setting

we shall prove that
Fi(Tc(x)) + Rl+°l x {0e} =

Assume the contrary, that

Rllo[ x {0t} c

Then, there exists u = («i,«2) e M|/o1 x R ( , u ^ Fi(rc(x)) + R^0' x {0e}. Since

Fx(.) is R!^0' x {0<}-convex, Tc(x) and R^0' x {0t} are convex cones, it follows that

Fi(Tc{x)) + R!j[0' x {0^} is a nonempty convex cone in Rl7°l+*.
Making use of a separation theorem of disjoint convex sets in finite dimensional

space (see, for example, [15, Theorem 11.3]), we claim that there exists (n*,v*)
€ Rl7ol X R ' \ {0} such that

,z) <EA:= F I ( T C ( X ) ) +K^0' X {0,}).
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Since A is a convex cone, by virtue of [5, Lemma 5.1], we deduce that

which implies that

(5) J2fiS?(x;d) + J2^(vhj(x),d)^o (werc(x)) ,

(6) (f**,z)>0 (VzeR1^1),

where /x* = (/i*)i6/(), V = fa)jeJ-

Since (R^ 0 ' )* = R^ 0 ' , by (6) it follows that /i* € R^ 0 ' . We shall show that

If this were not so, tha t is fi* — 0, from (5) there would be

",* <V/ii(x), d) > 0 (Vd € Tc(S)) •

Since d0 € int Ib(x), there exists J > 0 such that B(do;6) C 7b(x), where B(do;5)
stands for the open ball of radius S around do. Hence,

(7)

For any O / d e l , since I?(do;<J) — d0 is an open ball of radius S centred at 0, it

follows that td 6 B(d0; S) - d0 Nt € (0,<5/d)) > w h i c l 1 means that d0 + td € B{d0; 6)

(Vt e (0, S/d) J. Consequently, in view of (7) and assumption (i), we deduce that for

all t e (0, S/d),

] <Vfy (x), d0 + td) =

whence
531/;<vAj (a?), d) ^ o (vo # d e

The above inequality holds trivially if d = 0. Hence,
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which yields that i/j = 0 ( V j e J ) , since the system {Vhj(x),j e J } is linearly

independent. That is v* = 0, which conflicts with (fi*,v*) ^ 0. Therefore, (i* ̂  0.

Thus fi* 6 R^0' \ {0}, v* G R* and

J2 "/(VMS), d) >0 (We Tc(x))
«6/o

But this contradicts (4). Hence,

(8) Fj.(Tc(x)) +R]lo]x {0t} =

For x € X, it follows from (8) that

F(x) - F(x) G Fi(rc(x)) + RV/o1 x {0£},

which implies that there exists z € 7b (x) such that

F(i) - F(x) e Fi(z) + Rll°l x {0e}.

Defining the map u> : x i—> ui{x) = z, we obtain

F(x) - F{x) - F^uix)) £ R[t°l x {0,},

which means that

gi{x)-gi(lt)>9?(3Mx)) (ViG/o),

^ ( i ) - fc,- (x) = (Vhj (x), w(z)> (Vj e J)•

The proof is complete. D

By an argument similar to that used for the proof of Theorem 3.1, we obtain the
following

THEOREM 3 . 2 . Assume that hj = 0 (Vj € J) and there exists d0 e Tc(x) such

that

gf(x;do)<0 (VtG/o).

Then, there exists a map LJ : X -> 7b(x) such that gt (Vi € 70) are invex at x with

respect to the same scale w, that is,

9i(x) - 9i(x) > g°(x; u(x)) (Vx € X, Vi € Jo).

REMARK 3.1. In Theorem 3.2, 7b(x) is not necessary to have nonempty interior.
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4. T H E JOURANI CONSTRAINT QUALIFICATION

In this section, we show that the constraint qualification of Jourani type ([9]) is a
sufficient condition ensuring that all the functions gt (i G Jo) and hj (j G J) are invex
respect to the same scale. It should be noted here that hj (j G J) are not necessarily
Frechet differentiable.

THEOREM 4 . 1 . Assume that for all (/*, v) G R+o1 x R ( \ {0},

(9) 0 * J2 &d9i(x) + £ vidhi& + Nc@),
»e/o jeJ

where /x = (M»)i€/ . " = ("i) e j - Then the functions gi (i 6 /o) and hj (j € J) have

the following invexity property: there exists a map w : X -+ Tc{x) such that for every

xeX,

9i(x) - 9i(x) > g?(x; u(x)) (Vi € Io),

hj (x) - hj (a?) = ^ (x; «(*)) (Vj G J).

PROOF: Since dgi(x) (i e Io) and dhj(x) (j € J) are weak* compact convex in

X* and the cone Nc(x) is weak* closed, it follows that for each (/x, u) e K+o1 xK*\{0},

the set

B := 53 Mi9ffi(x) + E ^ M * ) + ^c(S)
•€/o j'6J

is weak* closed convex. On using (9), we obtain 0 0 B. Applying a separation theorem
(see, for example, [5, Theorem 3.6]) yields that there exists 0 ^ do € X such that

(10) (£,do><0 (V£€fl) ,

which implies that

t€/0

Hence,

(11)

(V& G 9ffi(x), V»& G dfc,-(x), Vi G Jo, Vj G J ) .

In view of the weak* compactness of dgi{x) (i G Jo) and dhj(x) (j e J), it follows

from (11) that
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which leads to the following

(12) £ Mi<,°(z; do) + £ Vjtijlx; d0) < 0.
«e/0

Next we have to show that d0 G Tc(x). Suppose the contrary, that d0 £ Tc(x).
Then, there exists C € Nc(x) such that

<C,do)>0.

Hence, for & G dgi(x) (i G Jo), fjj G dhj(x) (j G J) and t > 0 large enough, we have

(13) Yl W<6. do) + J2 »j(Vj,d0) + t(C, d0) > 0.
t€/0

So, observing £) /ii|i + 5Z vjVj +*C 6 B, we can see that (13) conflicts with (10).
t€/o j€J

Consequently, do € Tc(x).

We now prove that

(14) Fo(Tc(x)) + R]l°l x {0/} =

Assume the contrary, that

F0(Tc(x)) +Rl+°l x {0t} c

Then, there exists

u = (m.iia) € R|/o1 x R«\[FO(TC(35)) + R^0' x {0,}].

Since Fo(.) is R^ol+£-convex, it follows that F0(TC(X))+R}+O1 X {0t} is convex. Observ-

ing FQ(.) is pos ( ( ) ) 0 '

convex cone in

Since Fo(.) is R ^ - c o n v e x , it follows that F0(TC(X))+R}+ X {0t} is convex. Observ-
ing FQ(.) is positively homogeneous, one gets F0(Tc(x)) + R+0' x {0e} is a nonempty

i Rl7ol+'ex cone in R .

Applying a separation theorem for the disjoint convex sets {u} and F0(Tc{x))

+ R+0' x {0/} in the finite dimensional space Rl7ol+< (see, for example, [15, Theorem

11.3]) yields the existence of (/**, v*) € R|/o1 x R ' \ {0} such that

y,z) G FO(TC(X))+R)™ X {0,})-

Since F0(Tc(x)) + R^0' X {0t} is a cone, taking account of [5, Lemma 5.1] we get

0i',«i> + (v\ui) ^ 0 ^ <M*,J/> + (u*,z)(y(y,z) G Fo{Tc(x))+R^o] x {0,}),
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which implies that

(15) (if,Gt°{d)) + <i/*, H0(d))>0 (VdGTc(x)),

(16) {»\y)>0

It foUows readily from (16) that y,* G (R^0')* = K^0'. Hence,

(M V ) e R^ 0 'x R* \ {0}.

Moreover, by (15) one gets

^{x; d) £ 0 {We Tc(x)),

which contradicts (12). Consequently, (14) holds.

Taking i 6 X . i t follows from (14) that

F(x) - F(x) € F0(Tc(x)) + < o 1 x {0,},

which implies that there exists d € Tc(x) such that

F(x) - F{x) € F0(d) + Rll°l x {0e}.

Defining a map ui : x i—>• u>(x) = d, we obtain

F(x) - F(x) - FQ(u{x)) E KV701 x {Oth

which leads to the following

9i(x) - 9i(x) > g?(x; u(x)) (Vt G /<,),

^•(x) - hj(x) = fc»(x;«(x)) (Vj € J ) .

This concludes the proof. D

5. KUHN-TUCKER NECESSARY CONDITIONS

Let us introduce the following constraint qualification

CONDITION 5.1.

(i) The function gi (i € IQ) and hj (j € J ) have the invexity property at x,

that is, there exists a map w : X -¥ Tc(x) such that for all x 6 X,
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gi{x) - 9i(x) 2 </?(*; w(x)) (Vz G Jo),

hj (x) - hj(x) = h? (x; u(x)) (Vj 6 J);

(ii) for every (/x, v) G K^0' x l ' \ {0}, there is x G X such that

A Kuhn-Tucker necessary optimality condition for Problem (P) can be stated as
follows.

THEOREM 5 . 1 . Let x be a local minimiser of Problem (P). Then, there exist
A ̂  0, Jii ^ 0 (i G / ) and Vj (j G J ) , not all zero, such that for all d G Tc{x),

(17) A/°(x; d) + J2 Mi5,9(x; d) + J2 ^(x; d) > 0,
te/o jeJ

(18) lii9i(x) = 0 (Vie I).

Moreover, if Condition 5.1 is satisfied, then A > 0, it can be taken A = 1.

PROOF: According to [1, Theorem 6.1.1] there exists A ^ 0, JLt ^ 0 (i G / ) and
Vj G R (j G J), not all zero, such that

(19) 0 G A9/(x) +
•6/ je./

(20) £fc*(3?) = °-
• 6/

Since ^ ^ ( x ) < 0 (Vi G / ) , it follows from (20) that

Mi<7i(*) = 0 ( V i e / ) .

For i G / \ /o, ffi(x) < 0, and hence 7*̂  = 0. Consequently, in view of (19), we get

0 G

t€/o

which implies that for every d G Tc (x),

y 72 m a x //-.
* •Cieaffi(x)

Fj max (7/j, d) + sup (7, d) ^ 0.
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Observing that sup (7, d) ^ 0, from (21) we obtain
N()

which leads to (17).

We now assume that condition 5.1 holds, and we should show that A > 0.

Suppose the contrary, that A — 0. Then, by (17) we get

(22)
»6/o

We set JI = (~Pi)i€l, p / 0 = (P i ) i e / o and V = (vj)jeJ- Since (\,JL,V) ^ 0, it follows

that (A,7Z/0,F) ^ 0, and hence (7Zj0,^) ^ 0. By virtue of condition 5.1 (ii), there exists

x € X such that

(23) <7xJo

We invoke condition 5.1 (i) to deduce that for all x € X,

F(x) - F(x) - F0{UJ(X)) e < o 1 x {oa,

where

This leads to the following

F(X) c F0(Tc(x)) +B)j°] x {0e},

as F(x) - 0. Hence, there are de Tc(x) and v € R^0' such that

(24) F(x) = Fo$ + (v,0).

Combining (23) and (24) yields that

(25) (-p^G'oix)} + (v,H{x)) = (U^id)) + (u,H0(d)) + <jZ/o>B> < 0.

Since (JLIO ,v) ^ 0, it follows from (25) that

which contradicts (22). Consequently, A > 0, which completes the proof.
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