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SMALL SOLUTIONS OF CONGRUENCES IN A LARGE 
NUMBER OF VARIABLES1 

BY 
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Dedicated to the memory of R. A. Smith 

ABSTRACT. It is shown that a system of congruences 

JVi(x) = . . . = rtr(x) = 0 (mod m) 

where each ?V,(JC) = JV,(JCI, . . . ,JC,) is a form of degree at most k has a 
nontrivial solution x satisfying 

|JC,-| ^ cm(l/2,+e (/ = \,...,s) 

with c = c(k,r,e), provided that e > 0 and that s > Si(k,r,e). 

1. Introduction. Our goal is the proof of the assertion enunciated in the Abstract: 

THEOREM. Given natural k, r and given e > 0, there is a number s\ = S\ (k, r, e) such 
that a system of congruences 

(1.1) 5i(*i, . • • >•**) =. • • = ?fr(x\,' • • ,xs) = 0 (mod m) 

with s > S\ and each Jy, a form (i.e., a homogeneous polynomial) of degree between 
1 and k, has a solution x = (x\,. . . ,xs) with 

(1.2) 0 < |JC| <̂  m(,/2)+e. 

Here \x\ : = max(|jci|,.. . , \xs\)9 and the constant in < depends only on k, r, e. 

The Theorem clearly remains true with the forms $,- replaced by polynomials with 
constant term zero. Another seemingly more general formulation is that when 
$ i , . . . , $ r are any polynomials of degree ^ k and if JC0 is a solution of ( 1.1 ), then there 
is another solution x with |JC - JC0| < m(1/2)+t. 

The case when m is a prime had been established in [9], but considerable extra 
complications arise for general m. On the other hand when all our forms are of 
degree > 1, we may restrict ourselves to m square free. For when m = m,ra2 with m2 

square free, set x — mxy where y is a small solution of the congruences modulo m2. 
Then |jr| = mx\y\ < m\m(2l2)+* < m(1/2)+e. This argument shows in particular that the 
case when m is a square is of little interest. It is likely that the Theorem remains true 
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with the extra condition imposed on x that gcd(m,Xi,. . . ,xs) = 1; such a stronger 
version would retain its interest when m is a square. 

When k is even and $ = (x2 + .. . + x])kl2, each solution x =£ 0 of $(JC) = 0 
(mod m) has |x| > m1/2, which shows that the 1/2 in the exponent in (1.2) is best 
possible. It remains open whether the e could be removed. On the other hand when all 
the forms are of odd degree, the estimate (1.2) could be replaced by 0 < |JC| < ra€, as 
had been shown by the author in [8]. Thus the interesting case is when the forms are 
of even degree. Schinzel, Schlickewei and Schmidt [7] had shown the theorem for a 
single quadratic form, and R. C. Baker [1] for a system of quadratic forms. 

Very recently R. C. Baker [2] has shown that fairly strong assertions about small 
solutions of congruences can be derived from work of Deligne if the forms in question 
are nonsingular. Much of the difficulty in the general case arises from forms which are 
"degenerate" in some sense. Our proof will depend on estimates for exponential sums 
recently derived by the author [9]. 

The number S\ = S\(k, r, e) could in principle be estimated by the present method, 
but any bound so derived would be extremely large. Our Theorem thus belongs to a 
group of "many variable results" which include the work of R. Brauer [5] on the 
solubility of homogeneous equations in p-adic fields and the work of B. Birch [4] on 
the solubility of odd degree homogeneous equations in the rational field. In all these 
cases, good estimates for the required number of variables would be of considerable 
interest. 

2. A conjecture on fractional parts. Denote by ||a|| the distance from a real number 
a to the nearest integer. 

CONJECTURE. Given natural k, r and given e > 0, there is a number s2 = s2(k, r, e) 
as follows. Let $ i , . . . , J?r be forms with real coefficients in s > s2 variables with 
degrees between 1 and k. Then given N > 1, there is a nonzero integer point x with 
\x\ ^ N and 

(2.1) | |S/WH^" ( 2 / r ) + e (i = 1 r), 

with a constant in < which depends only on k,r,e. 

The case r — 1 of the Conjecture implies the case r = 1 of our Theorem, as we now 
proceed to show. For let $(JC) be a form of degree k with integer coefficients, and put 
@(JC) = m~x $(x). Set N = ara(1/2)+\ with a constant a to be specified in a moment, 
and apply the Conjecture to ©: there is an integer point JC with 0 < |JC| ^ am(1/2)+e and 
with ||©(JC)|| < N~2+* < a~2+*m~]. Thus when a is sufficiently large, say when a > 
ay(k,e), wehave||@(jc)|| < m_1 and therefore $(*) = 0(modm). But the general case 
of the Theorem does not seem to follow from the general case of the Conjecture. 

The exponent in (2.1) is essentially best possible. This may be seen as follows. Using 
the Borel-Cantelli Lemma one finds that for given h ^ 1, almost all r-tuples 
( a ! , . . . , a r) (in the sense of Lebesgue measure) have 

maxdla.jc'il,. . . ,||arjc*||) > x~]/r (log 2x)~2 
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for each natural x. Setting k = 2h and $,(*) = a^x] + . . . + x])h, we have for 0 < 
|x| ^ N that 

max(| |g,(x)| | , . . . ,| |&(*)||) > \x\~2,r (log 2|JC|)"2 > N~2/r{\og 2Ny2. 

On the other hand, a much stronger result than (2.1) is true when all the forms are of 
odd degree, as was shown in [9]: In this case (2.1) may be replaced by || JV/(JC)|| < N~E 

(i = 1,. . . , r), for any given £, provided that s > s3(k, r,E). 
The Conjecture is known only for k = 1 (which is an immediate consequence of a 

theorem of Dirichlet) and for k = 2. It had been shown for a single quadratic form by 
Schinzel, Schlickewei and Schmidt [7], then for a system of quadratic forms by Baker 
and Harman [3]. 

3. The number of solutions in small cubes. Let 2 ^ £ ^ k, and let $ = 
Œ{k\ S(*-1)> • • • » $(€)) he a system of r = rk + rk-x + . . . + re forms with integer 
coefficients, where the subsystem ${d) consists of rd ^ 0 forms of degree d. When rd 

> 0 write Wd) = (ft*/0 , . . . , ft^Further let m = (m{k\ m(k~l\ . . . , w ( 0 ) , where 
m(J) for € ^ d =̂ & is an r^-tuple of positive integers, say /w(J) = (m\d\ . . . , m ^ ) when 
r<* > 0. We are interested in solutions x = (x]y. . . ,xs) of the system of congruences 

(3.1) %]d\x) = 0 (mod /fijd)) ( l ^ ^ r r f , « g ^ it). 

(These conditions should be interpreted as empty for d with rd = 0.) Now given P > 
1, write NP for the number of solutions of these congruences with x in the cube E/> given 
by 1 ^ Xj ^ P (j = 1 , . . . , s). Heuristically one should expect that 

(3.2) NP « Ps/M, 

where M is the product of the components of m. 
For each d with rd > 0 put m(rf) = (cm(m\d\ . . . , m ^ ) , and let m be a common 

multiple of the numbers m(d) so obtained; thus m is a common multiple of the com­
ponents of m. Given a prime factor p of mid\ let ^p

d) consist of the reductions modulo 
p of those forms ^]d) of $ (d) for which p\m\d). Thus $^} is a nonempty tuple with at 
most rd components. (In general, the/7 in $p or $p will always refer to reduction modulo 
/?, and a confusion with components $, of $ should not arise.) 

Now if © is a form of degree d ^ 2 with coefficients in the finite field ¥p, write /z(@) 
for the least integer h such that © may be written as 

© - 81,83, + . . . + a*93*, 

with forms 21,-, 93, of positive degrees with coefficients in ¥p. When © is a r-tuple 
(@i, . . . , © , ) of forms of equal degree d, define /i(©) as the minimum of /*(©) over 
forms © in the pencil, i.e., forms © = a© = <Zi ©j + . . . + a,©, with a = (ÛI , . . . , a,) 
G F,\0. 

Then A(8£°) (with $p
d) as above) is defined for each d with rrf > 0 and each prime 

p dividing m{d\ We now set 
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(3.3) h(%, m) = min min h(^p
J)). 

e^d^k P\m{d) 

rd>0 

PROPOSITION. Suppose that P = m (1/0+€ with e > 0 and that h($,m) 
h\(k, (;rk,. . . , f>;e). 77ieft if m is square free with each prime divisor 
Pi(s;k, t;rk,. . . , /^;e), we have 

(3.4) |Np - P5/M\ <^PS/M. 

We will employ vectors (a{k\ . .. ,a{t)) where a{d) has rd components; say a(d) 

(a\d\ . . . ,a{
rf) when rd > 0 and a(J) = 0 when rd = 0. Given a(d\ put 

The notation 

2 

will stand for the refold sum where a\d) ranges from 1 to m\d) (1 ^ /"^ rd). With these 
conventions, and with e{z) — e2^12:, we have 

x̂  x̂  ,M^,M ( , f V„ 1 fM when (3.1 ) holds, 
S ... I e(A{k)Wk\x) + . . . + A(V°(*)) = L u . 
a u> ai*) — — 1 0 otherwise. 

Here A(J) ^ ( J ) is the inner product A(d) ^\d) + . . . A^) ft^. It follows that 

(3.5) TVp = M"1 X • • • X S(a(*\ • • . ,fl(€)) 

with 

(3.6) S(a(*\ . . . ,a(€)) - S ^ ^ V ) + . . . + A{t)^{t)(x)). 

Given a(/c),. . . , a (0, write A* for the denominator of A(A) in case rk > 0, and A* = 
1 if rk = 0. Let A*-i be the positive integer such that A ^ - i is the least denominator 
of the point (Aik\A{k~])) when rk-x > 0, and set A*-] = 1 when rk-x = 0. In general, 
choose Ait, A t-1, . . . , Â  such that A* A*-1 . . . A,, for € ^ d ^ k is the denominator of 
(Aik\ . . . ,A{d)). Finally set A = A*A*-i . . . A*. In the sum in (3.5) there is precisely 
one summand with A = 1, namely the summand with a\d) — m\d) throughout. This 
summand has S(a{k\ . . . ,a{i)) = |(£P| = Ps + 0(Ps~l) where \(£P\ is the cardinality 
of (£,>, and hence contributes 

(3.7) PsM~l + 0(Ps~]M']) 

to (3.5). It remains for us to estimate the contribution of summands with A > 1. 

4. Estimation of exponential sums. Before proceeding further it will be convenient 
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to state some auxiliary results. We will need boxes of the type a} ^ x} < ty with integers 
aj,bj. Such a box will be said to be of side ^ R if b} - aj ^ R (j = 1 , . . . , s). 

LEMMA 1. Let $ - %{d) + ft**"0 + . . . + S(0) ^ « polynomial of degree d, with 
the typical summand Jy(y) homogeneous of degree j and with coefficients in the ring 
Z/' n~L where n is square free. Let 23 be a box of side ^ R = nb where d_1 < ô ^ 1, 
and let Ss# be the sum 

(4.1) S*= E ^ ( / I - ^ ( J C ) ) . 

Suppose that K ^ 1, <2>2<i J to r > 1 is an integer. Suppose further that n î  
nx{s, d, ô, T). 7%ew e/r/zer 

(4.2) |5*| < / T " , 

or f/îere is a factorization n — ab with b ^ R]/i and with 

(4.3) h(iS(
p
d)) ^(d- b-l)~]d22d-]^(d)KT, 

for every prime factor p of a, where tf(
p
d) is the reduction of${d) modulo p, and where 

<i>(d) depends only on d. 

PROOF. This is Theorem 5 of [9]. 

LEMMA 2. Let n be square free, and s$ as in Lemma 1. Let d~l < ô ^ 1 and let 93 
be a box of side ^ R where 

R ^ n\ 

Given K î  1 and V > 1 as above, we either have 

(4.4) Sx<RsnhK, 

or there is a factorization n = ab with b ^ nx/x and with {A3) for each prime factor 
p of a. The constant in < depends only on s,d,b,T. 

PROOF. We will assume that n has no factorization as indicated, and we will derive 
(4.4). The box 93 is the union of boxes 33* of side ^ nh = R] say. It is the union of 
^(R/Ri) such boxes 23*. By Lemma 1, a sum 5«* has | ^* | < R\~K = R]n~hK when 
n is large, hence has S»$* < R\n'bK in general. (For since hCft{

p
d)) ^ s always, the 

nonexistence of a factorization of n as above is possible only if the right hand side of 
(4.3) is <s, hence if AT is bounded.) Taking the sum over the boxes 93* making up 93 
we get 

S* < (R/RiYR^n-™ = Rsn~*K. 

5. Proof of the proposition. We now return to the situation described at the end of 
§3. 

LEMMA 3. Make the hypotheses of the Proposition, and let a(k\ . . . , a{0 with A > 
1 be given. Then 
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S(a{k\...,aie)) <PsA~hc\ 

where h = h($,m), where cx = cx(k,t\rk,. . . , f>;e), and where the constant in <̂  
again depends only on s;k,£;rk,. . . , T>; e. 

PROOF. Instead of just for the cube (£/>, we will prove the lemma for any box 93 of 
side ^P where P ^ m(1/€)+€. We clearly may suppose that 0 < e < 1. Set 

(5.1) $ = 2*/e, r = 4> + 1. 

Set 

Put 

Then 

Vd = A*A*-i • • • Arf+1 when € ^ d < k, but V* = 1. 

Wd = AAd-\ . . . A€ when t ^ d ^ k, but W€_, = 1. 

A - VrfWrf (€ ^ d ^ k). 

It may not happen that 

L ^ 

(5.2) A;<WO_, 

for each 7 in £ ^ j" ^i A:. For if this were the case, we had Ajf ^ Wf-\ = 1, whence 
A€ = 1. Next, A?+I ^ Ŵ  = Â  = 1, so that A^+1 = 1, etc. We would obtain A = 1, 
against our hypothesis. From now on, let d be the largest number in € ^ d ^ k for which 
(5.2) fails for j = d. Thus 

(5.3) A * > Wd-U 

but (5.2) is true for d<jfkk.ln the case when d < k it follows that A*+, ^ Wd, next 
that A*+2 ^ Wd+l = Ad+]Wd fW2

d7 next that A*+3 =i Wrf+2 - A,+2W,+ 1 < ttf, and 
so on, finally that A, < Wd . Therefore Vd < Wd , and by our choice of 4> this 
yields Vd < W€J2. This relation is true also in the case d = k. We may infer on the one 
hand that 

(5.4) Wd > A , /2, 

and on the other hand that 

(5.5) P ^ m(1/e)+e ^ ^ r ) + e ^ Wd
l/d)+€ ^ VdW

{
d
l/d)+i*/2). 

We have A(d) = (VdAd)~
lb where b is an integer point with gcd(Ad, bx,.. . , brd) = 

1. Thus 

(5.6) Aid)%id) = (VdAdy
l% with g = ftg(rf). 

Every prime factor p of Ad also divides m(rf), and hence h($id)) ^ hby the definition 
(3.3) of h = / i (3, m). Now if / is a subscript with p\m\d), then p is not in the 
denominator of Ay] — a\d) /m\d\ and we must have/?|&/. On the other hand since/? does 
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occur in the denominator of A(d\ there must be some subscripts i withp\m\d) and/?/£/. 
The components of $(

p
d) stem from forms $\d) with/^lm^, and $p (i.e., the reduction 

of $ modulo p) belongs to the pencil of $p
d\ so that 

(5.7) h(%p) ̂  h. 

Points x in the given box 23 will be written as x = Vdy + z with 0 ^ z} < Vd. For 
given z, for x to be in the box 93 of side ^P the point y will be in a box 23 (z) of side 
^2P/Vd. (Note that Vd ^ P by (5.5)). For given z we have modulo 1 

(5.8) A{kWk\x) + . . . + A(0{Ç(0(x) - AW)SW)(V, j ) 

+ H ^ V ^ J ) + ... + w;'3f(,)(j) + A - ^ , 

where $id~l\..., ^(0) are forms of respective degrees d - 1 , . . . ,0 with integer 
coefficients. In view of (5.6) we have 

(5.9) Aid)Wd)(Vdy) = A ; V r ^ ( > 0 = Wd
l^d\y) 

with $id) = Wd-\Vd~ JÇ. Since m is square free, Ad is coprime to Wd-\ and to Vd, and 
hence (5.7) yields 

(5.10) H&p
d))^h 

for every prime factor p of Arf. 
We are going to apply Lemma 2 to the polynomial s$ = $ ( ^ + g ( r f - , ) + . . . 4- $(1) 

with the forms $ ( / ) coming from (5.8), (5.9), and to a box 23(z). Such a box has side 
^ 2P/Vd = R, say. Setting « = Wd, 8 - (1/d) + (e/2), we have /? ^ n8 by (5.5). 
Let T be given by (5.1) and put 

(5.11) K = (d- h-l)d-22~d<i>(drlr-]h, 

so that K ^ 1 when h ^ hx. One alternative of Lemma 2 gives a factorization Wd = 
afr. By (4.3), (5.10) and our choice of K, a prime factor p of Ad cannot divide a, so 
that Ad\b, and hence Ad ^ n1/r, or Aj ^ n = Wd = kdWd-u or A* ^ Wrf_,, 
contradicting (5.3). Thus the other alternative must hold. This means in view of (5.8) 
and (5.9) that the part S(z) of the sum S(a{k\ . . . , a (°) with x = Vdy + z and given 
z has 

5(z) <̂  /Tn"8* <̂  (P/Vrf)
5w;8A:. 

Taking the sum over z we obtain 

S(aik\... ,a{(!)) < PsW~d
hK < p*A~(8/2)* <̂  P*A~C|/7 

by virtue of (5.4) and (5.11). 
Now that Lemma 3 has been established, the proof of the Proposition is easily 

completed. Given A, there are not more than Ar vectors (a{k\ . . . ,a (€)). Thus all the 
sums S(a(k\ . . . , a ( 0) with given A contribute together not more than <̂  psAr~Clh, and 
this is <P5bT2 when h ^ hx. Since the least prime factor of m is ^p]9 the sum over 
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all the S(a{k\ ... ,aw) with A > 1 i s ^ P ' p , .In view of (3.5), and the contribution 
(3.7) from A = 1, we obtain 

NP = PSM~\\ + 0(P~l + p;])). 

Thus (3.4) is certainly true when /?,, and hence P, is large. 
Incidentally, when m is arbitrary, i.e., possibly with small prime divisors or not 

square free, one should aim not for (3.2), but for 

Np - Ps(v(m)/ms), 

where v(m) is the number of solutions x (mod m) of (3.1). But this is not needed for 
our present purpose. 

6. An inductive argument. Throughout this and the next section, 8 > 0 will be 
fixed. With a given r = (rk,. . . , r,) we will associate a set of vectors a, as follows. 
Given rd put 

(6.1) td = [h-l2drd]+ 1. 

The symbol u(d) will denote the zero vector when rd = 0, but when rd> Oit will denote 
vectors u{d) = (u\d),. . . , u^f) with integer components in 1 ̂  w)rf) ̂  td. Given d and 
r,y, let< be an ordering of the vectors u(d) such that u'{d) ± u(d) and ufd) < wjrf) (/ = 
1,. . . ,rd) implies u'{d)<u{d\ We now consider tuples 

(6.2) (r t , i i
(* ) , . . . ,r2 , i i ( 2 ) ,r I , i i

( I )) - (r, w), 

say, where r* > 0, where each rd^0 and each w(t/) is of the type described. We order 
these tuples by the convention that ( r \ I I ' X (r, w) if either r ' = (r<,. . . , r[) , r = 
(rk,. . . , r}) with € < k, or if € = k and there is a d in 1 ^ d ta & such that r] = rj9 

u>(j) = uu) for d <j ^ k, and either ri < rrf, or rjj = rd and « , ( d ) ^ a(d). The tuples 
(r, a) are then well ordered. 

In proving the Theorem we will initially suppose m to be square free. Given $ = 
($ (*\ . . . , 3(1)) where ${d) consists of rd > 0 forms of degree J, and given divisors m(d) 

of m (1 < / < rrf with 1 < J < k and rrf > 0) it will suffice to show that the system 

(6.3) S!d)(*) = 0 (mod m|J)) (1 < / < rrf, 1 ^ d ^ *) 

has a solution JC satisfying (1.2), with the constant in <̂  depending only on r, e where 
r - (rk,.. . , r\), provided that the number s of variables exceeds some s\ = s, (r, e). 

Given ô > 0 and given (r, w), we now formulate the following 

ASSERTION (r, w)s. Ler $ = (JÇ(*\. . . , ^(1)) be a system of forms as above, let m be 
square free, and let m\d) be divisors of m with 

(6.4) mf ^ mu>d),td (1 ^ / =i rd, 1 =i J ^ *). 

TTiew if e > b and if s > S\(r, w,e), the system (6.3) /las a solution x with (1.2) am/ 
with the constant in < depending only on (r, w) and e. 

The truth of the Assertion for every ô > 0 and every (r, u) will give the truth of the 
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Theorem, since for given e we may set 8 = e/2, and since we may take u\ ) = td 

throughout, in which case (6.4) is automatically satisfied. The Assertion itself will for 
given 8 > 0 be proved by induction with respect to<<. The following lemma gets us off 
the ground. 

LEMMA 4. The assertion is true for every tuple (ruu
{])). Moreover, when it is true 

for some particular 

(6.5) (r*,ii (*\.. . ,r2 , i i ( 2 ) ,0,0) = (r, u), 

say, then it is true for every tuple of the form 

(rt, ««>, . . . , r2f«<2>,/•.,«•"). 
PROOF. (See [9]). We will restrict ourselves to the second claim. Let Jy = 

(JÇ(*\ . . . , JV°) be given. We may suppose the coefficients of our forms to have 
absolute values less than m. Then 5v(1) has a common integer zero y with 0 < \y\ < 
(sm)ri/{s~ri) by Siegel's Lemma (see Cassels [5], §IV.3, Lemma 3). Now when e > ô, 
set T] = (e — 8)/2. Thus when s > r\~\\ + r\)ru there is a nontrivial zero of $(1) with 
\y | < (sm)^, and when 5 > £(r\~l(\ + r\)r\ + 1), there are € linearly independent such 
zeros yi,...9ye. With each form Ĵ  of Jy we associate a new form ^Ç*(Z) — 

$(Zi j i + . . . + Z^yd in Z = (Zj,. . . ,Z^). Since the r, linear forms J^0* vanish 
identically, it remains to deal with the congruences 

(6.6) ^;" )*(z)^0(modm;" )) 

where 1 ^ / ^ rd and 2 ^ d ^ k. By the Assertion (r, u\ with (r, u) given in (6.5), 
we see that when t > S\(r, w,8 + T]), there is a nontrivial solution z of (6.6) with 
|z| < m(1/2)+8+T1. But then x = z\ y\ + . . . + z^y^ solves all the congruences (6.3), and 
0 < |*| < | y | |z| <̂  m(1/2)+8+211 = m(1/2)+e. The way we derived it, the constant in <$ here 
may depend on s, but it is clear a priori that the correct constant in the assertion (1.2) 
cannot increase with s. 

It therefore will be enough to prove the Assertion for (r, u) of the type (6.5), 
assuming its truth for each ( r \ u')< (r, u). So let (r^{k\ . . . , $(2)) be given, let m be 
square free and let m\d) be divisors of m with (6.4). 

7. Proof of the Theorem. In what follows, let 

h\ = hx(k92\rk,.. . ,r2;8/2) 

be as in the Proposition. As before we write m{d) for the least common multiple of 
m\d\ . . . , m^J where rd > 0, but m(d) = 1 when rd = 0. For each prime factor p of m(d) 

we define 3£° and h(%(
p
d)) as in §3. We factor mid) = a(d)b{d) such that aid) is the 

product of exactly those prime factors p of mid) for which 

(7.1) M3£° )^Ai . 

We now distinguish two cases. 
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(I) There is an e in 2 ^ e ^ k with b(e) ^ mre/tc. 

Let such an e be fixed. For each prime factor/? of b{e\ by the negation of (7.1) for 
d = e, some form 

ftp = aP\l$T + • •• + aprM? 

has A(ftp) < Ai, where api- = 0 (mod /?) for subscripts i with p\m]e\ but where there 
is at least one / with p\m)e) and api 4E 0 (mod p). There is an i0 in 1 ^ /0 = re and a 
divisor b' of fr(f) with V ^ (/?U))1/r' = mi/te such that for each prime factor p of b' we 
have /?|m^} and api 4E 0 (mod /?). Say i0 = 1-

The congruences 

ÏÏ\e\x) = 0 (mod m\e)) (1 ^ i ^ r,) 

then have the same solution set as the congruences 

(1.2a) ÏÏ\e\x) = 0 (mod m\e)) (2 ^ / ^ re) 

{1.2b) ?ç\e\x) = 0 (mod m\e)/b'), 

(1.2c) $p(x) = 0 (mod p) for each prime factor p of b'. 

Now since /z(5vp) < h\, each ^ can be written as 

^ = y % sg 
7 = 1 

where ?I^, 93̂ - are forms with degrees between 1 and e — 1. By the Chinese Remainder 
Theorem, there are forms % such that (coefficient-wise) 21, = ?lw (mod p) for each 
prime factor p of V. The 21,- have degrees less than e. The condition (1.2c) is certainly 
satisfied of §1/(JC) = 0 (mod b') for 1 ^k j < hx. The original system (6.3) of congru­
ences is therefore satisfied whenever the following new system is satisfied 

(7.3a) # d ) (x ) = 0 (mod m\d)) (I ^ i ^ rd, 2 ^ d ^ k, but excluding 

/ = 1, d — e)y 

(7.30) %\e\x) = 0 (mod m[{e)) where m[ie) = m\e)/b', 

(7.37) %(x) = 0 (mod b') (1 ^j < hx). 

Note that 

(7.4) m[{e) = m\e)/b' ^ m1"™'""'. 

Now (7.3) is of the type 

( r \ «') = (r„ I I ( * \ . . .,re+l,u
ie+l),r'e,u'ie\ . . . , r j , i/'(2),r[, I I ' ( , ) ) , 

for the congruences of degree > e have not been changed. But when u\e) > 1, we may 
take r'e = re and u,{e) = (u\e) - 1, w^ , . . . ,w^}) by (7.4), while when u\e) - 1, we 
may take r'e = re— 1. Since the components of r ' are bounded in terms of r and 8, our 
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inductive assumption yields for e > 8 and s > ^(r , w, e) a solution x of (7.3) with 
(1.2). 

This leaves us with the case 

(II) b(d) <mrd,td for 2 ^ d ^ k. 

Let g be the product of the primes ^ px where /?, = px (s; k, 2; rk9. . . , r2; 8/2) is the 
quantity of the Proposition. Consider the congruences 

(7.5) d\d\y) = 0 (mod m*id)) (\ ^ i ^ rd, 2 ^ d ^ k) 

where m*(J) = m\d) /{m{d\ gb(d)). Then m*(J) (defined in the obvious way) is coprime 
to b{d) and by (7.1) we have h($(d)) ^ hx for each prime factor/? of m*(rf). The least 
common multiple m* of the numbers m*{d) is square free and its prime factors exceed 
P\. Thus by the Proposition, (7.5) has a solution y i= 0 with |y \ < m*o/2)+(ô/2) ^ 
/ n(l/2) + (8/2)> W e n Q W s e t 

x = gb{2)b0) . . . ^ U ) j . 

Then x is a solution of the original congruences, and 

Ijcl <^ rn^-lh)^ • • -+^k/tk) m{M2) + {h/2) <; m d /2 ) + e 

by our choice of r 2 , . . . , f* in (6.1). 
This finishes the proof of the Theorem for m square free. By the argument of the 

Introduction, the Theorem is therefore true for arbitrary m and for systems of forms of 
the type r = (rk,..., r2,0). An application of SiegeFs Lemma such as in the proof of 
Lemma 4 leads from this to systems of forms of arbitrary type (rk,. . . , r2, n ) . 
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