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Abstract

We prove a general large-sieve statement in the context of random walks on subgraphs of a given graph.
This can be seen as a generalization of previously known results where one performs a random walk on a
group enjoying a strong spectral gap property. In such a context the point is to exhibit a strong uniform
expansion property for a suitable family of Cayley graphs on quotients. In our combinatorial approach,
this is replaced by a result of Alon–Roichman about expanding properties of random Cayley graphs.
Applying the general setting we show, for instance, that with high probability (in a strong explicit sense)
random coloured subsets of integers contain monochromatic (nonempty) subsets summing to 0, and that
a random colouring of the edges of a complete graph contains a monochromatic triangle.

2010 Mathematics subject classification: primary 60G50; secondary 05C25.
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1. Introduction

The relevance of using families of expander graphs for studying objects or solving
problems coming from a broad variety of mathematical areas has been emphasized
in numerous ways in recent years. Notably the combination of sieving arguments
together with expansion properties has proved particularly efficient. Let us mention
the ground-breaking work [4], where the mix of such techniques enabled the authors
to detect almost primes in a variety of non-Abelian situations. A different kind of sieve
together with the same expansion properties has also been exploited in the context of
group theory [12] or to obtain quantitative results in the probabilistic Galois theory
of arithmetic groups [8]. In the sieving processes used in the aforementioned works,
one is naturally led to a crucial step where some spectral gap property is needed.
Deep results about the groups involved then come into play. Typically the required
properties are provided by recent breakthroughs in algebraic combinatorics that have
led to strong forms of Lubotzky’s property (τ) (so-called superstrong approximation,
a culminating point of the study of which is the work by Golsefidy and Varjú [7]).
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Indeed, the spectral gap result needed can be tautologically interpreted as a property
of expansion of a certain family of graphs.

The goal of the present paper is to establish a general large-sieve inequality in a
purely combinatorial setting. More precisely, we develop an axiomatic version of
a sieve in the context of countable families of Cayley graphs, which are randomly
generated via a random walk. This can be viewed as a generalization of the framework
used for instance in [9, Ch. 7] or [8] to a situation where spectral gap properties on
groups are no longer available. To circumvent the lack of algebraic structure, we will
exploit the fact that random graphs are ‘good expanders’. Precisely we will use a result
of Alon–Roichman [3] according to which a family of random Cayley graphs is very
likely to form a good family of expanders. However, further difficulties arise: contrary
to the usual situation, expansion properties are not sufficient to ensure good enough
cancellation in the correlation sums appearing. To obtain the required cancellation,
we introduce structural properties and use concentration arguments. To the best of our
knowledge, this point of view is new within sieving contexts and it seems to us that it
might lead to new uses and theoretical studies of sieves in a combinatorial setting.

After describing our general setting and proving our main result (Theorem 2.3), we
briefly present some concrete uses of our result to specific questions.

We describe several applications of our method to the study of typical properties
of subgraphs of a given graph. To produce random elements for which we want to
test if some given property holds, we perform a random walk on the family of graphs
studied (cf. also [8]). Another approach could consist in quantifying the proportion of
elements that satisfy an expected property among a finite subset of the family of graphs
considered. For the applications we have in mind, this question would in fact be much
easier. As a matter of fact, we do need to quantify proportions of ‘good’ elements as
part of our sieving process.

The paper is organized as follows. In Section 2 we state and prove the main result
and we emphasize the way in which Alon–Roichman’s theorem enables us to work in
a setting which is combinatorial in nature (whereas earlier works such as [9, Ch. 7]
require a more algebraic framework). The rest of the paper is devoted to applications
of the main result. We conclude the paper with remarks on further questions that may
be of interest and that can be successfully investigated via our method. We notably
state a Ramsey-type result (together with a sketch of the proof) obtained by suitably
adapting the arguments used in the second application.

Notation 1.1. If X is a finite set, then #X and |X| synonymously denote the cardinality
of X.

If X is a finite graph, then Adj(X) is the adjacency operator sending a C-valued
function on the vertices of X to the function (x 7→

∑
y f (y)), where the sum is over the

neighbours y of the vertex x. If X is moreover d-regular (that is, every vertex of X has
degree d), then the normalized adjacency operator is (1/d) · Adj(X).

If G is a group and S ⊂ G, then X(G, S ) is the Cayley graph on G with edge set

S ∪ S −1 B {s ∈ G : s ∈ S or s−1 ∈ S }.
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If G is finite and Abelian, then Ĝ is the character group of G. If x is a nonnegative real
number, then dxe and bxc are the least integer greater than or equal to x and the greatest
integer smaller than or equal to x, respectively. If R is a positive integer, then [R] is the
set {1, . . . ,R}. Given a probability space (Ω, Σ, P) and two events A and B such that
P(B) , 0, we let P(A | B) be the conditional probability P(A ∩ B)/P(B). If f and g are
two real-valued functions defined on a set D and depending on a set P of parameters,
then f (x)�P0 g(x) means that there exists a positive constant C depending only on the
subset P0 ⊆ P such that | f (x)| 6 C|g(x)| whenever x ∈ D.

2. The general setting and a large sieve for graphs

2.1. Random walk large sieve: statement of the main result. Stating our main
result requires some definitions and a precise description of the general setting. Let G
be an Abelian group (in this section, the group law is noted multiplicatively) and Λ ⊂ N
be a (nonnecessarily finite) set of indices. We suppose that we are given a family
(H`)`∈Λ of subgroups of G such that for each ` the index n` B [G : H`] is finite. We
let ρ` : G→ G/H` be the canonical projection. If ` and `′ are two distinct elements
of Λ, we define ρ`,`′ : G→ G/H` ×G/H`′ by g 7→ (ρ`(g), ρ`′(g)).

We fix once and for all a probability space (Ω, Σ, P) and an arbitrarily small
real δ ∈ (0, 1). One of the main ingredients needed in our analysis is a theorem of
Christofides and Markström [5, Theorem 5], which is stated later (see Theorem 2.7).
Keeping the notation of [5, Theorem 5], we define two quantities:

ψ(δ)B 2((2 − δ) log(2 − δ) + δ log δ)−1 (2.1)

and, for each ` ∈ Λ,

κ(b`, `; δ)B dψ(δ)(log n` + b` + log 2)e,

where bB (b`) is a parameter (a sequence of positive real numbers).
Now let s(`)

1 , . . . , s(`)
κ(b` ,`;δ)

be independent identically distributed random variables
taking values in G/H`. The random walk on G we want to consider is obtained by
lifting the sets {s(`)

1 , . . . , s(`)
κ(b` ,`;δ)

} (and their ‘inverses’ so that all the graphs considered
are then undirected) to G. To that purpose, we define the random variable

S `(b`, δ)B {s
(`)
1 , . . . , s(`)

κ(b` ,`;δ)
} ∪ {(s(`)

1 )−1, . . . , (s(`)
κ(b` ,`;δ)

)−1},

which takes values in the set of subsets of G/H`. For every index ` ∈ Λ and every
integer m ∈ {1, . . . , κ(b`, `; δ)}, we need to choose a representative s̃(`)

m ∈ G of s(`)
m .

The particular representative we choose is imposed by the following condition of
admissibility. (As we shall establish later on, for each family of subgroups there exists
at most one admissible local sequence in the sense of Definition 2.1.)

Definition 2.1. Let (H`)`∈Λ be a fixed family of subgroups of finite index of G and,
for each ` ∈ Λ, let R` be a set of representatives of G/H`. The sequence (H`,R`)`∈Λ is
called an admissible local sequence for G if:
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(i)
⋂
`∈Λ H` = {1}; and

(ii) for all `, `′ ∈ Λ, ` , `′ ⇒ R` ⊆ H`′ .

Let us assume that the sequence (H`) of subgroups of G is such that there is an
admissible local sequence (H`,R`) for G. For each ` and each m ∈ {1, . . . , κ(b`, `; δ)},
we choose the unique representative s̃(`)

m of s(`)
m in R`. The aforementioned uniqueness

of an admissible local sequence ensures (see Lemma 2.4) that this defines in a unique
way elements s̃(`)

m in G. Next we set

S̃ `(b, δ)B {s̃
(`)
1 , . . . , s̃(`)

κ(b` ,`;δ)
} ∪ {(s̃(`)

1 )−1, . . . , (s̃(`)
κ(b` ,`;δ)

)−1}.

The subset of G we use to perform a random walk on G is

S (b, δ)B
∏
`∈Λ

∗

({1} ∪ S̃ `(b`, δ)). (2.2)

Let us explain precisely what the notation means. If A1, . . . , Ak are k subsets of G,
the product

∏k
i=1 Ai is the subset {a1 . . . ak : ai ∈ Ai} of G. Here the symbol

∏∗ means
that for all but finitely many of the ` the `th factor picked equals 1. Finally, S (b, δ) is
not seen as a random variable but as the product over ` of elements either equal to 1
or picked in S̃ `(b`, δ) evaluated at a common ω ∈ Ω. In other words, we fix once and
for all an element ω of Ω; picking an element of S (b, δ) amounts to picking 1 or an
element of some S̃ `(b`, δ)(ω) and then computing the product of these elements.

With notation as above, we perform the following random walk on G. It is defined
in the same way as in [9, Ch. 7].X0 = g0,

Xk+1 = Xkξk+1 for k > 0,

where g0 is a fixed element in G and the steps ξk are independent, identically distributed
random variables with distribution

P(ξk = s) = P(ξk = s−1) = ps = ps−1

for every k and every s ∈ S (b, δ), and where (ps)s is a sequence of positive real numbers
indexed by S (b, δ) such that ∑

s∈S (b,δ)

ps = 1.

Of course the random walk depends on the parameters b = (b`)` and δ. If Λ is
finite, the most natural such random walk is certainly the one defined by uniformly
distributing the steps, that is, ps B #S (b, δ)−1 for every s ∈ S (b, δ). In general, we
require that the sum of probabilities ps over elements s ∈ S (b, δ) that are mapped
by ρ`,`′ to any given (s′, t′) ∈ S `(b`, δ) × S `′(b`′ , δ) is not too small. Precisely, we
assume throughout the paper that for any given L > 1, every `, `′ ∈ Λ ∩ [1 , L] and
every (s′, t′) ∈ S `(b`, δ) × S `′(b`′ , δ),∑

s∈S (b,δ)
ρ`,`′ (s)=(s′,t′)

ps >
1

κ(bL, L, δ)2 , (?)

which seems an intuitive generalization of the uniform distribution to a general set Λ.
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Remark 2.2. In the illustrative examples discussed in Section 3, the growth of
κ(b`, `, δ) is linear as a function of `. Therefore, in our examples the lower bound
in (?) becomes � L−2. Thus, we see that some choices of sequence (ps) are not
suitable for (?) to hold. For instance, fix an arbitrarily small ε > 0 and define (ps)
in such a way that for s = 1 (the identity element of G) one has p1 = 1 − ε and
such that

∑
s∈S (b,δ)\{1} ps = ε. For such a sequence (ps), we can certainly produce

infinitely many pairs of distinct indices `, `′ ∈ Λ contradicting (?) (for example for
the choice L = max(`, `′)). The condition (?) should therefore be seen as a guarantee
that the distribution of the steps ξ j (that is, the sequence (ps)) is not ‘too chaotic’ or in
other words that the series of general terms (ps) does not converge too fast.

By studying the properties of the random walk (Xk)k, our aim is to describe the
behaviour of a ‘generic’ element g ∈ G. To do so, we make use of Kowalski’s
abstract large-sieve procedure extensively described, together with applications, in his
book [9]. As in every sieve method, one can only handle cases where the typical
properties at issue can be detected locally. To be more precise, we fix for each ` ∈ Λ a
conjugacy invariant subset Θ` ⊂ G/H`. The probability we want to upper bound is

P(∀` ∈ Λ, ρ`(Xk) < Θ`).

When applicable, the method shall produce effective upper bounds for the
probability with which Xk satisfies a fixed property that can be detected by the
condition ρ`(Xk) < Θ` for some Θ` ⊂ G/H`. Our main result is the following abstract
sieve statement. We refer the reader to the book by Kowalski [9, Proposition 3.5] for a
(self-contained) sieve statement that Theorem 2.3 builds on. For more information on
the random walk sieve used here, see also [9, Ch. 7].

Theorem 2.3. With notation as above, we set κN B κ(bN ,N, δ) for every N ∈ N and

C0 B sup
L∈N>0

max
`,`′∈Λ

L6`,`′62L

#S `(b`, δ)
#S `′(b`′ , δ)

.

Assume that condition (?) holds. Then there exists a positive real ν such that for every
positive integer k,

P(ρ`(Xk) < Θ`, ∀` ∈ ΛL)6 P(C0 =∞) +
∑
`∈ΛL

e−b`

+

(
1 +

( ∑
`∈ΛL

n`
)
(1 − κ−2

2Lν)
k
)( ∑

`∈ΛL

#Θ`

n`

)−1
,

where L is any fixed positive integer ΛL B Λ ∩ [L ,2L] and the constant ν depends only
on C0, the set S (b, δ) and the distribution of the steps ξ j (that is, the sequence (ps)).

In applications, the probability that C0 is infinite will be very small via a suitable
choice of parameters. Later on we prove a lemma (Lemma 2.9) the purpose of which
is to bound efficiently P(C0 =∞). We end this section by proving the aforementioned
uniqueness of admissible sequences, when they exist.
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Lemma 2.4. Let (H`)`∈Λ be a family of subgroups of finite index of G. There exists at
most one family (R`)`∈Λ where R` is a set of representatives of G/H` such that (H`,R`)
is an admissible local sequence.

Proof. Let (H`,R
(1)
`

) and (H`,R
(2)
`

) be two admissible local sequences for G. Fix `0 ∈ Λ

and let r1 ∈ R(1)
`0

and r2 ∈ R(2)
`0

be representatives of the same element of G/H`0 , so there
exists h ∈ H`0 such that r1 = r2h. For any ` , `0, condition (ii) of Definition 2.1 implies
that r1 ∈ H` and r2 ∈ H` and therefore h ∈ H`. Thus, h ∈ H`′ for every `′ ∈ Λ. Now
condition (i) of Definition 2.1 implies that h = 1 and hence r1 = r2. This shows that
R(1)
`0

= R(2)
`0

, thereby concluding the proof. �

2.2. Cayley graphs on quotients and expansion. Let G be an Abelian group.
We are interested in the properties of the Cayley graphs on the groups (G/H`)`∈Λ
with edges corresponding to the values taken by the random variables s(`)

i for i ∈
{1, . . . , κ(b`, `; δ)}. These graphs are regular: the regularity equals the number of
distinct values taken by the random variables si.

Remark 2.5. The assumption that G is Abelian is unnecessary for most of the results
of this section. It is used in a crucial way only in Lemma 2.8. However, since our main
result and the applications we develop only involve Abelian groups we chose to stick
to this case, making the exposition simpler.

Throughout the paper, if G is a k-regular graph, then the eigenvalues of G are the
eigenvalues of the normalized adjacency operator k−1 Adj(G). An eigenvalue λ is
nontrivial if |λ| , 1. The spectral gap ε(G) of G is defined to be min{1 − |λ| : λ is
a nontrivial eigenvalue of G} (recall that the eigenvalue −1 occurs if and only if G is
bipartite). We adopt the following definition for an expander graph, which slightly
differs from the standard one.

Definition 2.6. Let γ be a real number satisfying 0 < γ 6 1/2. A k-regular graph G is
a γ-expander graph if the spectral gap of G is at least γ.

Note in particular that according to the definition a k-regular graph with spectral
gap greater than 1/2 is a γ-expander graph for any γ ∈ (0, 1/2].

The reason for introducing the above setup is a theorem of Alon and
Roichman [3, Theorem 1], which has been subsequently improved by Landau
and Russell [10, Theorem 2] and Loh and Schulman [11, Theorem 1]. The last
improvement obtained so far, which is the version we state and use, is due to
Christofides and Markström [5, Theorem 5].

Theorem 2.7 (Christofides–Markström). With notation as above, fix an index ` in Λ.
For every real number δ ∈ (0 , 1/2], the probability that X(G/H`, {s

(`)
1 , . . . , s(`)

κ(b` ,`;δ)
}) is

not a δ-expander graph is less than e−b` .

The statement can be rephrased by saying that it is highly probable that the Cayley
graph X(G/H`, {s

(`)
1 , . . . , s(`)

κ(b` ,`;δ)
}) is a δ-expander graph, the counterpart being that the

edge set has very large cardinality. Note that the definition of an expander graph we
use is not completely equivalent to the usual definition. However, it is a standard fact
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that the (usual) expansion property and the spectral gap property are closely related
notions (see, for instance, [6, Theorem 1.2.3]), which allows us to use our definition
harmlessly for our purposes.

Kowalski [9, Ch. 7] successfully combined large-sieve techniques with expansion
properties in the setting of random walks on arithmetic groups. We want to transpose
this principle in a combinatorial setting. When adapting Kowalski’s work a nontrivial
issue comes from the fact that the expansion property crucial to us is not automatically
stable under Cartesian product. Precisely, [9, Ch. 7] relies on the fact that if S is
a symmetric generating system for SL2(Z) and if πd : SL2(Z)→ SL2(Z/dZ) is the
reduction modulo d map for some d > 2, then the whole family of Cayley graphs
on SL2(Z)/ ker πd (with respect to the projection of S ) indexed by squarefree integers
is expanding. In fact, it would be enough to have the same result with an index set
replaced by the set of positive integers that are squarefree and products of at most two
primes. (However, for Kowalski’s purposes, considering the primes as the index set
would not be sufficient.) To obtain a suitable combinatorial analogue of this method,
the forthcoming lemma is sufficient. It shows that expansion properties of Cayley
graphs are preserved, albeit only imperfectly, when one takes the Cartesian product
of two base groups. The expansion ratio guaranteed by the lemma is strong enough
for our purposes. However, we refer the interested reader to [1] for a much more
sophisticated method that does produce expander ‘product Cayley graphs’. (Recall
that the definition of ‘expander graph’ we use slightly differs from the standard one.)

Lemma 2.8. Let δ be a real number in (0, 1/2]. With notation as above,
assume that X(G, S ) and X(H, T ) are δ-expander Cayley graphs on finite
Abelian groups G and H (with edge sets defined by S ⊆ G and T ⊆ H,
respectively). Then, for every (x0, y0) ∈ G × H with x2

0 = 1 = y2
0, the Cayley graph

X(G × H, (S × {y0}) ∪ ({x0} × T )) is a ((1 + γ)−1δ)-expander graph, where

γ B max
{
|S ∪ S −1|

|T ∪ T−1|
,
|T ∪ T−1|

|S ∪ S −1|

}
.

Proof. For convenience, set Y B (S × {y0}) ∪ ({x0} × T ), S ∗ B S ∪ S −1, T ∗ B T ∪ T−1

and Y∗ B Y ∪ Y−1. The eigenfunctions of the normalized adjacency operator on X(G ×
H,Y) are of the form

(χ, τ) : (g, h) 7→ χ(g)τ(h)

for characters χ ∈ Ĝ and τ ∈ Ĥ. The corresponding eigenvalues are of the form

λχ,τ B
1

|S ∗| + |T ∗|

∑
(g,h)∈Y∗

χ(g)τ(h).

Since x2
0 = 1 = y2

0, we have χ(x0) = χ(x−1
0 ) and τ(y0) = τ(y−1

0 ), so the sum splits as
follows:

(|S ∗| + |T ∗|)λχ,τ = τ(y0)
∑
g∈S ∗

χ(g) + χ(x0)
∑
h∈T ∗

τ(h). (2.3)
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Figure 1. The product graph X(Z4 × Z4, {(1, σ), (σ, 1)}), where σ is a generating element of Z4.

We deduce that

|λχ,τ| 6
|S ∗|

|S ∗| + |T ∗|

∣∣∣∣∣ 1
|S ∗|

∑
g∈S ∗

χ(g)
∣∣∣∣∣ +

|T ∗|
|S ∗| + |T ∗|

∣∣∣∣∣ 1
|T ∗|

∑
h∈T ∗

τ(h)
∣∣∣∣∣.

If both χ and τ are nontrivial, then |λχ,τ| 6 1 − δ since each of X(G, S ) and X(H, T ) is
a δ-expander, where δ ∈ (0, 1/2]. If χ is trivial and τ is nontrivial, we obtain instead

|λχ,τ| 6 1 − δ(1 + |S ∗|/|T ∗|)−1

and hence the result by symmetry of the roles played by G and H. �

To better comprehend Lemma 2.8, we give several examples, which also allow us
to demonstrate the necessity of the hypotheses made and the optimality of the bound
given. For a positive integer n, we let Zn be the cyclic group of order n. Consider first
the case where both G and H are Z4, with S and T each consisting of a generating
element of Z4. Thus, the graphs X(G, S ) and X(G,T ) are isomorphic to the undirected
cycle C4 with four vertices. (Recall that X(G, S ) = X(G, S ∗) by the definition.) The
spectral gap of C4 is 1. Now choose x0 and y0 to be the neutral elements of G and H,
respectively. The hypothesis of Lemma 2.8 are thus satisfied. Note that γ = 1, so,
according to this lemma, the graph X B X(G × H, ({x0} × T ) ∪ (S × {y0}) should have
spectral gap at least (1 + 1)−1 · 1 = 1

2 . To check this, observe that X is the 4-regular
graph depicted in Figure 1: it consists of two disjoint cycles of size 8 the vertices
of which are ‘linked using cycles of length 4’. This graph indeed has spectral gap
exactly 1

2 . This can actually be directly deduced from the proof of Lemma 2.8 by
using (2.3), thereby obtaining a precise expression for the eigenvalues of the product
graph. More generally, one deduces that performing the same construction as we just
did but starting from Z2k for any integer k > 2 yields an infinite family of examples
where the bound given by Lemma 2.8 is attained, showing its optimality. (The spectral
gap of the two (isomorphic) starting graphs will be 1 − |cos(π(k + 1)/k)| and that of the
product graph exactly half this quantity.)
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The hypothesis that x0 and y0 must be elements with order at most 2 in their
respective groups is necessary, as is seen by taking G B Z3 × Z5 = 〈σ〉 × 〈τ〉 and H B
Z6 = 〈µ〉 and setting S B {σ}, T B {µ}, x0 B στ and y0 B µ3. (Thus, y0 is of
order 2 while x0 is of order 15.) The graph X(G, S ) consists of five disjoint triangles
while X(H, T ) is a cycle of length 6. Consequently, each of these graphs has spectral
gap 1

2 . However, the spectral gap of the graph X(G × H, (({x0} × T ) ∪ (S × {y0}))) is
less than 0.045, which is less than 1

2 · (1 + γ)−1 = 1
4 .

In applications, it is important to keep control of the ‘spectral gap loss’, that
is, the size of the parameter γ appearing in Lemma 2.8. To do so, we need the
following technical lemma, which asserts in a precise quantitative way that it is
harmless to suppose that the random variables s(`)

i take distinct values when evaluated
simultaneously and as long as n` is fairly larger than κ(b`, `; δ). This is a simple
application of standard concentration principles.

Lemma 2.9. Keeping notation as above, fix ` ∈ Λ. For readability, κ(b`, `; δ) is
abbreviated to κ`. Let X be the random variable that counts the number of distinct
values in the multi-set {s(`)

1 , . . . , s(`)
κ` }. One has:

(1) if there exists a positive real ε, independent of `, such that 1 − κ`/n` > ε, then

P(X < κ`/2) 6 exp(−κ`ε2/8);

(2) if n` 6 κ`, then

P(X < n`/2) 6
(

n`
dn`/2e

)
· 2−κ` .

Proof. Let x1, . . . , xn` be the elements of G/H`. For each i ∈ [n`], let Xi be the 0–1
random variable that is equal to 1 if xi ∈ {s`j : 1 6 j 6 n`}. Notice that X =

∑n`
i=1 Xi.

Consequently, the linearity of expectation implies that E(X) =
∑n`

i=1 E(Xi). Moreover,
for each i ∈ [n`],

E(Xi) = 1 − P(Xi = 0) = 1 −
(
1 −

1
n`

)κ`
> 1 − exp(−κ`/n`)

> κ`/n` − 1/2 · (κ`/n`)2,

so that E(X) > κ` − 1/2 · κ2
`/n`.

Now, since X is determined by κ` independent trials and, for every possible outcome
of the trials changing the outcome of any one trial can affect X by at most 1, the simple
concentration bound [14, page 79] yields that for every positive number t,

P(|X − E(X)| > t) 6 2 exp
(
−

t2

2κ`

)
.

By symmetry of the random variable X around its mean, we know that for every
positive number t,

P(E(X) − X > t) = 1
2 P(|E(X) − X| > t).

https://doi.org/10.1017/S1446788717000234 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788717000234


88 F. Jouve and J.-S. Sereni [10]

Therefore, to prove (1), one sets t B κ`/2 · (1 − κ`/n`). This implies that

P(X < κ`/2) 6 exp
(
−
κ`
8

(1 − κ`/n`)2
)
6 exp

(
−
κ`ε

2

8

)
.

To prove (2), one rather proceeds as follows. Notice that X < n`/2 if and only if
there exists a subset H′ of G/H` of size dn`/2e such that {s`i : 1 6 i 6 κ`} ∩ H′ = ∅.
This happens with probability at most 2−κ` . Consequently, we infer that

P(X < n`) 6
(

n`
dn`/2e

)
· 2−κ` . �

2.3. Random walk large sieve: proof of the main result. We first state an easy
consequence of the definition of S (b, δ) that is useful in our sieving procedure.

Lemma 2.10. For all distinct integers `, `′ ∈ Λ,

ρ`(S (b; δ)) = S `(b`, δ) ∪ {1}

and

ρ`,`′(S (b, δ)) = (S `(b`, δ) ∪ {1}) × (S `′(b`′ , δ) ∪ {1}),

where {1} is the one-element subset containing only the trivial class in the relevant
quotient group.

Proof. We use condition (ii) in Definition 2.1: the image by ρ` of S (b, δ) is the product
of elements all equal to 1 except maybe for the `-factor, which can be any element
of ρ`(S̃ `(b`, δ) ∪ {1}), that is, any element of S `(b`, δ) ∪ {1}.

The second equality is obtained using the same argument. �

We now define one last piece of useful notation before starting the proof of
Theorem 2.3. For indices ` and `′ in Λ, we set G`,`′ B G/H` ×G/H′` if ` , `′ and
G`(= G`,`′)B G/H` otherwise. The proof of Theorem 2.3 is based on an adaptation of
that of [9, Proposition 7.2].

Proof of Theorem 2.3. Fix a real number δ in (0 , 1/2] and let us split the probability
we are interested in:

P(∀` ∈ ΛL, ρ`(Xk) < Θ`) 6 P(C0 =∞)
+ P(∃` ∈ ΛL, X(G/H`, ρ`(S (b, δ))) is not a δ-expander)
+ P(E0), (2.4)

where E0 is the intersection of the three following events:

• C0 <∞;
• for each ` ∈ ΛL, the graph X(G/H`, ρ`(S (b, δ)) is a δ-expander; and
• ρ`(Xk) < Θ`.
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As we shall see, the third summand can be bounded from above using sieving
techniques. Moreover, the second summand can be handled by invoking Theorem 2.7.
Indeed, since ρ`(S (b, δ)) = S `(b`, δ) ∪ {1} by Lemma 2.10, we can show that the
following statement holds (note that the statement would be trivial if we were only
interested in edge expansion):

P(∃` ∈ ΛL, X(G/H`, ρ`(S (b, δ))) is not a δ-expander)
6 P(∃` ∈ ΛL, X(G/H`, S `(b`, δ)) is not a δ-expander).

This inequality is a consequence of Lemma 2.11 that we state and prove at the end of
this section. Applying Theorem 2.7 yields that

P(∃` ∈ ΛL, X(G/H`, S `(b`, δ)) is not a δ-expander) 6
∑
`∈ΛL

e−b` .

Let us now turn to the third summand of the right-hand side of (2.4). First, let B be
the conditional probability that ρ`(Xk) < Θ` for each ` ∈ ΛL conditioned on the facts
that C0 <∞ and X(G/H`, ρ`(S (b, δ))) is a δ-expander for each ` ∈ ΛL. Notice that

P(E0) 6 B. (2.5)

Now we are in a situation close to the axiomatic sieve method developed in [9].
We fix (nonnecessarily distinct) indices ` and `′ in ΛL (defining ρ`,` to be ρ`) and a
character λ of G`,`′

λ : G
ρ`,`′
→ G`,`′

λ0
→ C×

factoring through G`,`′ in such a way that λ0 is a nontrivial character of G`,`′ .
We first prove the following statement. Assume that C0 < ∞ and X(G/H`, ρ`

(S (b, δ))) is a δ-expander for every ` ∈ Λ. We assert that there exists a positive
constant ν depending only on C0, the set S (b, δ) and the distribution of the steps ξ j

(that is, the sequence (ps)) such that

|E(λ(Xk))| 6 (1 − κ−2
2Lν)

k. (2.6)

Consider
M B E(λ(ξk)) =

∑
s∈S (b,δ)

p(s)λ(s),

which is a well-defined element of C× since the series defining M converges absolutely.
Let us also consider the complex number M+ B 1 − M.

Note that M and M+ are in fact real numbers since the set S (b, δ) as well as the
distribution of the steps ξk are symmetric. We also need to define

N0 B E(λ(X0)) =
∑
t∈T

P(X0 = t)λ(t) ∈ C×,

where T is a fixed (finite) subset of G containing the starting point g0 of the random
walk (Xk). (For simplicity, one can assume that T = {g0}.)
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The random variables X0 and ξk being independent, it follows that for every positive
integer k,

E(λ(Xk)) = N0Mk.

We have |N0| 6 1 and we compute, first assuming that ` , `′,

M+ =
∑

s∈S (b,δ)

ps(1 − λ(s))

=
∑

(s′,t′)∈S `(b` ,δ)×S `′ (b`′ ,δ))

( ∑
s∈S (b,δ)

ρ`,`′ (s)=(s′,t′)

ps

)
(1 − λ0(s′, t′))

>
1

κ(b2L, 2L, δ)2 min
ψ,1

max
(s′,t′)∈S `(b` ,δ)×S `′ (b`′ ,δ))

(1 − ψ(s′, t′)),

where ψ runs over the nontrivial characters of G`,`′ . With the same notation, we deduce
that for any a ∈ S `(b`, δ) and any b ∈ S `′(b`′ , δ) both of order at most 2,

M+ > κ(b2L, 2L, δ)−2 min
ψ,1

max
(s′,t′)∈S `(b` ,δ)×{b}∪{a}×S `′ (b`′ ,δ))

(1 − ψ(s′, t′)).

Lemma 2.8 asserts that the family of Cayley graphs with vertex set G`,`′ and edge
set S `(b`, δ) × {b} ∪ {a} × S `′(b`′ , δ)) is a family of (1 + C0)−1δ-expanders if the
family (X(G`, S `(b`, δ)))`∈Λ is a family of δ-expanders. Thus, we can appeal to
the translation of Lubotzky’s property (τ) into the property of expansion of the
corresponding Cayley graphs (see [13, Proposition 2.5]) to justify the existence of
a positive constant ν(C0, S (b, δ), (ps)) which is uniform in `, `′ ∈ Λ and such that

M+ > κ(b2L, 2L, δ)−2ν(C0, S (b, δ), (ps)).

The case where ` = `′ of that inequality is easier to establish and even holds under
a stronger form in which the lower bound is independent of C0. In fact, the argument
goes in exactly the same way as in the case where ` , `′, only this time we do not need
to invoke Lemma 2.8. Also, we note that if one fixes an auxiliary index `′′ ∈ ΛL \ {`},
then condition (?) implies that∑

s∈S (b,δ)
ρ`(s)=(s′)

ps =
∑

t′∈S `′′ (b`′′ ,δ)

∑
s∈S (b,δ)

ρ`,`′′ (s)=(s′,t′)

ps

> κ(b2L, 2L, δ)−2|S `′′(b`′′ , δ)|

> κ(b2L, 2L, δ)−2.

To conclude the proof of the assertion, it suffices to observe that, because of our
definition of expansion, the fact that the family X(G`, ρ`(S (b, δ))) is assumed to be
a family of δ-expanders implies that these Cayley graphs are not bipartite and hence
producing a lower bound for 1 + M is not required.
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We can now finish the proof by using Kowalski’s large-sieve inequality [9,
Proposition 3.7]. Recalling the definition of B preceding (2.5),

B 6 ∆(Xk; L)
(∑
`∈ΛL

#Θ`

n`

)−1
,

where one has the theoretical upper bound

∆(Xk; L) 6 max
`∈ΛL

max
χ∈B∗

`

∑
`′∈ΛL

∑
χ′∈B∗

`′

|W(χ, χ′)|,

with
W(χ, χ′)B E(χρ`(Xk)χ′ρ`′(Xk)) = E([χ, χ′]ρ`,`′(Xk)).

Here for any ` ∈ Λ we let B` be the character group of G/H`. We set further
B∗` B B` \ {1}. Finally, if ψi is a character of a finite Abelian group Gi for i ∈ {1, 2},
then we let [ψ1, ψ2] be the character ψ1 ⊗ ψ2 of G × H if G , H or of G otherwise.

In our setting, using [9, Lemma 3.4], we deduce that

[χ, χ′]ρ`,`′ = δ((`, χ), (`′, χ′))1 + [χ, χ′]0ρ`,`′ ,

where δ(·, ·) is the Kronecker symbol and [χ,χ′]0 is the component of [χ,χ′] orthogonal
to the trivial character 1. Thus, applying (2.6) to

λB [χ, χ′]0ρ`,`′ ,

|E([χ, χ′]0ρ`,`′(Xk))| 6 (1 − νκ−2
2L)k.

Putting everything together and using (2.5), we deduce as wished that

P(E0) 6 B 6
(
1 +

( ∑
`∈ΛL

n`
)
(1 − νκ−2

2L)k
)( ∑

`∈ΛL

#Θ`

n`

)−1
. �

It remains to prove the following statement.

Lemma 2.11. Let G0 be an Abelian group and let S be a subset of G0. If X(G0, S ) is a
δ-expander graph, then so is X(G0, S ∪ {1}).

Proof. The statement is trivially true if 1 ∈ S , so we assume that 1 < S . Set S ∗ B
S ∪ S −1 and s∗ B #S ∗. Recall that Definition 2.6 implies that δ ∈ (0, 1/2]. To prove
the statement, it suffices to show that every nontrivial eigenvalue λ′ of X(G0, S ∪ {1})
is such that |λ′| 6 1/2 or |λ′| 6 |λ| for some nontrivial eigenvalue λ of X(G0, S ).

Let λ′ be a nontrivial eigenvalue of X(G0, S ∪ {1}). Using the usual convention
according to which a loop contributes 2 to the degree of a vertex, we deduce that
λ′ = (2 + s∗)−1(

∑
s∈S ∗ χ(s) + χ(1)) for some nontrivial character χ of G0. Therefore,

λ′ =
s∗

2 + s∗
λ +

1
2 + s∗

= λ +
1 − 2λ
2 + s∗

,

where λB (s∗)−1 ∑
s∈S ∗ χ(s) is a nontrivial eigenvalue of X(G0, S ).
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Consequently, it is enough to prove that if |λ′| > 1/2, then |λ′| 6 |λ|. Suppose,
on the contrary, that |λ′| > 1/2 and |λ′| > |λ|. Then λ′ > 0. Indeed, otherwise λ 6
−1/s∗ < 0 and hence −λ + (2λ − 1/2 + s∗) > |λ| = −λ implies that λ > 1/2, which is a
contradiction.

Hence, λ′ > 1/2, which yields that λ > 1/2. However, this implies that
(1 − 2λ/2 + s∗) < 0, so that λ > λ′ = |λ′|, contrary to our assumption. This finishes
the proof. �

3. Illustrative examples

This section illustrates how Theorem 2.3 can be applied to various classical topics.
Let us state two bounds on ψ that are useful in the forthcoming applications. An
elementary study of the function ψ, which extends continuously to [0 , 1/2], shows
that ψ is increasing on that interval and therefore

1.442 . . . ' (1/ log 2) 6 ψ(δ) 6 4/ log(27/16) ' 7.644 . . . (3.1)

for any δ ∈ (0, 1/2]. We now present some applications inspired by the classical
Ramsey theory.

3.1. Towards a quantitative infinite Ramsey theory. Our purpose is to illustrate
how our method can be applied in the context of infinite Ramsey theory. Let us first
recall the result we have in mind, established by Ramsey [15]. Given a set X and
a nonnegative integer r, we define X(r) to be the collection of all subsets of X of
cardinality r.

Theorem 3.1 (Infinite Ramsey theorem [15]). Let X be some countably infinite set.
Let c and r be positive integers. Consider a given colouring f : X(r) → Z/cZ of the
elements of X(r) in c different colours. Then there exists some infinite subset A of X
such that the function f is constant on A(r), that is, all subsets of A of cardinality r
have the same image under f .

For every function f , the support of f is the set of all elements e in the domain of f
such that f (e) , 0. As in the statement of Ramsey’s theorem, fix positive integers c
and r. As our base set we choose X B N>1. The set C (r) of all possible c-colourings of
subsets of cardinality r of X may be endowed with a group structure inherited from that
of Z/cZ. Explicitly, the addition of two elements f and g of C (r) is formally defined
by

f + g : X(r) → Z/cZ, A 7→ f (A) + g(A).

The neutral element is the function that is identically 0.
We also fix an auxiliary positive integer j and set Λ B N>1. We consider the

subsets I(r, j)
`
B {(r + j)(` − 1) + 1, . . . , (r + j)`} of X indexed by ` ∈ Λ. If j and r are

fixed, then I(r, j)
`

is an integral interval of size r + j and different indices ` and `′ give
rise to disjoint intervals I(r, j)

`
and I(r, j)

`′
. For ` ∈ Λ, let E(r)

`
be the set of subsets of size r

of I(r, j)
`

. Let C` be the collection of all colourings supported on E(r)
`

and let H` be the
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subgroup of all colourings of C (r) supported on the complement of E(r)
`

in X(r). In this
way C` is a set of representatives for the quotient C (r)/H`. Indeed, no two distinct
functions in C` are congruent modulo an element of H`. Moreover, for any f ∈ C ,
let fC be the colouring equal to f on E(r)

`
and equal to 0 everywhere else. It follows

that fC ∈ C` and f − fC ∈ H` or equivalently f ≡ fC (modH`). Let ρ` : C (r) → C (r)/H`

be the canonical surjection. The disjointness of the sets I(r, j)
`

readily implies that
(H`,C`) is an admissible local sequence for C (r). In addition, we note that |E(r)

`
| =

(
r+ j

r

)
.

Summing up, we have thus established the following statement.

Lemma 3.2. The sequence (H`,C`)`∈Λ is an admissible local sequence for C (r) and

∀` ∈ Λ, n` B (C (r) : H`) = #C` = c(r+ j
r ).

We may now define on C (r) a random walk (Xk) that satisfies the requirements of
Theorem 2.3. We then ask the question:
at which speed do we reach a colouring Xk of the r-element subsets of X that exhibits
a subset A ⊆ X of size r + j, all the r-element subsets of which have the same colour?
The next statement answers that question.

Theorem 3.3. Let (Xk) be the random walk defined on C (r) as in Section 2.3, with
S̃ `(b, δ) ⊆ C`. Fix an integer c > 2, two positive integers j and r and a positive real
number ε. For every positive integer k, let Ek be the event that no element of N( j+r) has
all its r-element subsets of the same colour in Xk. Then

∀k > 1, P(Ek)� k−1/2+ε,

where the implied constant depends only on ε, j, r, c, C0, S (b, δ) and the sequence (ps).
This constant could be explicitly computed in terms of ε, j, r, c and the constant ν of
Theorem 2.3. As a function of j, this constant is unbounded.

Proof. According to Lemma 3.2, we know that n` is independent of ` since n` = c(r+ j
r ).

Let us set b` B ` for all λ ∈ Λ. Thus, κ(b`, `; δ) > ψ(δ)(log n` + ` + log 2), where
ψ is defined by (2.1). Thus, n` 6 κ(b`, `; δ) if ` is large enough, for example if
` > L0 B c(r+ j

j ). Moreover, if for each ` ∈ ΛL the set S `(b`; δ) contains at least n`/2
distinct elements, then C0 6 2. Therefore, applying Lemma 2.9(2), we deduce that for
for every L > L0,

P(C0 =∞) 6 P(∃` ∈ ΛL, #S `(b`; δ) < n`/2)

6 φ0(c, r, j) ·
∑
`∈ΛL

2−κ(b` ,`;δ),

where one can take φ0(c, r, j) to be
(

n`
dn`/2e

)
, which depends only on c, r and j. Next,

as ` 6 κ(b`, `; δ), we deduce that

∀L > L0, P(C0 =∞) 6 φ0(c, r, j)2−L+1.

https://doi.org/10.1017/S1446788717000234 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788717000234


94 F. Jouve and J.-S. Sereni [16]

Fix a positive integer k and a positive real number ε. For each ` ∈ Λ, we set
Θ` B {g ∈ C (r)/H` : the only representative of g in C` is constant on E(r)

`
}.

Of course, #Θ`/n` = c/n` = c−(
r+ j

r )+1. Before going further, we note the existence
of a constant ψ1(c, r, j) depending only on c, r and j such that κ(n`, b`; δ) 6 8` +

ψ1(c, r, j). Lemma 3.2 ensures that the hypotheses of Theorem 2.3 are satisfied. Thus,
abbreviating κ`(b`, `; δ) as κ`,

P(ρ`(Xk) < Θ`, ∀` ∈ ΛL) − P(C0 =∞)

6
(
1 + c(r+ j

r )|ΛL|(1 − νκ−2
2L)k

)( 2L∑
`=L

|Θ`|

n`

)−1
+

2L∑
`=L

e−b`

6
(
1 + (L + 1) · c(r+ j

r )(1 − νκ−2
2L)k

)c(r+ j
r )−1

L + 1
+ e1−L − e−2L

6
c(r+ j

r )

L
+ c2(r+ j

r )(1 − ν(16L + ψ1(c, r, j))−2)k,

where we use the inequalities e1−x − e−2x 6 1/x if x > 0 and c(r+ j
r )−1 + 1 6 c(r+ j

r ) that
holds as soon as c > 2, r > 0, j > 1. (For the first inequality, define f1(x) = e − e−x

and f2(x) = ex/x for x > 0. The function f1 is increasing and one-to-one from (0,∞)
to (e − 1, e) whereas f2 has a global minimum at x = 1, as is obviously seen by
computing the derivative of f2. Therefore, f2(x) > f2(1) = e for all x > 0. We deduce
that f1(x) 6 f2(x) for x > 0. The inequality asserted follows immediately.) For any
fixed ε > 0, set L B dk1/2−εe. For this to be compatible with the condition L > L0,
it is enough that k1/2−ε > c(r+ j

r ). This inequality can be made to hold by modifying
the implied constant in the estimate proven, thereby making it depend also on ε. We
compare the order of magnitude of the two summands of the above right-hand side
with the upper bound obtained for P(C0 =∞). First, one has

P(C0 =∞)�L0 k−1/2+ε.

Also, since L > 1, we know that 16L + ψ1(c, r, j) 6 (16 + ψ1(c, r, j))L, so

(1 − (16L + ψ1(c, r, j))−2ν)k = exp
(
−

ν

(16 + ψ1(c, r, j))2 k2ε + O(νk−1+4ε)
)

� exp
(
−

ν

(16 + ψ1(c, r, j))2 k2ε
)
,

with an absolute implied constant. We thus obtain the upper bound
ϕ(ε, r, j, c,C0, S (b, δ), (ps))k−1/2+ε

for the probability investigated, where ϕ(ε, r, j, c,C0,S (b, δ), (ps)) is a positive constant
depending only on the tuple (ε, r, j, c,C0, S (b, δ), (ps)). This finishes the proof. �

Remark 3.4. We point out an important limitation to our approach: we cannot
dispense with the use of the auxiliary parameter j. More precisely, letting j tend
to infinity in the inequality of Theorem 3.3 yields only a trivial upper bound for the
probability investigated (this comes from the unboundedness of the implied constant
in Theorem 3.3 as a function of j).
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3.2. Monochromatic solutions to equations. It also seems relevant to study
solutions of an equation through the perspective of Ramsey theory: can one destroy
the solutions of an equation by partitioning the different values the variables can take?
We are interested in the following question, which turns out to fit our setting.
Given a random c-colouring of a random subset A of Z, what is the probability that A
contains a monochromatic nonempty subset summing to 0?
We study this question in two steps. First, we leave aside colourings and just bound
the probability that a random subset of Z \ {0} contains no subset summing to 0. To
this end, the group G considered is that of all subsets of Z \ {0} with the symmetric
difference ∆ as group law. We then show how easily one can add constraints on
colourings to this setting, by just considering the product of the group G with the
group of all c-colourings of Z \ {0}. So, in our setting, the coloured version essentially
reduces to the first question.

Let G be the group consisting of all subsets of Z \ {0} endowed with the symmetric
difference. For each positive integer ` (that is, we choose ΛB N>1), we set I` B {−`, `},
C` B 2I` and we define H` to be the subgroup of G consisting of all subsets of Z \ {0}
that are disjoint from I`. Thus, C` forms a set of representatives for G` B G/H`. In
particular, n` B [G : H`] = 4 and (H`,C`)`>1 is an admissible local sequence for G
(since the sets I` are pairwise disjoint).
We set

Θ` B
{
X ∈ G` : ∀X̃ ∈ G, ρ`(X̃) = X ⇒

∑
x∈X̃

x = 0
}
,

so Θ` is a singleton, the unique element of which is represented by I`. Now one can
define a random walk (Xk) as in Section 2.3. This random walk readily satisfies the
requirements of Theorem 2.3. Further, observe that if a subset S of Z does not contain
a nonempty subset summing to 0, then neither does the intersection of S with any fixed
subset. Thus, the probability Pk that Xk does not contain a nonempty subset summing
to 0 is at most

P(ρ`(Xk) < Θ`, ∀`).

We choose b` = ` for all ` ∈ Λ and apply the same method as in the proof of
Theorem 3.3 to bound

∑
`∈ΛL

b` from above. Since |Θ`|/n` = 1
4 for each positive

integer `, Theorem 2.3 implies that for every positive integer L and every positive
integer k,

Pk − P(C0 =∞) 6
1
L

+ (1 + (L + 1) max
L6`62L

|G`|(1 − νκ−2
2L)k) ·

4
L

=
5
L

+ 8(1 − νκ−2
2L)k.

We have κ(b`, `; δ) > ` and thus κ(b`, `; δ) > n` whenever ` > 4. Applying Lemma 2.10,
we obtain in the same way as before,

P(C0 =∞) 6 6
2L∑
`=L

2−`
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for any choice of L > 4. Observing that κ2L 6 32L by (3.1), and setting L B dk1/2−εe,
we compute as in the proof of Theorem 3.3,

(1 − νκ−2
2L)k �ν exp

(
−
νk2ε

322

)
.

Consequently, we infer the following statement.

Theorem 3.5. Let (Xk) be a random walk on G defined as in Section 2.3 using S (b, δ),
with S̃ `(b, δ) ⊆ 2I` . Then for all ε > 0 there exists a positive constant Cε (that can be
computed explicitly as a function of ε and ν) depending only on ε, S (b, δ), C0 and the
sequence (ps) such that for every positive integer k,

P(Xk does not contain a nonempty subset summing to 0) 6 Cεk−1/2+ε.

Let us now see how to deal with the coloured version, that is, we want to
upper bound the probability that our random c-coloured subset does not contain a
monochromatic nonempty subset summing to 0, where c is an integer greater than 1. It
suffices to work in the product group G B (2Z\{0},∆) × { f : Z \ {0} → Z/cZ}. For each
positive integer ` (that is, we choose ΛB N>1), the subgroup H` is defined to be

2Z\(I`∪{0}) × { f : Z \ {0} → Z/cZ : f (−`) = f (`) = 0},

where I` is {−`, `} as before.
Thus, n` B [G : H`] = 4 · 2c = 2c+2, which does not depend on `. A set of

representatives for G` B G/H` is 2I` ×F`, where

F` B { f : Z \ {0} → Z/cZ : f |(Z \ (I` ∪ {0})) = 0}.

Again, since the sets I` are pairwise disjoint, the sequence (H`,F`) is an admissible
local sequence for G.

Defining Θ` to be {I`} × { f : Z \ {0} → Z/cZ : f is constant}, it follows that
|Θ`|/n` = c2−c−2. Since the hypotheses of Theorem 2.3 are satisfied, one obtains the
following statement. (The proof goes along the same lines as that of Theorem 3.5—in
particular, we choose b` = ` and, for any fixed ε > 0, we set L B dk1/2−εe. Details are
omitted.)

Theorem 3.6. Let (Xk) be a random walk on G defined as in Section 2.3 using S (b, δ),
with S̃ `(b, δ) ⊆ 2I` ×F`. For every positive integer k, let Ek be the event that Xk does
not contain a monochromatic nonempty subset summing to 0. Then, for every positive
real number ε and every positive integer k,

P(Ek)�ε k−1/2+ε,

where the implied constant could be explicitly computed as a function of ε, c and ν
(with notation as in Theorem 2.3) and depends only on ε, c, S (b, δ), C0 and the
sequence (ps).

At this point, it seems relevant to also discuss Ramsey theory for graphs.
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3.3. Looking for monochromatic triangles. We let G be the (countable) infinite
complete graph, that is, the graph with vertex set N in which every two distinct positive
integers are neighbours. We fix an integer c > 3 and we define C to be the collection of
all functions from the edges of G to Z/cZ. As earlier, the set C is naturally endowed
with a group structure inherited from that of Z/cZ.

We are interested in monochromatic substructures of a given fixed size that may
arise. To avoid unnecessary notation and abstraction, we shall focus on finding
monochromatic triangles—though our strategy could be adapted effortlessly to the
question of detecting monochromatic r-cliques or r-cycles for r > 3.

We define a family of subgroups (H`)`∈Λ of C , where ΛB N. Consider a partition
in finite parts (I`)`∈Λ of Λ. We set i(`) B |I`| for ` ∈ Λ. Let E` B {(a, b) ∈ I2

` : a , b},
that is, E` is the set of all edges of G with both end vertices contained in I`. We
define C` to be the collection of all functions f ∈ C with support contained in E`.
Then H` is the collection of all functions f ∈ C such that f |E` ≡ 0.

Let us give the necessary properties that the quotients C` B C /H` satisfy.

Lemma 3.7. For each ` ∈ Λ, the following holds:

(i) C` is a set of representatives of the quotient C` and (H`,C`) is an admissible
local sequence for C ; and

(ii) the index of H` in C is n` B [C : H`] = |C`| = ci(`)(i(`)−1)/2.

Proof.
(i) No two distinct functions in C` are congruent modulo an element of H`.

Moreover, for any f ∈ C , let fC be the function equal to f on E` and equal to 0
everywhere else, that is, fC |E` B f |E` and fC |(E(G ) \ E`)B 0. It follows that fC ∈ C`

and f − fC ∈ H` or, equivalently, f ≡ fC (modH`). Finally, the fact that (H`,C`) is an
admissible local sequence for C is a consequence of the disjointness of the sets I`.

(ii) By the definition, |E`| = i(`)(i(`) − 1)/2. The conclusion follows. �

A practical way to rephrase part of the proof of Lemma 3.7 is to say that for each
fixed integer ` in Λ and each element f of C , the unique element in C` congruent to f
modulo H` is the function equal to f on E` and to 0 outside of E`.

From now on, we assume that i(`) > 3 for ` ∈ Λ. For each integer ` ∈ Λ, let Θ` be
the set of classes f̄ ∈ C` such that the unique representative f of f̄ in C` (the existence
of which is asserted by Lemma 3.7) contains a monochromatic triangle in E`. In
other words, f ∈ Θ` if and only if I` contains three integers i1, i2 and i3 such that
f ((i1, i2)) = f ((i1, i3)) = f ((i2, i3)). Observe that |Θ`|/|C`| > c−2. Indeed, any function
that restricts to a constant map (with values in Z/cZ) on a fixed triangle contained
in E` surjects to an element of Θ` via ρ`.

Assume that δ is a fixed real number in (0, 1/2]. We set b` B `. In particular, note
that

κ(b`, `; δ) =

⌈
ψ(δ) ·

( i(`)(i(`) − 1) log c
2

+ ` + log 2
)⌉
.

Given f (`) ∈ S `(b`, δ), we define f̃ (`) to be its canonical representative in C , that is,
f̃ (`) ∈ C`. In this context, the outcome of Theorem 2.3 is the following result.
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Proposition 3.8. Let (Xk) be a random walk on C defined as in Section 2.3
using S (b, δ) (see (2.2)), with S̃ `(b, δ) ⊆ C`. For every positive integer k, let Ek be
the event that Xk does not contain a monochromatic triangle. Then, with notation as
in Theorem 2.3, one has for any fixed positive integers L and k,

P(Ek) 6 P(C0 =∞) +
c2 + 1

L
+ 2c(1/2)·i(2L)(i(2L)−1)+2(1 − κ−2

2Lν)
k.

Proof. Fix a positive integer k. Lemma 3.7 ensures that the hypotheses of Theorem 2.3
are satisfied. We obtain, applying Theorem 2.3,

P(ρ`(Xk) < Θ`, ∀` ∈ ΛL) − P(C0 =∞)

6
(
1 +

( ∑
`∈ΛL

n`
)
(1 − κ−2

2Lν)
k
)( ∑

`∈ΛL

|Θ`|

n`

)−1
+

2L∑
`=L

e−b`

6 e1−L − e−2L + (1 + (L + 1) · ci(2L)(i(2L)−1)/2(1 − κ−2
2Lν)

k) ·
c2

L

6
c2 + 1

L
+ 2c(1/2)·i(2L)(i(2L)−1)+2(1 − κ−2

2Lν)
k,

where we used that e1−x − e−2x 6 1/x for x > 1. �

Different choices of sets I` may correspond to different speeds of rarefaction of
nontypical structures. (We note, however, that the random walk itself does depend on
the choice made for the sets I`.) More precisely, one can put additional constraints on
the structure of the monochromatic triangles, for instance we may impose the three
vertices to be consecutive integers as in the following theorem.

Theorem 3.9. With notation as in Proposition 3.8, for every positive integer k, let E′k
be the event that Xk does not contain a monochromatic triangle on three consecutive
vertices. One has for every positive real number ε and for every positive integer k,

P(Ek) 6 P(E′k)�ε k−1/2+ε,

where the implied constant can be computed explicitly (as a function of ε, c and ν (see
Theorem 2.3)) and depends only on ε, c, S (b, δ), C0 and the sequence (ps).

Proof. Set I` B {3` − 2, 3` − 1, 3`} for each ` ∈ Λ. In particular, i(`)(i(`) − 1) = 6. Let
us evaluate P(C0 = ∞). One has #S `(b`; δ) 6 n` = c3 and κ(b`, `; δ) = dψ(δ)(3 log c +

` + log 2)e > `, by (3.1). In particular, n` 6 κ(b`, `; δ) for all ` > c3. Moreover, if
we assume that for all ` ∈ ΛL the set S `(b`; δ) contains at least n`/2 = c3/2 distinct
elements, then C0 6 2. Therefore,

P(C0 =∞) 6 P(∃` ∈ ΛL, #S `(b`; δ) < n`/2)

6

(
c3

d c3

2 e

) ∑
`∈ΛL

2−κ(b` ,`;δ)

for all L > c3, by virtue of Lemma 2.9(2).
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For ε > 0 fixed, set LB dk1/2−εe. For this to be compatible with the condition L > c3,
we need to have k1−2ε > c6. This inequality can be made to hold by modifying the
implied constant in the estimate to be proven. As in the proof of Theorem 3.3,

P(C0 =∞)�c k−1/2+ε.

Moreover, Proposition 3.8 implies that

P(E′k) 6 P(C0 =∞) +
c2 + 1
k1/2−ε + 2c5(1 − νκ−2

2L)k.

To find an upper bound for the third summand, we first use the assumption L > c3 to
deduce κ2L 6 46L and then we compute

(1 − νκ−2
2L)k = exp

(
k
(
−

ν

462k1−2ε

)
+ O(νk−2+4ε)

)
�c,ν exp

(
−
ν

462 k2ε
)
,

which finishes the proof. �

We note that the contribution from the nonstandard case (that is, X(G/H`, S `(b`; δ))
is not an expander) is the probability with highest order of magnitude (among the three
summands in the upper bound of Theorem 2.3) given our choice of parameters in the
proof of the theorem. It is natural to compare Theorem 3.9 with what is known from
Ramsey theory; this discussion is deferred to the next section.

4. Remarks and further applications

As mentioned earlier, the main purpose of our work is to obtain a general sieve
statement in a purely combinatorial setting. Regarding the illustrative applications,
the general line of thought is to give, for the intricate notion of randomness defined,
explicit upper bounds for probabilities that we expect to be small.

Let us underline some peculiarities of the application developed in Sections 3.2
and 3.3. For monochromatic substructures, it follows from Ramsey’s theorem [15]
that for every fixed positive integer c, there exists an integer N such that if n > N,
then every c-colouring of the edges of the complete graph Kn on n vertices contains
a monochromatic triangle. Alon and Rödl [2] established that the smallest such
integer N is Θ(3c) as n tends to infinity (that is, there exist two constants ρ and ρ′

such that for sufficiently large n, this value belongs to [ρ · 3c, ρ′ · 3c]). In our
setting, although the infinite complete graph is involved, only finite subgraphs of it
are checked for the existence of monochromatic triangles. These subgraphs are not
necessarily large enough for Ramsey’s theorem to apply. In addition, we only consider
monochromatic triangles with vertices contained in some prescribed set I`.

Another feature of the applications presented is uniformity of the decay rate with
respect to the number c of colours involved. Actually, we even claim control of the
dependency of the implied constant as a function of c, since this implied constant could
be explicitly computed. No such uniformity holds in the context of Ramsey theory.
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Indeed, as already mentioned, Alon and Rödl’s theorem [2] asserts that the number of
required vertices for Ramsey’s theorem to hold grows exponentially fast with c.

Next let us comment on the common decay rate, roughly 1/
√

k, in our various
applications. When applying Theorem 2.3, we always have to find an upper bound of
the rough form ∑

L6`62L

2−` + c1

∑
L6`62L

2−c2` +

(
1 + c3L

(
1 −

c4ν

L2

)k)c5

L
,

where each parameter ci is an absolute constant.
The fast decay of the first two summands is not an issue as soon as L is chosen to

be roughly equal to some power of k. However, in the third summand one has to have
simultaneously L→∞ and (1 − c4νL−2)k → 0 as k→∞. These constraints justify the
choice L = dk1/2−εe in all our applications. There is certainly room for improvement
here (for example by choosing a different value for b`, rather than setting b` to be `, or
by modifying the sieve itself so that n` is not necessarily bounded as a function of `),
but we feel that ensuring the decay of the third summand will remain a rather serious
constraint in general.

We highlight a strategy similar to that used in Section 3.2 that allows one to
check for monochromatic arithmetic progressions for which the length, the common
difference and the ‘shape’ are prescribed. Fix positive integers s (the desired length of
the arithmetic progression), q (the desired common difference) and c > 3 (the number
of colours). Similarly as before, let C be the group of all c-colourings of N. We
consider the subsets I` B {`sq, `sq + q, . . . , `sq + (s − 1)q} for ` ∈ Λ B N. (It is this
choice of particular subsets of N of length at least s that provides a control on the
‘shape’ of the arithmetic progressions to be found.) In this setting our method yields
the following result.

Theorem 4.1. Let (Xk) be a random walk on C defined as in Section 2.3 using S (b, δ)
via the admissible local sequence (H`,C`). For every positive real number ε and every
positive integer k,

P(Xk contains no monochromatic arithmetic progression

with common difference q and length s)� k−1/2+ε,

where the implied constant could be computed explicitly as a function of c, s, q and ν
(see Theorem 2.3 for the definition of ν) and depends only on (c, s, q), C0, S (b, δ) and
the sequence (ps).

Let us sketch briefly the proof. For each ` ∈ N, let H` be the set of all
functions f : N→ [c] such that f |I` ≡ 0. The index in C of each of these subgroups
is cs. Moreover, there is a collection of natural representatives C` for the classes
modulo H`, namely the functions with support contained in I`. Thus, n` = c#I` is
independent of ` and, since the intervals C` are pairwise disjoint, the sequence (H`,C`)
is an admissible local sequence for C . Let Θ` be the set of classes modulo H`
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whose unique representative in C` contains a monochromatic arithmetic progression
of length s that is contained in I`. Then one has |Θ`|/n` > c−s.

Again we may apply Theorem 2.3 with b` = ` for all ` ∈ Λ. Similarly as
before, P(C0 = ∞) can be bounded from above: if L > c(s−1)q+1, then κ(b`, `, δ) > n`
whenever ` > L and hence Lemma 2.9(2) yields that P(C0 = ∞) 6

(
cs

dcs/2e

) ∑
`∈ΛL

2−`.

Therefore, P(C0 =∞) 6
(

cs

dcs/2e

)
/L.

By Theorem 2.3, the probability that in Xk no monochromatic arithmetic
progression with common difference q and length s is contained in I`, for all ` in ΛL,
is at most (

cs

dcs/2e

)
L

+
1
L

+ (1 + (L + 1)c(s−1)q+1(1 − νκ−2
2L)k)(csL)−1.

Since this last probability is, for every L, an upper bound on the probability that
there is no monochromatic arithmetic progression in Xk with common difference q
and length s, Theorem 4.1 follows by setting, for any fixed ε > 0, LB dk−1/2+εe.

We conclude by pointing out the following: van der Waerden’s theorem [16] ensures
that, for each fixed positive integer s and each integer c > 3, there exists an integer N
such that if n > N then any c-colouring of [n] yields a monochromatic arithmetic
progression of length s. In the above setting, we impose two additional conditions:
the common difference of the arithmetic progression and a constraint on its form
(it must be contained in one of the sets I`). Van der Waerden’s theorem does not
guarantee the existence of such an arithmetic progression and the aforementioned
inequality is essentially an explicit lower bound on the speed of rarefaction of the
colourings that do not yield a monochromatic arithmetic progression with the required
properties. Furthermore, and as mentioned in the remarks about Sections 3.2 and 3.3,
the uniformity of the decay rate with respect to the number of colours c is a quite
interesting by-product of our approach.
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