
Artificial Intelligence for
Engineering Design, Analysis
and Manufacturing

cambridge.org/aie

Research Article

Cite this article: Huang J, Jaiswal P, Rai R
(2019). Gesture-based system for next
generation natural and intuitive interfaces.
Artificial Intelligence for Engineering Design,
Analysis and Manufacturing 33, 54–68. https://
doi.org/10.1017/S0890060418000045

Received: 9 December 2015
Revised: 30 January 2018
Accepted: 31 January 2018

Key words:
CAD modeling; depth-sensing cameras;
gesture recognition; user interfaces

Author for correspondence:
Rahul Rai, E-mail: rahulrai@buffalo.edu

© Cambridge University Press 2018

Gesture-based system for next generation
natural and intuitive interfaces

Jinmiao Huang1, Prakhar Jaiswal2 and Rahul Rai2

1ABB Inc. Bloomfield, Connecticut, USA and 2MADLab, University at Buffalo – SUNY, Buffalo, New York, USA

Abstract

We present a novel and trainable gesture-based system for next-generation intelligent interfaces.
The system requires a non-contact depth sensing device such as an RGB-D (color and depth)
camera for user input. The camera records the user’s static hand pose and palm center dynamic
motion trajectory. Both static pose and dynamic trajectory are used independently to provide
commands to the interface. The sketches/symbols formed by palm center trajectory is recog-
nized by the Support Vector Machine classifier. Sketch/symbol recognition process is based
on a set of geometrical and statistical features. Static hand pose recognizer is incorporated to
expand the functionalities of our system. Static hand pose recognizer is used in conjunction
with sketch classification algorithm to develop a robust and effective system for natural and
intuitive interaction. To evaluate the performance of the system user studies were performed
on multiple participants. The efficacy of the presented system is demonstrated using multiple
interfaces developed for different tasks including computer-aided design modeling.

Introduction

Amid the rapid advent of smart applications and smart electronic goods, there has been
increasing interest in smart interfaces. Recent development in technology is push driving
the integration of natural and intuitive sensors into everyday consumer devices such as
Kinect in our homes. The use of such devices in commercial applications is setting the
scene for the development of intuitive, natural, and people-centric applications over the
next decades. Such people-centric devices combined with the ability of computational pipe-
lines that can process information emanating from such devices in real-time to provide natural
interaction portends a revolution for next-generation interfaces. Natural and intuitive inter-
faces based on hand gestures in the form of sketches and symbols can replace WIMP (win-
dows, icons, menus, pointer)-based user interfaces. The present work is focused on
developing an efficient and accurate system for hand gesture-based interfaces.

Sketches and symbols are rapidly executed freehand drawings. A sketch or symbol serves a
number of purposes, such as recording something seen by a person, recording or developing
an idea for future use, graphically and quickly demonstrating an image, idea, or principle, or
specifying a command. Typically, there are several levels of implementations of user interfaces
based on sketching. Such interfaces can be divided majorly into three categories (Shpitalni &
Lipson, 1995).

The categories are based on the amount of information the interfaces attempt to collect
from the input sketches: (a) Drawing pads: These are the most basic form of sketchers avail-
able. They do not intend to interpret the sketches; however, they smooth the input sketch and
provide some general graphics tools, such as copy, paste, resize, and color. (b) 2D sketchers: 2D
sketchers interpret the input sketches and classify them into 2D primitives, such as lines, arcs,
and splines. Relationships between input strokes, such as parallelism and orthogonality, are
also inferred by some 2D sketchers (Pavlidis & Van Wyk, 1985; Durgun & Özgüç, 1990;
Jenkins & Martin, 1992; Eggli et al., 1995; Lank et al., 2000). These functions generally provide
users better experience and ease of use than the basic drawing pads, especially in computer-
aided design (CAD) domain. (c) Three-dimensional (3D) sketchers: These sketchers can be
considered advancement over 2D sketchers. 3D sketchers aim to represent the projections
of 3D scene using sketches. They also interpret the input strokes as basic geometrical primi-
tives, such as lines, arcs, and corners. Such sketchers address more complex problems because
of the inherent ambiguity in projections of 3D scenes (Lamb & Bandopadhay, 1990; Martí
et al., 1993; Lipson & Shpitalni, 1995).

The systems mentioned above have a reasonably high accuracy of sketch classification.
However, they are all built for touch-based interfaces. The proposed non-contact system allows
the user to draw 3D sketches with bare hands in the air. Consequently, our objective can be
defined as “to develop a novel trainable user-dependent symbol recognizer for single stroke
sketches in the air”. The system (1) requires a non-contact depth-sensing device such as an
RGB-D (color and depth) camera for user input, (2) has fast training capabilities, and (3) is

https://doi.org/10.1017/S0890060418000045 Published online by Cambridge University Press

https://www.cambridge.org/aie
https://doi.org/10.1017/S0890060418000045
https://doi.org/10.1017/S0890060418000045
mailto:rahulrai@buffalo.edu
https://doi.org/10.1017/S0890060418000045

adaptable for symbols and sketches of any shape, size, and orien-
tation. We present a supervised learning approach for accurately
predicting labels for sketches or symbols drawn in the air.
Support Vector Machines (SVM) (Cortes & Vapnik, 1995), a
feature-based classifier, is used for classification purposes.
Additionally, to widen the applicability and functionality of our
system, we have also developed and incorporated a static hand
pose recognition algorithm.

The most important factor in the success of any machine
learning task is the selection of features (Domingos, 2012).
Features are quantifiable properties of the observed data that
maps it into an informative and discriminating feature space. It
is crucial to select relevant feature representation of the data for
effective algorithms in recognition, classification, and regression.
Features provide a compact and concise representation, which is
necessary for computationally efficient algorithms. It conserves
computation, storage, and network resources in the training
phase and for future use of the classifier (Forman, 2003).
Additionally, features transform the raw data into a form that is
more amenable for learning task. A well-chosen feature set should
be robust to accommodate intra-class variations and also provide
good inter-class discriminativeness (Maji, 2006). Few other prop-
erties of good feature descriptors are locality, pose-invariance,
scale-invariance, and repeatability (Tuytelaars & Mikolajczyk,
2008). Note that a very large number of features can be extracted
from the data. However, increasing the number of features would
increase the computation time for extracting the features, time of
training the classifier, and time spend in predicting the labels after
training. A good algorithm with real-time performance should
extract a small set of relevant features and concurrently provide
good classification accuracy (above 98%). Hence, it is important
to choose a set of features, where each feature provides some
new and relevant information. Taking the importance of feature
selection into consideration, we define three types of features,
including both geometric and statistical features.

The main contributions of the presented work can be summa-
rized as follows.

1. We developed a novel and real-time hand gesture-based system
for natural and intuitive interfaces.

2. We have identified a set of novel features for efficient and accu-
rate recognition of 3D sketches and symbols.

3. A novel and real-time static hand pose recognition algorithm
was also developed.

4. Multiple interfaces were created for different applications to
demonstrate the applicability of our system.

In the next section, we discuss related work. The section
‘Overview’ gives a brief overview of our system architecture. In
the section ‘Sketch classification’, we elucidate the steps used in
the sketch classification process. Hand pose recognizer is
explained in detail in the section ‘Static hand pose recognition’.
The section ‘Experiments and results’ presents the results
obtained from the evaluation procedure used for assessing our
system. Conclusions and future work are described in the section
‘Conclusion and future work’.

Related works

In the recent past, gesture recognition has gained a lot of attention
in human–computer interaction (HCI) research community. For
instance, in 3D CAD modeling domain, the existing user interface
(UI) devices such as the keyboard, mouse, and joystick are not

convenient and natural to use in a virtual modeling environment
(Pavlovic et al., 1997). Gestures, on the other hand, form an intui-
tive and natural interaction platform for users to work within a 3D
environment (Thakur & Rai, 2015). In order to exploit the use of
gestures in HCI, it is necessary to develop methods to help com-
puters recognize and interpret them more efficiently. Various
methods have been proposed to recognize gestures efficiently
and accurately, such as shape and color cues (Bretzner et al.,
2002), disparity in stereo pair of images (Jojic et al., 2000),
accelerometer-based algorithm (Liu et al., 2010), gloves, and
markers-based methods (Baudel & Beaudouin-Lafon, 1993;
Sturman & Zeltzer, 1994; Nishino et al., 1998), orientation histo-
grams (Freeman & Roth, 1995), depth data (Liu & Fujimura,
2004; Muñoz-Salinas et al., 2008; Suryanarayan et al., 2010;
Keskin et al., 2011; Shotton et al., 2011; Doliotis et al., 2012),
etc. In addition to the gesture-based input, other modes of
input, such as voice commands and brain–computer interface
(BCI) have been used for creating a more natural and intuitive
user interface. Nanjundaswamy et al. (2013) developed a multi-
modal CAD interface using gesture, voice, and BCI commands
as inputs. Similarly, BCI and touch-based gesture inputs were
used by Bhat et al. (2013) and non-contact 3D gesture inputs
were used by Jaiswal et al. (2013) for manipulating 3D objects in
CAD environment. A detailed user study on the use of hand ges-
tures in 3D CAD modeling is presented in Thakur & Rai (2015).

Identifying gesture through depth data is an active area of
research. It provides fast and efficient recognition and thus allows
for natural and intuitive interaction (Suryanarayan et al., 2010;
Vinayak et al., 2012). The gesture has been utilized as a primary
modality of interaction in the outlined research. Although great
progress has been made in the published literature, the present
state-of-art techniques have limitations when applied to real-time
applications. Few methods try to first fully reconstruct the 3D
hand structure from the input surface, followed by optimization
or inverse kinematics-based framework for hand gesture recogni-
tion (Lien & Huang, 1998; Stenger et al., 2001; Oikonomidis et al.,
2011). However, a common problem for this kind of method is
the high cost of the computation, which leads to poor real-time
performance. Other methods include fingertip detection (Li,
2012), finger-direction detection (Wen et al., 2012), and
Finger-Earth Mover’s Distance (FEMD) (Ren et al., 2011; Ren
et al., 2013). All the methods mentioned have their shortcoming
in recognizing complex gesture shapes with minor differences,
such as the hand poses shown in (d) and (o) in Figure 13. The
approach developed in this paper recognizes gestures, in the
form of 3D sketches and hand poses, using depth-sensing cam-
eras, such as Kinect and DepthSense. The implemented gesture
recognition system avoids the use of cumbersome and
not-so-natural to use hand-held peripherals, gloves, and markers
on user’s hand. The developed system, which recognizes sketches,
symbols, and hand poses, is used for interacting with interfaces in
real-time. There are few existing commercially available non-
touch 3D gesture-based systems, such as Kinect for Xbox.
Kinect interface focuses on mapping pre-defined dynamic hand
gestures to a limited set of system commands. In contrast, our sys-
tem can be trained to recognize a broad range of static hand poses
and dynamic hand motions. Users also have the flexibility to cre-
ate new gestures to re-train the system and map them to the var-
ious commands on the interface. In addition, our system can also
be integrated with a multitude of applications.

There has been a significant amount of work that has been car-
ried out in developing user-dependent symbol and sketch

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 55

https://doi.org/10.1017/S0890060418000045 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060418000045

recognition systems for touch-based interfaces. Each of these sys-
tems has a different algorithmic approach for classifying inputs
(Plamondon & Srihari, 2000). For example, the Rubine classifier
(Rubine, 1991), a statistical classifier, uses single stroke sketches
or symbols to define a set of geometric and algebraic functions
as a feature vector. Classification is carried out by determining
the class that gives the largest value for a linear combination of
the features. The 13 features used by Rubine focused on how the
sketch was drawn rather than what the final sketch looks like.
This necessitates that the sketches are drawn in the same way
and at the same scale every time for accurate classification.
The $1 recognizer (Wobbrock et al., 2007), on the other hand,
carries out classification using a template-based approach
(Connell & Jain, 2001). In a template-based approach, an input
sketch or symbol is compared with multiple templates provided
by the user. Similarity metrics like Euclidean distance and
Hausdorff distance are then used to determine which class the
input belongs to. Other classification algorithms include decision
trees (Belaid & Haton, 1984), neural networks (Dimitriadis &
López Coronado, 1995), principal component analysis (Deepu
et al., 2004), SVM (Bahlmann et al., 2002), Gaussian classifiers
(Matsakis, 1999), and hidden Markov models (HMMs)
(Koschinski et al., 1995). Ensemble approach could be adopted
to combine classification output from multiple classifiers to
enhance predictive performance (Rokach, 2010). Rubine classifier,
$1 recognizer, and voxel-based classifier were integrated into a
classification scheme developed by Babu et al. (2014) for single
stroke 3D sketches.

Development of classification algorithms for 2D sketches has
been considerable to the point where classifiers on an average
attain accuracies of 95% or greater. However, when it comes to
classifying sketches drawn in 3D space, many of these existing
methods are left wanting. These methods perform poorly on 3D
sketches due to their inability to account for the third dimension
in the sketch. Moreover, input data from a non-contact depth sen-
sing device that tracks the user’s palm position in 3D space is
invariably noisier than that from conventional touch-based
devices. In this paper, we classify dynamic hand movements of
users by representing the trajectory of hand motion in 3D space
using a novel set of features. There has also been previous work
on classifying static hand pose from 3D data using techniques
like arm segmentation, and hand pose estimation (Malassiotis
et al., 2002). In the presented work, a novel and real-time static
hand pose recognizer is augmented with efficient and powerful
3D sketch classifier algorithm to develop a robust and accurate
system for interacting with natural and intuitive non-contact
interfaces.

Overview

Our goal in this paper is to develop a natural and intuitive inter-
face based on 3D sketches/symbols drawn in the air. Figure 1
shows the architecture of our system with both learning and
operation phases. The static hand poses and dynamic hand
motions of the user were recorded for off-line training in the
learning phase. A part of the learning dataset was used in opera-
tion phase for testing and tuning the parameters of the trained
model. During learning and testing, the users were not provided
with any feedback regarding recognition success or failure. This
was done to avoid any possibility for the participants to learn
and gain experience inclined to the preference of the system
and inducing a bias in the learned model. In the operation
phase, the recorded template and trained model from learning
phase was used to perform hand pose and gesture recognition
on-the-fly. The recognition output was then employed to invoke
specific commands on the corresponding interface being used.

The data pertaining to user’s palm and its movement was cap-
tured using the depth-sensing camera, SoftKinetic DepthSense
(DS325). The output from the camera is a gray-scale image con-
taining information of the depth of each pixel in the scene. We
use an inbuilt API to record and store user’s palm position in
3D Cartesian coordinate system, along with the timestamp at
each position. One major challenge of using non-contact depth-
sensing cameras for sketch input is that the start and end of the
sketch are not well defined. Start and end of sketches in case of
tablet-based input devices is explicitly determined by touch
input. However, while tracking hand position with a 3D camera,
every point is recorded as part of the sketch. To overcome this
issue, we have used static hand poses to alternate between an
active and inactive state of sketching mode. When the palm is
open, the points are recorded as part of the sketch (sketching
mode active), and when it is closed, the points are discarded
(sketching mode inactive). Using open/close pose of hand pro-
vides an easy and convenient way to identify the start and end
of strokes (see Fig. 2).

The usage of static hand pose was not limited to identifying
the active/inactive state. Sketch classifier application was augmen-
ted with static hand pose recognition system to enhance the capa-
bility of the developed interface. Several static hand poses were
defined to perform various tasks in different applications.
SoftKinetic’s 3D depth sense camera has inbuilt API to recognize
few static hand poses, but the number and types of poses it can
recognize is limited and suffers from issues like occlusion. To
counter this issue, we developed a novel hand pose recognition
algorithm, described in the section ‘Static hand pose recognition’,

Fig. 1. Flowchart showing both learning and operation phases of the developed system.

56 Jinmiao Huang et al.

https://doi.org/10.1017/S0890060418000045 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060418000045

which can work on a larger number of unique hand-pose classes.
Users have the freedom to define their own templates, intuitive,
and convenient to them for performing different tasks. To dem-
onstrate the applicability of our static hand pose recognition algo-
rithm, we defined a set of hand poses and used it for CAD model
manipulation application (see the section ‘Static Hand Pose
Recognition Results’).

With regard to the sketch classification algorithm, the raw sketch
data obtained in the sketching mode from the DepthSense camera
was first preprocessed. Preprocessing was carried out mainly to
eliminate noise in the input sketch and resample the sketch
with equidistant points. The Preprocessed sketch was then used
to extract 154-dimensional feature vector. The feature vector con-
sists of six speed and curvature features, 120 distance features, and
28 angle features (see the section ‘Geometric and Statistical
Features’). A user study was conducted to build a database of
3D sketches (freely available online at the following webpage:
https://github.com/madlabub/Sketch-Data). The database of
sketches was used to evaluate the performance of the system. In
total, 4000 sketch samples were recorded. The sketch database
was randomly split into training and test sets. SVM classifier
was trained using the features computed on the sketch samples
in training datasets. Parameters of the classifier were tuned
using fivefolds cross-validation. Finally, the test dataset was
used to obtain an objective assessment of the performance of
our system.

To demonstrate the applicability of our system, we also devel-
oped multiple interfaces for various tasks. Interfaces, such as 3D
CAD modeling and manipulation interface was built, in which
users can create and manipulate few primitive 3D shapes using
predefined sketches. Also, manipulation of those shapes, like
orientation, translation, and scale can be adjusted using the
static hand pose recognition system. A video player control
interface was also developed. Users can use freehand 3D sketches
to control the video player. Commands, such as play, pause,
stop, fast-forward, and rewind, can be inputted using hand-drawn
symbols in the air. A short video abstract of the developed
interfaces can be viewed on the following link: http://youtu.be/
ExpPFZGPdYw.

Sketch classification

We employ feature-based classification scheme to classify 3D
sketches into different classes. The sketch data captured using
depth-sense camera is a discrete trajectory of user’s palm center
in the active (open) state. Each data point of the sketch comprises
of three spatial coordinate (xi, yi, zi) and one temporal coordinate
ti, where i denotes the index of the data points. We compute sev-
eral features from the sketched data to build a classifier. Multiple
kinds of features are used to ensure robustness of the classifier.
However, the number of features was limited based on the trade-

off between classification accuracy and real-time performance.
Before computing the features, the raw sketch data was passed
through a series of preprocessing steps described below.

Preprocessing

Raw sketch data obtained in sketching mode from the DepthSense
camera is extremely noisy and non-uniformly sampled. Artifacts
are mainly present in the form of outliers and unwanted self-
intersections that are created at the beginning of a stroke when
users unknowingly draw over initial stroke points while switching
between inactive/active gestures. In such cases, it would be
extremely difficult to carry out processing without filtering the
data first. Smoothing the whole sketch was not considered as a
possible solution to the issue as apart from reducing noise, it
would also smooth out sharp turns in the sketch. Sharp turns
are defining aspect of the sketches and tremendously affect the
feature values, which in turn reflect on our classifier’s perfor-
mance. Hence, we perform three steps to eliminate artifacts.
The first step involves dehooking the stroke by eliminating the
first three points. Dehooking is important because of finite
human response time error that happens when the camera
records an open palm and switches to active sketching mode,
and when the user receives the feedback about it and starts to
sketch. Based on the frame rate of the camera used (25 fps), it
was noticed that removing first three points usually eliminates
the hook created due to finite response time without significantly
affecting the shape of the sketch. The second step involves
smoothing the start and end of the sketch by convolving the
sketch with a Gaussian filter. In this step, the first five and last
five points are updated along with their temporal coordinate.
The Gaussian filter of size 11 and standard deviation of 5 is
used for this purpose. In the third step, we eliminate the outliers
using the same Gaussian filter. To determine if a point is an out-
lier, the sketch is compared with its smoothed version. The
smoothed sketch is obtained using the filter, and the spatial coor-
dinates of each point on the original sketch is compared with cor-
responding new point on the smoothed sketch. If the Euclidean
distance between the smoothed point and the original point is
within a threshold, the point is retained. Otherwise, it is elimi-
nated. The value of the threshold is empirically defined in
terms of the length of the diagonal of the bounding box enclosing
the 3D sketch. The bounding box is defined as the smallest box
enclosing the sketch with edges along the principal directions of
the sketch. The principal directions are computed using
Principal Component Analysis (PCA) (Jolliffe, 1986). In our
implementation, a threshold equal to 0.06 times the length of
the bounding box diagonal is used. This value works really well
in eliminating outliers and recognizing different gestures used
to create demonstrative applications. It is not a critical factor
for the accuracy of our system and a range from 0.04 to 0.12
gives acceptable performance. Figures 3a and b shows a plot of
a sample sketch before and after the refining step.

The refined sketch consists of non-uniformly sampled points
based on the sampling rate of the depth camera and the move-
ment of user’s hand. The sketches contain a different number
of points which are non-uniformly spaced. Features defined in
this paper, to be used by our classifier, require sketches to be uni-
formly sampled and have an equal number of data points. Hence,
after refinement, the sketches were resampled. Each sketch was
resampled to consist of N equidistantly spaced points. The resam-
pling algorithm was adapted from the $1 recognizer (Wobbrock

Fig. 2. System setup.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 57

https://doi.org/10.1017/S0890060418000045 Published online by Cambridge University Press

https://github.com/madlabub/Sketch-Data
https://github.com/madlabub/Sketch-Data
http://youtu.be/ExpPFZGPdYw
http://youtu.be/ExpPFZGPdYw
http://youtu.be/ExpPFZGPdYw
https://doi.org/10.1017/S0890060418000045

et al., 2007) for the 3D case. The resampled points are generated
using linear interpolation between original point set. The resam-
pling process also ensures equal distances between resampled
points. The time coordinates were also updated correspondingly
using linear interpolation. In this paper, we use N = 64 as the
number of resampled points. An example of the resampled sketch
is shown in Figure 3c. After resampling the sketches were scaled
using their path length. Path length (L) was calculated as follows:

L =
∑N−1

i=1

‖pi+1 − pi‖ (1)

where pi represents the spatial position (xi, yi, zi) of i-th data point
and ‖ · ‖ is the ℓ2-norm of a vector. This normalization was done
to ensure that the total path-length of the sketch is unity. Scale
invariance property of the classifier is maintained using this nor-
malization step. After these preprocessing steps, several features
were computed from the preprocessed sketch data. Details of var-
ious features and its computation are provided in the following
sub-section.

Geometric and statistical features

Features are computed on each sketch in the database, and the
classifier learns a model with these features. The most important
factor for the success of any classification task is the features used
(Domingos, 2012). Classification accuracy can be substantially
improved and the amount of training data can be significantly
reduced by using a well-chosen feature set (Forman, 2003). The
features map each sketch into a high-dimensional feature space.
Discriminating between different sketches in a good feature
space is easier for classifiers, which is not possible using the
raw data. One of the major contributions of this paper is that
we have identified a good set of novel features for efficient and
accurate recognition of 3D sketches and symbols. Various sets
of novel geometric and statistical features were defined for classi-
fication purpose. An important aspect of these features is that they
are invariant to translation, rotation, and scale of the sketch. Since
the indexes of the points are used to compute the features, the fea-
tures are dependent on drawing direction. Detailed description of
features is outlined next.

Speed and curvature features
Speed and curvature are discriminating properties of sketches.
Sharp corners in sketches have large curvature and are tend to
be drawn at slower speed due to abrupt change in direction.
Whereas, curvy segments of the sketches have smaller curvature
and are drawn at faster pace (Lacquaniti et al., 1983). Therefore,
speed and curvature properties can be used to distinguish between
curvy sketches and sketches with more sharp corners. We define

three statistical measures each for speed and curvature as features
for our classification algorithm. These features are detailed below.

Each sketch contains data points with four coordinates (xi, yi,
zi, ti), where the index i varies from 1 to N. First, the arc length li is
computed for each data point as follows:

li = ‖pi − pi−1‖ + li−1, 2 ≤ i ≤ N , (2)

where pi represents the spatial position (xi, yi, zi) of i-th data point
and ‖ · ‖ is the ℓ2-norm of a vector. For i = 1, l1 is defined to be
zero. Central difference method is applied to compute the speed si
at each data point using the arc lengths:

si = li+1 − li−1

ti+1 − ti−1
, 2 ≤ i ≤ N − 1. (3)

The speed at the first and last points is taken to be same as that
of second and penultimate points, respectively. Because of inher-
ent noise in the data, the speed computed has unwanted fluctua-
tions. The speed is smoothed using a Gaussian filter of size 5 and
standard deviation of 1 to remove the noise. Three features fs1, fs2,
and fs3 are computed from the smoothed speed information of the
sketch.

fs1 = ss/ms
fs2 = sper90/ms
fs3 = sper10/ms

, (4)

where μs represents mean of speeds, σs represents the standard
deviation of speeds, sper90 is the 90th percentile of speeds, and
sper10 is the 10th percentile of speeds. It can be noticed that we nor-
malized each feature with the mean of speeds. Normalization was
done to take into account the fact that same sketch can be drawn
at different speeds by the users.

The curvature at a point on the sketch can be calculated by fit-
ting a circular arc in the local neighborhood of that point. The
inverse of the radius of fitted arc provides the curvature. A win-
dow of seven data points centered at a particular point is consid-
ered as its local neighborhood. We then use PCA to transform the
local points on a 2D plane. Linear least square fitting is used to fit
an arc in 2D local neighborhood. The regression equation in
matrix form is given as:

2
∑

x2j 2
∑

xjyj
∑

xj

2
∑

xjyj 2
∑

y2j
∑

yj
2
∑

xj 2
∑

yj n

⎡
⎢⎣

⎤
⎥⎦

a

b

c

⎡
⎢⎣

⎤
⎥⎦

=

∑−(x2j + y2j)xj∑−(x2j + y2j)yj∑−(x2j + y2j)

⎡
⎢⎣

⎤
⎥⎦,

(5)

where (− a,− b) is the center of the arc, the radius
r =

a2 + b2 − c
√

and N is 7 in our case. Here, xj and yj corre-
spond to the transformed 2D coordinates of points in the local
neighborhood. Solving the matrix equation, we obtain the param-
eters (a, b, c), and the curvature Ci is given by 1/r. Using the win-
dow of n = 7 data points restricts us from obtaining the curvature
of first three and last three points. We obtain these curvatures by
mirroring the values of next three and previous three points,
respectively. Again, the curvature was smoothed to remove

Fig. 3. (a) Raw 3D input sketch, (b) Refined sketch, and (c) Preprocessed sketch after
resampling.

58 Jinmiao Huang et al.

https://doi.org/10.1017/S0890060418000045 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060418000045

unwanted noise using Gaussian filter of size 5 and standard devia-
tion of 1. Then, three features fC1, fC2, and fC3 are defined using
curvature values:

fC1 = mC
fC2 = sC

fC3 = Cper90

, (6)

where μC represents mean curvature, σC represents the standard
deviation of curvature, and Cper90 is the 90th percentile of curva-
ture. Contrary to speed features, the curvature features are not
normalized because the sketches would have a similar curvature
as long as their shape is almost identical. Note that we have
already normalized the scale of the sketch with respect to its
path length in the preprocessing phase.

Distance features
The distance features defined in this paper was inspired by D2
shape function proposed by Osada et al. (2002). However, instead
of the distribution of the distances between random points, we use
the entries of averaged distance matrix as features, that were com-
puted from the ordered set of resampled points on the sketch as
described below.

To define distance features, we use the information pertaining
to the location of each point, relative to all other points. We
exploit the characteristic of the sketch that data points in the
sketch are ordered. We utilize this ordering information to
develop a robust descriptor called Distance Matrix D. The ele-
ments of the N ×N distance matrix D is defined as:

Dij = ‖pi − pj‖, i, j [1, 2, · · · ,N , (7)

where pi represents the spatial position (xi, yi, zi) of i-th data point
and ‖ · ‖ is the ℓ2-norm of a vector.

The distance matrix is then subdivided into K × K sub-
matrices of size M ×M, where N = K*M. The entries of each sub-
matrix were averaged to obtain a smaller K × K matrix, which we
call Averaged Distance Matrix (ADM). Averaging was done for
two main reasons. First, it shrinks the size of the matrix and
decreases the number of features. It reduces the computational
cost without compromising on the accuracy of the classifier.
Secondly, the distance matrix captures local features of the points
on the sketch. Locally, each sketch is very similar to each other,
and hence a lot of entries in the distance matrix are relatively
redundant and non-discriminative. Averaging portions of the
matrix to create a smaller matrix reduces the redundancy and
improves computational performance. The entries of ADM
matrix �D is given as:

�Duv = 1
M2

∑uM
i=(u−1)M+1

∑vM
j=(v−1)M+1

Dij,

u, v [1, 2, · · · ,K.
(8)

In this paper, values of 64, 16, and 4 are used for N, K, and M,
respectively. A sample matrix with subdivisions and its averaged
smaller matrix are shown as a color scaled image in Figure 4.

The distance matrix D and average distance matrix �D are both
symmetric matrices. The entries in the upper triangular part of
the �D is used to form the distance features. These entries are con-
catenated together in a specific order to create distance features.

Hence, for K × K sized �D, the number of distance features is K
(K− 1)/2. It is not necessary to normalize the distance features
as every sketch is already normalized with respect to its path
length. Normalization with respect to path length restricts the dis-
tance features to be in the interval [0, 1].

Angle features
Similar to distance features, angle features was also inspired by the
work of Osada et al. (2002), and are defined using relative angles
between directions at each resampled points in the sketch. The
direction at each point on the sketch is defined as the direction
of the vector joining the current to the next point. For the last
point, the direction of penultimate point is considered. The
angle between any two directions at point i and point j is calcu-
lated as:

Aij = 1
p
cos−1

qi · qj
‖qi‖‖qj‖

()
, i, j [1, 2, . . . ,N , (9)

where qi represents the vector joining ith point to its next point i
+ 1. It is given as (xi+1− xi, yi+1− yi, zi+1− zi), except for the last
point, for which vector at a penultimate point is used. The range
of inverse cosine function is [0, π]. Hence, the values of the angle
features are always in the interval [0, 1].

Using the above expression, N ×N dimensional Angle Matrix
A is formed. Again, to prevent redundancy and improve compu-
tational performance, the M ×M sub-matrices are averaged to
obtain a smaller K × K dimensional Average Angle Matrix
(AAM). The entries of �A (AAM) is given as:

�Auv = 1
M2

∑uM
i=(u−1)M+1

∑vM
j=(v−1)M+1

Aij,

u, v [1, 2, . . . ,K

(10)

For angle features, values of 64, 8, and 8 are used for N, K, and M,
respectively. The upper triangular entries of �A are concatenated
together to obtain angle features. The number of angle features
is K(K− 1)/2 for K × K sized �A.

Feature-based classifier

The features defined in the previous sub-section are concatenated
together to form a feature vector for every sketch. The feature vector
includes speed and curvature features, distance features, and angle
features. In our implementation, the feature vector was of length
154 combining all the features discussed above. The feature vector
is essentially a mapping of a sketch in a high dimensional feature
space. The feature vectors calculated from the database of sketches
with different classes of sketches were used to populate the feature

Fig. 4. Color plot of the distance matrix and average distance matrix.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 59

https://doi.org/10.1017/S0890060418000045 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060418000045

space. Using the feature vector database, a SVM classifier (Cortes &
Vapnik, 1995) was learned. An elementary implementation of
SVM classifies linearly separable data into two classes ± 1, indicating
whether that data point is in (+ 1) or out of (− 1) the set that wewant
to learn to recognize. SVM classifier learns a hyperplane model that
separates the linearly separable data inN-dimensionswith the largest
margin (Press, 2007). A hyperplane inN-dimensions can be defined
by the equation f (x) ; w.x + b = 0, where x is an N-dimensional
feature vector,w is a normal vector to hyperplane, and b is an offset.
The SVM learning problem can be formulated as a quadratic optimi-
zation problem:

min
w

1
2
w.w

subjectto yi(w.xi + b) ≥ 1, i = 1, . . . ,m
(11)

whereyi are labels (± 1) andM is the numberof training samples. This
optimization problem can be solved using quadratic programming.

More advanced implementations of SVM can separate even lin-
early inseparable data. This is achieved by using kernels. Some pop-
ular kernels are quadratic, polynomial, radial basis function (RBF),
and sigmoid function. Further, multi-class classification can be
accomplished by training multiple one-versus-all classifiers. In
this paper, we have used multi-class SVM classifier with RBF ker-
nels. Preliminary experiments revealed that RBF kernels performed
best among other choices of kernels, such as linear, polynomial, and
sigmoid kernels. MATLAB library LIBSVM (Chang & Lin, 2011)
was used for building and using SVM model.

To train and evaluate the SVM classifier, first, the dataset was
divided into two sets: training and testing. Fivefolds cross-
validation on the training dataset was used to train the classifier
and obtain an optimum value of several parameters required for
the classifier. The testing dataset was used for generalization so
as to get accuracy performance of the classifier on unseen data.
The parameters obtained using validation include the parameter
C and γ. The parameter C represents the inverse of the regulariza-
tion parameter and γ is related to the standard deviation σ of RBF
kernel (γ = 1/2σ2). More details and results are highlighted in the
section ‘Sketch Classification User Study’.

Static hand pose recognition

In addition to the 3D sketch classification algorithm, our system
also incorporated static hand pose recognizer. The primary appli-
cation of hand pose recognizer system was to switch between an
active and inactive state of sketching mode. However, few hand
poses were also used in 3D CAD modeling and manipulation
interface. Template-based recognition approach was adopted for
recognizing the static hand-pose. The poses were represented as
an open surface in 3D space for the front view of the user’s
hand. We address the captured data as 2.5D hand model. The
raw 2.5D data obtained for hand shape was preprocessed to
ensure accurate and efficient recognition. The preprocessed
hand models for different poses were saved as templates. The tem-
plates were later used for matching during the recognition pro-
cess. The following subsections detail the steps involved in the
generation of database and recognition algorithm.

Preprocessing and database creation

The principal objective of the database creation was to generate
templates for hand poses so as to enable efficient matching of

hand surfaces. Creating templates comprises of three main
steps: (1) data acquisition, (2) data cleansing (segmenting off use-
less section in the 2.5D hand shape), and (3) reorientation. Apart
from database creation, these steps were also used for preproces-
sing all input hand pose captured from the depth-sensing camera.

Data acquisition
Most of the model-based shape matching methods need a 3D
reconstruction that relies on multiple 2.5D shapes captured at dif-
ferent viewing angles (Chang et al., 2006; Lu et al., 2006). Unlike
these methods, we directly use the 2.5D hand shape captured by
depth-sensing cameras as the template to create our database.

The 2.5D surface contains only partial information of the real
hand model. Single 2.5D hand shape information might some-
times be insufficient to capture all the relevant information of a
real hand to enable efficient recognition. Therefore, letting the
system acquire multiple snapshots from slightly different orienta-
tions of the hand was considered as a solution to this issue. In
doing so, our system was not only able to capture more informa-
tion about a particular hand pose, but it was also able to compen-
sate for the unexpected torsion caused by the low resolution of
time-of-flight depth cameras. More the snapshots/templates
acquired for a hand pose, more accurate the system would be.
However, more templates also increase the computation time dur-
ing recognition. Hence, multiple views of same hand pose were
stored only for few hand poses. This process is explained in
more detail in the section ‘Static Hand Pose Recognition Results’.

Data cleansing
The segmented hand shape taken from iisu™ SDK of DepthSense
camera includes a small section of the forearm connected to the
wrist, and the length of this section is uncertain (see Fig. 5).
Preliminary tests indicated that this piece of data introduces
errors that adversely affect the accuracy of the recognition process.
Hence, we applied a simple data cleansing method to tackle this
issue. It was assumed that the user’s hand in front of the camera
is always aligned such that the palm is facing the camera and the
line joining the wrist center with palm center is roughly aligned
with the upward y-axis as shown in Figure 5. This assumption
is valid usually, as the users tend to use the camera in the similar
fashion.

For segmenting off the forearm data, we first found the mini-
mum of Euclidean distances between the palm center p and each
point on the contour of the hand ci. This calculation returns the
radius of the largest inscribed circle within the palm of the user’s
hand, which can be written as dr:

dr = min
i
(‖p− ci‖). (12)

The y-coordinate for each vertex vi on the hand model was com-
pared with the y-coordinate of the palm center p, and if viy <py−
dr, the i

th vertex was removed from the point set of hand model,
as shown in Figure 5. Note that this method is scale invariant,
thus insensitive to different hand sizes and the distance between
hand and camera (provided the hand be within the detection
range of the camera).

Reorientation
Reorientation of the hand model was required because the raw
data of the hand model was in arbitrary orientation with respect
to the camera’s coordinate system. We extract several features of

60 Jinmiao Huang et al.

https://doi.org/10.1017/S0890060418000045 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060418000045

the captured hand shape to align it consistently with all the other
template hand shapes. The objective of extracting these features is
to calculate the rigid transformation for aligning the input model
to the database models and center it at the origin. The palm cen-
ter location and normal was extracted from iisu™ SDK of
DepthSense camera, and two end points on the cutting line was
obtained from the data cleansing step described in the section
‘Data cleansing’. The transformation of the database model
included centering the model and alignment of the coordinate
axis. Model centering is done by shifting the model palm center
to the origin by simple translation operation. Centering is fol-
lowed by aligning the palm center normal to the positive z-axis.
This alignment constrains five degrees of freedom of the model,
which are translation along x, y, and z axes, and rotation about
x and y axes. The rotation about z axis, the only degree of free-
dom, was constrained using the end points of the cutting line,
pstart(x1, y1, z1) and pend(x2, y2, z2). The hand model was rotated
about the z-axis by an angle θ to make the cutting line’s projec-
tion on x− y plane parallel to the x-axis. The rotation angle θ
between the cutting line’s projection and x axis is given as:

u = − tan−1 y2 − y1
x2 − x1

()
. (13)

Figure 6 shows the hand model before and after the reorientation
process.

Recognition algorithm

After the preprocessing phase, the input hand pose is compared
with database hand poses. We developed a distance metric to

obtain the most similar hand pose among the database. The key
components of the implemented static hand pose recognition
algorithm are described in the following sub-sections.

Aligning input hand pose with a template pose
The reorientation process in the preprocessing phase only coar-
sely aligns the input hand model with the coordinate system. As
seen in Figure 7, for a proposed hand pose shown in the image
on the left, the input shapes (dark yellow) captured at different
times, align in a different way to the same template (light yellow).
This misalignment is mainly caused due to the low resolution of
the depth-sensing cameras. Low resolution leads to errors in the
calculation of the palm center and palm center normal. Also,
the assumption used for user’s hand orientation while calculation
of the cutting line is sometimes unreliable. Further alignment is
necessary while matching an input hand pose with database
hand models. Iterative Closest Point (ICP) algorithm is a well-
known method employed to find the minimum distance or dis-
similarity measure between two shapes. The steps in using ICP
include: (1) pairing each point on the source shape with the clo-
sest point on the destination shape, (2) computing the transfor-
mation matrix for aligning source data points with destination
shape, and (3) iterating steps 1 and 2 until convergence. The
goal of ICP is to find the optimum transformation matrix Mopt,
which can be written as:

Mopt = argmin
M

∑
i

dist(M · ai, bi), (14)

where ai is the ith source point, bi is corresponding closest point
found on the destination shape, and dist(· , ·) is a distance metric
used for computing the distances between points. ICP theoreti-
cally provides a good measure of dissimilarity; however, it has
some limitations. Firstly, it might be difficult to find global optima
for the transformation matrix. Also, ICP might be computation-
ally expensive as the numbers of iterations required for conver-
gence are usually very high. The worst-case running time for
ICP is between Ω(nlogn) and O(n2d)d, where N is the number
of sample points and d is the number of dimensions. From our
experiments, the ICP-based implementation took about several
seconds to yield the local optimal matching, causing users to
notice latency in the computation process. Hence, ICP-based
method is not suitable for a real-time system.

Fig. 5. (a) and (b) indicates the difference in length of forearm section in two poses
(l1 <l2), and (c) illustrates the method used to segment off the forearm section.

Fig. 6. (a) Original position and orientation of captured hand shape, (b) Position and
orientation of hand shape after transformation.

Fig. 7. (a) A sample hand pose, (b) and (c) shows different alignment results for the
sample hand pose with the same template.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 61

https://doi.org/10.1017/S0890060418000045 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060418000045

In our implementation, instead of relying on slow ICP algo-
rithm, the features computed during the reorientation process is
used. For better alignment of the inputted hand shape with data-
base templates, we lift the constraint of rotation around the palm
center normal axis by the small angle. In our experiments, it was
observed that a rotation within the range of ± 10° would be suffi-
cient to align bulk of the surface areas between source shape and
destination shape. In this regard, since the palm center normal is
aligned with the positive z-axis, the rotation transformation about
it is represented by the following sparse matrix:

R =
cos u − sin u 0 0
sin u cos u 0 0
0 0 1 0
0 0 0 1

⎛
⎜⎜⎝

⎞
⎟⎟⎠, (15)

where θ∈ [− 10°, 10°] is the rotation angle around z-axis. To
obtain a suitable value of θ, we compute the distance between
transformed input hand shape and the template at every 2°

value within ± 10°. The θ value that gives the least distance pro-
vides the final R matrix to be used. The relation between the
raw input shape g and the transformed shape �g is given as follows:

�g = R ·M · g, (16)

where M is the transformation matrix used for reorientation dur-
ing the preprocessing phase.

Two-way surface matching distance
The distance between any two hand poses can be computed using
many possible distance metrics. Point-to-plane (Low, 2004) is one
such distance metric; however, it is not a good measurement for
hand pose recognition. Its drawback is demonstrated in
Figure 8, where point-to-plane distance does not accurately reflect
the dissimilarity between two shapes. The metric used in our
implementation is two-way surface matching distance Λ(· , ·).
Two-way surface matching distance is the sum of the two directed
surface matching distances Λ(· , ·). Directed surface matching
distance is a point-to-point based root mean square Euclidean
distance from the source shape A to the destination shape b,
given as follows:

l(a, b) = 1
N

∑N
i=1

‖ai − bi‖2
√√√√ , (17)

where N is the number of points in the source shape a, ai is the i
th

point on source shape, and bi is corresponding closest point
found on the destination shape b.

To compute the dissimilarity between the transformed input
hand pose �g and a template hand pose h, we compute the two-

way surface matching distance, given as follows:

L(�g, h) = l(�g, h) + l(h, �g). (18)

The input hand pose is matched with each template in the data-
base successively. The recognition decision is made based on the
shortest L(�g, h) value.

Experiments and results

This section demonstrates the experiments and results for two
categories: (1) sketch classification, and (2) static hand pose
recognition.

Sketch classification user study

To obtain an objective assessment of our sketch classification
approach, we conducted an institutional review board (IRB)
approved formal user study using four sketch/symbol domains
as shown in Figure 9. The study involved ten participants with
ages between 20 years to 29 years and having an engineering
background. Among the ten participants, five had no experience
using depth-sensing cameras in the past, two had some experience
playing games using Kinect for Xbox, and three had some prior
experience with Softkinetic DepthSense cameras. Each sketch
domain consists of ten symbols with ten examples of each type for
every user. The study was conducted for each domain indepen-
dently. The study involved ten participants. As the participants
in our user studies had little experience using the DepthSense
camera, they were supervised while sketching the first symbol
for each domain. The pertinent data for the user study is shown
in Table 1.

The raw data collected from the participants consists of spatial
coordinates (x, y, z) and temporal coordinates (t) for each sketch.
A total of 4000 sample sketches were collected. To evaluate the
invariance properties of our algorithm, we randomly translated,
rotated, and scaled the raw sketch in 3D space. Each spatial coor-
dinate was translated by a random value drawn from a uniform
distribution in the range [−1, 1]. Each sketch was also rotated
along all three axes by three random angles, respectively, drawn
from a uniform distribution in the range [0°, 180°]. The sketches
were also scaled with respect to their mean center by a random
scaling factor drawn from a uniform distribution in the range
[0, 2]. The sketch samples were then preprocessed as described
in the section ‘Preprocessing’. The 154-dimensional feature vector
was then calculated for each preprocessed sample (see the section
‘Geometric and Statistical Features’). The six-speed and curvature

Fig. 8. Point-to-Point error and Point-to-Plane error between two surfaces.

Fig. 9. Symbols used in the experiments - Domain 1: Arabic numerals, Domain 2:
English alphabets, Domain 3: Physics simulation symbols, and Domain 4:
Procedural CAD symbols (Note that this figure shows 2D projection of 3D sketches).

62 Jinmiao Huang et al.

https://doi.org/10.1017/S0890060418000045 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060418000045

data were normalized using their maximum value among the
training dataset. These maximum values were stored for future
use, as it is necessary to scale every input feature vector using
the same parameters before its classification. Normalization of
distance and angle features was not required since their values
were comparative and always lies in the range [0, 1] (see the sec-
tion ‘Distance features’ and ‘Angle features’). We performed PCA
on the normalized feature dataset to better understand the corre-
lation between the computed features. Explained variance ratio
(EVR) was computed for each principal component by taking
the ratio of its variance or eigenvalue to the sum of variances
for all principal components, that is EVRj = lj/

∑
lj. Figure 10

shows the decay of EVR with ordered principal components.
The variation of cumulative EVR is also depicted in Figure 10.
Note that about 95% of the variance in the data can be explained
by first 24 principal components. Therefore, one could use a
smaller feature set for classifying sketch dataset with reasonable
accuracy and better performance. However, the computational
power of modern computers is sufficient to provide real-time per-
formance with 154-dimensional feature set. Thus, all the com-
puted features were used to learn models for classification
purpose.

For each domain, the study was carried out independently.
Hence, each study involved ten classes of sketches. For each
class, the database collected from each user consisted of 100 sam-
ples. 30% of the data was randomly chosen as the test data. The
remaining 70% data was used for training with fivefolds cross-
validation. It was ensured that samples of all ten classes were

Table 1. Database for user study

Number of sketching domains 4

Number of classes per domain 10

Number of participants 10

Number of samples per class per participant 10

Fig. 10. Variation of explained variance ratio (EVR) and its cumulative with the prin-
cipal components in the decreasing order of corresponding eigenvalues.

Fig. 11. Variation in cross-validation accuracy for different values of SVM model parameters C and γ.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 63

https://doi.org/10.1017/S0890060418000045 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060418000045

selected in equal proportion for training, validation, and testing.
SVM models with RBF as the kernel function were learned during
the training phase. Fivefolds cross-validation was used to tune the
parameters C and γ of the model to their optimum values using
grid search. For different value pairs of C and γ, the cross-
validation accuracy was compared. The value pair that provides
the highest accuracy was chosen as the optimum values for C

and γ. The optimum values for C for four domains, in order,
are 1, 4, 0.25, and 4. And, the optimum γ values are 1 for all
four domains. Contour plots of variation in cross-validation accu-
racy for all four domains is presented in Figure 11.

The learned SVM models with the optimum parameter values
were then used to classify samples in the test dataset. The test
datasets consisted of samples that the model had never seen
before. Hence, the obtained accuracy can be used to generalize
the performance of the classifier. The accuracies for all four
domains are shown in Table 2. The mean test set accuracy of
98.92% was reported. Even with significant intra-class variation
in drawing habits of users, our algorithm was able to attain
high accuracy. Some randomly chosen samples from the database
showing the variations in drawing habits of users are depicted in
Figure 12. We are making the database of sketches containing
4000 samples used in our experiment freely available online.
The database can be downloaded at the following webpage:
https://github.com/madlabub/Sketch-Data.

Static hand pose recognition results

Experiments were conducted to evaluate the performance of static
hand pose recognition algorithm. Fifteen different hand poses,
shown in Figure 13, were selected for the experiment. In a
template-based approach for recognition, although multiple tem-
plates would improve the accuracy of the classifier, at the same
time, it would also increase the computation time. Obtaining a
real-time performance is necessary for the success of an interface.
In our experiments on a quad-core Intel® Core™ i7 3.40 GHz
CPU with 16 GB RAM, matching two hand pose inputs took
approximately 0.015 s on average. We consider 0.5 s as an

Table 2. Classification accuracy of SVM model with optimum parameter values

Cross-validation Test

Accuracy (%) Accuracy (%)

Domain 1 99.43 99.00

Domain 2 99.14 99.67

Domain 3 100.00 100.00

Domain 4 97.29 97.00

Mean 98.96 98.92

Fig. 12. Intra-class variations in drawing habits of users.

Fig. 13. Hand pose database.

64 Jinmiao Huang et al.

https://doi.org/10.1017/S0890060418000045 Published online by Cambridge University Press

https://github.com/madlabub/Sketch-Data
https://github.com/madlabub/Sketch-Data
https://doi.org/10.1017/S0890060418000045

acceptable upper limit for total recognition time of a hand pose.
Hence, a maximum of 30 (∼0.5/0.015) hand poses was stored
as templates.

The database of 30 templates was created based on preliminary
experiments. The confusion matrix from the preliminary analysis
was used to judge the number of templates required for each class
of hand pose. This analysis resulted in each hand pose having
one–four templates in the database, making a total of 30 tem-
plates. These 30 templates were used in evaluating the perfor-
mance of our hand pose recognition system.

To test the system’s accuracy, 30 trials were carried out. In each
trial, user recreated five of the 15 hand poses in front of the depth-
sensing camera within a duration of 3 s. The classification accu-
racy was computed by combining the results from all trials and
finding the percentage of number of hand poses correctly recog-
nized. An accuracy of 95.3% was obtained.

For the interfaces implemented, it was observed that only five
hand poses were sufficient to perform all the intended tasks.

Active/Inactive sketching mode was controlled using open/close
hand pose (Figs. 13a and b). The translation, orientation, and
scaling of 3D CAD models were controlled by three other hand
poses (Figs. 13c–e). Using these five hand poses, increases not
only the classification accuracy but also reduces the computation
time. These improved results can be attributed to the fact that the
size of the database was reduced to ten templates only.

Figure 14 shows snapshots of the developed interfaces. A video
abstract of these interfaces with our gesture-based system in
action can be seen at the following link: http://youtu.be/
ExpPFZGPdYw. As demonstrated in the video abstract, our sys-
tem can be interfaced with multitude of applications, including
CAD systems. The procedural CAD symbols defined in Domain
4 (Fig. 9) can be used to create 3D shape primitive using hand
gestures. Furthermore, static hand gestures (Fig. 13) can be used
to manipulate 3D models in CAD environment. An example of
a scaled product family of the various 3D model created using
hand gestures is shown in Figure 15.

Fig. 14. Interfaces developed to demonstrate the efficacy of our system: (a) Text/symbol recognition interface, (b) 3D CAD modeling and manipulation interface,
and (c) video player interface.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 65

https://doi.org/10.1017/S0890060418000045 Published online by Cambridge University Press

http://youtu.be/ExpPFZGPdYw
http://youtu.be/ExpPFZGPdYw
http://youtu.be/ExpPFZGPdYw
https://doi.org/10.1017/S0890060418000045

Conclusion and future work

The paper presents a highly accurate system for next-generation
human–computer interfaces. The system uses the depth-sensing
camera to record user’s palm and its movement. The trajectory of
motion of user’s palm in a particular pose is tracked and forms
3D sketch or symbol. 154-dimensional feature vector, extracted
from the 3D sketch/symbol, is fed into the learned classifier
model to predict its class. The interface then maps it to relevant
commands and performs a suitable action. Additionally, static
hand poses are also recognized by our system. Template-based
hand pose recognizer was implemented, and it used to switch
between an active and inactive state of the sketching mode. It was
also used in a 3D CADmodel manipulation task. The presented sys-
tem in trainable, that is users could define their own hand poses and
sketches according to their preference and train the system.

The evaluation of sketch classification algorithm was done by a
user study. Even with significant intra-class variations in sketches
drawn by different users, a resultant accuracy of 98.92% was
obtained. High accuracy highlights the effectiveness of the features
used, which is considered to be the most important factor in the
success of any machine learning task. Furthermore, we demon-
strated the invariance properties of our algorithm. Our algorithm
is invariant to translation, rotation, and scaling. However, it
depends on drawing directions of the sketch/symbol. The static
hand pose recognizer supplements the system with additional
functionalities. Hand pose recognizer can handle a large number
of poses, and is accurate and computationally fast for real-time
applications. We demonstrated the effectiveness of our system
by developing multiple interfaces for different tasks.

There are some exciting possibilities for future work. One
apparent future work is to do a comparative study of existing inter-
faces and the interfaces built using our system in terms of ease of
use, intuitiveness, learning time, and user-friendliness. An exciting

future work would be to develop features for sketch classification
that are direction independent. Creating a multi-stroke sketching
system is another promising direction. Another important direction
of future work would be to study the performance of sketch classi-
fication algorithm with the variation in number of classes it can
recognize. There is also scope for improvement in static hand
pose recognizer in terms of number of different hand poses it
could recognize while maintaining good accuracy and real-time
performance. A study could also be done to define a set of most
natural and intuitive hand gestures and poses for various com-
mands pertaining to a particular interface.

There are several applications where our gesture-based system
could be used to enhance user’s experience while interacting with
the application’s interface. We demonstrated the use of our system
with text input interface, 3D CAD modeling and manipulation
interface, and video player interface. Further improvement could
be done to these interfaces. For example, in the CAD interface,
more complex 3D models along with simple primitive could be
used. Constructive solid geometry could be implemented using ges-
tures to create more complex geometries. Also, assembling of 3D
models could be implemented using gesture commands. Similar
to video player interface, this system could be used to perform var-
ious operations on Xbox console to play video games. Many other
home appliances could be connected to the centralized gesture-
based system and controlled using simple gesture operations.

References

Babu SSS, Jaiswal P, Esfahani ET and Rai R (2014) Sketching in air: a single
stroke classification framework. In ASME 2014 International Design
Engineering Technical Conferences and Computers and Information in
Engineering Conference. American Society of Mechanical Engineers, pp.
V02AT03A005–V02AT03A005.

Fig. 15. Scaled product family of various 3D models created using hand gesture-based CAD interface.

66 Jinmiao Huang et al.

https://doi.org/10.1017/S0890060418000045 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060418000045

Bahlmann C, Haasdonk B and Burkhardt H (2002) Online handwriting rec-
ognition with support vector machines-a kernel approach. In Proceedings of
the Eighth International Workshop on Frontiers in Handwriting Recognition.
IEEE, pp. 49–54.

Baudel T and Beaudouin-Lafon M (1993) Charade: remote control of objects
using free-hand gestures. Communications of the ACM 36(7), 28–35.

Belaid A and Haton J-P (1984) A syntactic approach for handwritten math-
ematical formula recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence 6(1), 105–111.

Bhat R, Deshpande A, Rai R and Esfahani ET (2013) BCI-touch based sys-
tem: a multimodal CAD interface for object manipulation. In ASME 2013
International Mechanical Engineering Congress and Exposition. American
Society of Mechanical Engineers, pp. V012T13A015–V012T13A015.

Bretzner L, Laptev I and Lindeberg T (2002) Hand gesture recognition using
multi-scale colour features, hierarchical models and particle filtering. In
Proceedings of the Fifth IEEE International Conference on Automatic Face
and Gesture Recognition. IEEE, pp. 423–428.

Chang C-C and Lin C-J (2011) LIBSVM: a library for support vector machines.
ACM Transactions on Intelligent Systems and Technology (TIST) 2(3), 27.

Chang KI, Bowyer W and Flynn PJ (2006) Multiple nose region matching for
3D face recognition under varying facial expression. IEEE Transactions on
Pattern Analysis and Machine Intelligence 28(10), 1695–1700.

Connell SD and Jain AK (2001) Template-based online character recognition.
Pattern Recognition 34(1), 1–14.

Cortes C and Vapnik V (1995) Support-vector networks. Machine Learning
20(3), 273–297.

Deepu V, Madhvanath S and Ramakrishnan AG (2004) Principal compo-
nent analysis for online handwritten character recognition. In Proceedings
of the 17th International Conference on Pattern Recognition (ICPR). IEEE,
vol. 2, pp. 327–330.

Dimitriadis YA and López Coronado J (1995) Towards an ART based math-
ematical editor, that uses on-line handwritten symbol recognition. Pattern
Recognition 28(6), 807–822.

Doliotis P, Athitsos V, Kosmopoulos D and Perantonis S (2012) Hand shape
and 3D pose estimation using depth data from a single cluttered frame. In
Advances in Visual Computing, Part of the Lecture Notes in Computer
Science book series (LNCS, volume 7431). Berlin, Heidelberg: Springer
Berlin Heidelberg, pp. 148–158.

Domingos P (2012) A few useful things to know about machine learning.
Communications of the ACM 55(10), 78–87.

Durgun FB and Özgüç B (1990) Architectural sketch recognition.
Architectural Science Review 33(1), 3–16.

Eggli L, Brüderlin BD and Elber G (1995) Sketching as a solid modeling tool.
In Proceedings of the Third ACM Symposium on Solid Modeling and
Applications. ACM, pp. 313–322.

Forman G (2003) An extensive empirical study of feature selection metrics for
text classification. Journal of Machine Learning Research 3, 1289–1305.

Freeman WT and Roth M (1995) Orientation histograms for hand gesture
recognition. In International Workshop on Automatic Face and Gesture
Recognition, vol. 12. Zurich: IEEE, pp. 296–301.

Jaiswal P, Bajad AB, Nanjundaswamy VG, Verma A and Rai R (2013)
Creative exploration of scaled product family 3D models using gesture
based conceptual computer aided design (C-CAD) tool. In ASME 2013
International Design Engineering Technical Conferences and Computers
and Information in Engineering Conference. American Society of
Mechanical Engineers, pp. V02AT02A038–V02AT02A038.

Jenkins DL and Martin RR (1992) Applying constraints to enforce users’ inten-
tions in free-hand 2-D sketches. Intelligent Systems Engineering 1(1), 31–49.

Jojic N, Brumitt B, Meyers B, Harris S and Huang T (2000) Detection and
estimation of pointing gestures in dense disparity maps. In Proceedings.
Fourth IEEE International Conference on Automatic Face and Gesture
Recognition. IEEE, pp. 468–475.

Jolliffe IT (1986) Principal component analysis and factor analysis. In
Principal Component Analysis. New York, NY: Springer, pp. 115–128.

Keskin C, Kiraç F, Kara YE and Akarun L (2011) Real time hand pose esti-
mation using depth sensors. In IEEE International Conference on Computer
Vision Workshops (ICCV Workshops). IEEE, pp. 1228–1234.

Koschinski M, Winkler H-J and Lang M (1995) Segmentation and recogni-
tion of symbols within handwritten mathematical expressions. In
International Conference on Acoustics, Speech, and Signal Processing, 1995
(ICASSP-95). IEEE, vol. 4, pp. 2439–2442.

Lacquaniti F, Terzuolo C and Viviani P (1983) The law relating the kinematic
and figural aspects of drawing movements. Acta Psychologica 54(1), 115–130.

Lamb D and Bandopadhay A (1990) Interpreting a 3D object from a rough
2D line drawing. In Proceedings of the 1st Conference on Visualization’90.
IEEE Computer Society Press, pp. 59–66.

Lank E, Thorley JS and Chen SJ-S (2000) An interactive system for recogniz-
ing hand drawn UML diagrams. In Proceedings of the 2000 Conference of the
Centre for Advanced Studies on Collaborative Research. IBM Press, p. 7.

Li Y (2012) Hand gesture recognition using Kinect. In IEEE 3rd International
Conference on Software Engineering and Service Science (ICSESS). IEEE, pp.
196–199.

Lien C-C and Huang C-L (1998) Model-based articulated hand motion track-
ing for gesture recognition. Image and Vision Computing 16(2), 121–134.

Lipson H and Shpitalni M (1995) A new interface for conceptual design based
on object reconstruction from a single freehand sketch. CIRP Annals-
Manufacturing Technology 44(1), 133–136.

Liu J, Pan Z and Xiangcheng L (2010) An accelerometer-based gesture recog-
nition algorithm and its application for 3D interaction. Computer Science
and Information Systems 7(1), 177–188.

Liu X and Fujimura K (2004) Hand gesture recognition using depth data. In
Proceedings of the Sixth IEEE International Conference on Automatic Face
and Gesture Recognition. IEEE, pp. 529–534.

Low K-L (2004) Linear Least-Squares Optimization for Point-to-Plane ICP
Surface Registration. Chapel Hill: University of North Carolina.

Lu X, Jain AK and Colbry D (2006) Matching 2.5 D face scans to 3D models.
IEEE Transactions on Pattern Analysis and Machine Intelligence 28(1), 31–
43.

Maji S (2006) A Comparison of Feature Descriptors. Berkeley: University of
California.

Malassiotis S, Aifanti N and Strintzis MG (2002) A gesture recognition sys-
tem using 3D data. In Proceedings of the First International Symposium on
3D Data Processing Visualization and Transmission. IEEE, pp. 190–193.

Martí E, Regincós J, López-Krahe J and Villanueva JJ (1993) Hand line
drawing interpretation as threedimensional objects. Signal Processing 32
(1), 91–110.

Matsakis NE (1999) Recognition of handwritten mathematical expressions.
PhD diss. Massachusetts Institute of Technology.

Muñoz-Salinas R, Medina-Carnicer R, Madrid-Cuevas FJ and
Carmona-Poyato A (2008) Depth silhouettes for gesture recognition.
Pattern Recognition Letters 29(3), 319–329.

Nanjundaswamy VG, Kulkarni A, Chen Z, Jaiswal P, Shankar SS, Verma A
and Rai R (2013) Intuitive 3D computer-aided design (CAD) system with
multimodal interfaces. In ASME 2013 International Design Engineering
Technical Conferences and Computers and Information in Engineering
Conference. American Society of Mechanical Engineers, pp. V02AT02A037–
V02AT02A037.

Nishino H, Utsumiya K and Korida K (1998) 3d object modeling using spa-
tial and pictographic gestures. In Proceedings of the ACM Symposium on
Virtual Reality Software and Technology. ACM, pp. 51–58.

Oikonomidis I, Kyriazis N and Argyros AA (2011) Efficient model-based 3D
tracking of hand articulations using Kinect. In BmVC. vol. 1, p. 3.

Osada R, Funkhouser T, Chazelle B and Dobkin D (2002) Shape distribu-
tions. ACM Transactions on Graphics (TOG) 21(4), 807–832.

Pavlidis T and Van Wyk CJ (1985) An automatic beautifier for drawings and
illustrations. SIGGRAPH Computer Graphics 19(3), 225–234.

Pavlovic VI, Sharma R and Huang TS (1997) Visual interpretation of hand
gestures for human-computer interaction: a review. IEEE Transactions on
Pattern Analysis and Machine Intelligence 19(7), 677–695.

Plamondon R and Srihari SN (2000) Online and off-line handwriting recog-
nition: a comprehensive survey. IEEE Transactions on Pattern Analysis and
Machine Intelligence 22(1), 63–84.

Press WH (2007) Numerical Recipes 3rd Edition: The Art of Scientific
Computing. New York, NY: Cambridge University Press.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 67

https://doi.org/10.1017/S0890060418000045 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060418000045

Ren Z, Yuan J, Meng J and Zhang Z (2013) Robust part-based hand gesture
recognition using kinect sensor. IEEE Transactions on Multimedia 15(5),
1110–1120.

Ren Z, Yuan J and Zhang Z (2011) Robust hand gesture recognition based on
finger-earth mover’s distance with a commodity depth camera. In
Proceedings of the 19th ACM international conference on Multimedia.
ACM, pp. 1093–1096.

Rokach L (2010) Ensemble-based classifiers. Artificial Intelligence Review
33(1), 1–39.

Rubine D (1991) Specifying gestures by example. SIGGRAPH Computer
Graphics 25(4), 329–337.

Shotton J, Fitzgibbon A, Cook M, Sharp T, Finocchio M, Moore R,
Kipman A and Blake A (2011) Real-time human pose recognition in
parts from single depth images. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE, pp. 1297–1304.

Shpitalni M and Lipson H (1995) Classification of sketch strokes and corner
detection using conic sections and adaptive clustering. ASME Journal of
Mechanical Design 119, 131–135.

Stenger B, Mendonça PRS and Cipolla R (2001) Model-based 3D tracking of
an articulated hand. In Proceedings of the 2001 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,
vol. 2, pp. II–310.

Sturman DJ and Zeltzer D (1994) A survey of glove-based input. Computer
Graphics and Applications, IEEE 14(1), 30–39.

Suryanarayan P, Subramanian A and Mandalapu D (2010) Dynamic hand
pose recognition using depth data. In 20th International Conference on
Pattern Recognition (ICPR). IEEE, pp. 3105–3108.

ThakurA andRaiR (2015)User studyof hand gestures for gesture based 3DCAD
modeling. In ASME 2015 International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference.
AmericanSocietyofMechanical Engineers, pp.V01BT02A017–V01BT02A017.

Tuytelaars T and Mikolajczyk K (2008) Local invariant feature detectors: a
survey. Foundations and Trends® in Computer Graphics and Vision 3(3),
177–280.

Vinayak SM, Piya C and Ramani K (2012) Handy-Potter: rapid 3D shape
exploration through natural hand motions. In ASME 2012 International
Design Engineering Technical Conferences and Computers and Information
in Engineering Conference. American Society of Mechanical Engineers,
pp. 19–28.

Wen Y, Hu C, Yu G and Wang C (2012) A robust method of detecting hand
gestures using depth sensors. In IEEE International Workshop on Haptic
Audio Visual Environments and Games (HAVE). IEEE, pp. 72–77.

Wobbrock JO, Wilson AD and Li Y (2007) Gestures without libraries, toolkits
or training: a $1 recognizer for user interface prototypes. In Proceedings of
the 20th Annual ACM Symposium on User Interface Software and
Technology. ACM, pp. 159–168.

Jinmiao Huang graduated from University at Buffalo in 2015 with a PhD
degree in Mechanical Engineering. She is currently a computer vision and
machine learning research scientist at ABB Corporate Research Center in
Connecticut, USA. Jinmiao’s research interests include machine learning,
optimization, Bayesian methods for deep learning, and NLP. She conducts
research in deep learning and reinforcement learning for future industrial
robot applications. She is also working on applying computer vision and
machine learning algorithms to enhance the perception and recognition
capability for a variety of ABB products.

Prakhar Jaiswal is a doctoral candidate in Mechanical Engineering depart-
ment at University at Buffalo (SUNY), Buffalo, New York. He obtained
his Bachelors in Mechanical Engineering from Indian Institute of
Technology at Kanpur in 2011. He has worked as Research Intern at
PARC, a Xerox company, and Siemens Corporate Technology in 2015 and
2016, respectively. His research interests include geometric reasoning,
machine learning, deep learning, computational geometry, probabilistic gra-
phical models, and computer vision.

Rahul Rai is an Associate Professor in Department of Mechanical and
Aerospace Engineering, University at Buffalo (SUNY), Buffalo, New York.
He is the founder and director of the Manufacturing and Design
Laboratory (MADLab). He holds a PhD in Mechanical Engineering from
the University of Texas at Austin. His main research interests include digital
manufacturing, engineering design, machine learning, computational geom-
etry, uncertainty quantification in complex system design, additive manufac-
turing, applied ontology, multimodal intuitive interfaces for conceptual
CAD, optimization, metamodeling, and design of experiments.

68 Jinmiao Huang et al.

https://doi.org/10.1017/S0890060418000045 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060418000045

	Gesture-based system for next generation natural and intuitive interfaces
	Introduction
	Related works
	Overview
	Sketch classification
	Preprocessing
	Geometric and statistical features
	Speed and curvature features
	Distance features
	Angle features

	Feature-based classifier

	Static hand pose recognition
	Preprocessing and database creation
	Data acquisition
	Data cleansing
	Reorientation

	Recognition algorithm
	Aligning input hand pose with a template pose
	Two-way surface matching distance

	Experiments and results
	Sketch classification user study
	Static hand pose recognition results

	Conclusion and future work
	References

