SOME PROPERTIES OF COMPOSITIONS AND
THEIR APPLICATION TO THE BALLOT PROBLEM
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1. Introduction and summary. This paper is a continua-

tion of two papers [4], [5] and brings out the solution of the
ballot problem in its general form.

In [5], Narayana has considered a generalised occupancy
problem which can be viewed as a problem in compositions of
integers. In what follows, we use the definitions of [6].
Furthermore, we say that an r-composition (t1 (m), ... ,tr(m))

of m dominates an r-composition (t4 (n), ... ,tr(n)) of n

(m >n) if and only if

i i
(1) Z t(m)> Z t(n), for i=1,...,r.
a=1 « a=1 «
r r
Evidently Z t (m)=m and Z t (n)=n. For integers
a=1 « a=1 @
Doy such that n, >0 > n ., weare required in [5]

to determine the number of r-compositions of n, that dominate

r-compositions of n that in turn dominate r-compositions of

2’
n3, and so on. In other words, we are looking for the number
of elements in the set C = C(ni, RERE r)

= {(ti(ni)’ e ’tr(ni))’ cen '(ti(nk)’ v ,tr(nk)) :
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i
(2) Z tmh)> T ti(n

for i=1,...,r and j=1,...,k-1}.

Now, corresponding to C, consider the set of lattice

paths in a k-dimensional Euclidean space with axes XE‘ s

such that the (k(i-1)+£)th segment (i=1,...,r and

£ =1,...,k) of any path is the distance ti(nﬂ ) on Xl'

Suppose a step in a path represents k consecutive segments
beginning from the segment on Xi. Then the set consists of

paths from the origin to (ni, .o ,nk) not crossing the region

bounded by Xk =0, Xj = Xj-H’ j=1,...,k-1 and having exactly
r components. Denote this set by L*(ni’ .. ,nk;r) or briefly

L%. Thus the above construction has established a 1:1 cor-
respondence between C and L*. Letting N{.} represent
the number of elements in the set {.}, it is shown in [5] that,

(3) N{C} = N{L+} = (ni,...,n )

where

<n1~1> ( n2~1> ( nk-1>

N\ r-k r-k+1 r-1
The determinant (4) plays an important role in this paper. It is
also proved that (ni’ ey nk)r satisfies the following:
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nk-i nk_i-i ni-i
(5) fr y ‘ix o (x, X ), =y M)
ET TR 2%

In section 2, we define a partial order on C and establish
an isomorphism between C and a set of compositions of
M > n1 - r + k, which is specified later. We also show that

for r =2, it leads to an interesting correspondence among two
different sets of lattice paths and a set of lattice points. As a
special case, the number of r-compositions of n that are
[p]-dominated by a given r-composition of m has been evaluated
(for definition see [4] section 4). Section 3 deals with the appli-
cation of results in section 2, in order to provide a solution to

a generalised class of the ballot problem [2, p.66]. Finally,
some identities which arise as a natural consequence of the
above are included in the last section.

2. Isomorphism between two sets of compositions.
Recalling the definition of a composition vector [6] (that is,
defining

i
Ti*(nj) = in ta(nj))'

it is remarked that the set C is trivially in 1:1 correspondence
i % = T* ey ; = * se ey * ye oy
with the set T* =T (ni, n r) {(T1 (ni) Tr (ni))
% se ey * :
(T, *n ). T_*(n,))

(6) T ¥e) > Tk, )

for i=1,...,r and j=1,...,k-1}. Because of this corres-
pondence and somewhat relative advantage of T* over C, we
refer frequently to T* instead of C.

Definition: Given two elements Ti* ={ (T“*(ni), cee
T % yee e * s e ey * : CX¥(n)> T, ¥n.
r1¥0) (T ¥y T Mol Ty > T, ¥a, )
£ 11 i d j ad % = * ye ey * e e e
or all i and j} aa T, {(T12 (n1) TrZ (ni))

* ey * : * > * f i j
(T12 (nk), TrZ (nk)) T12 (nj)—TiZ (nj+i) or all i and j}
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of T*, we say that T 1=== dominates T 2* if and only if
¥* > * i= ... j = L .
Tii (nj) > TiZ (nj) for i=1, ,r and j=1, , k

It can be shown that this relation is a partial order defined on
elements of T*. Proceeding in a manner as in [6], we can
also prove the following lemma.

LEMMA. The elements in T* form a distributive lattice.

Next, it is easy to verify that the inequalities (6) for all i
and j are satisfied if and only if

7 T >T  for i=1,...,r-1 d j=1,...,k,
(7) g j 2 Ty for i r-1 and j

where T, =T #*(n)-i-j+k+1 and T =n -r-j+k+ 1.
ijoooio g ri ]
Since T'k <... < '1“1 follows from (7), we now consider k+1
i i
composition vectors (T_k, cee T'i’M) for i=1,...,r where
i i
M > n1 - r+ k is a constant. Because of the inequalities in (7),

we notice that M>Tii for i=1,...,r. Let T=T(n1,...,n ;1)

k
be the set
{(Trk,...,TH,M),...,(Tik,...,T“,M):
T.  .>T, for i=1,...,r-1 and j=1,...,k}.
it1 j— ij

In terms of compositions, it may be seen that T is the set such

-C iti - -n_+4,...,n -n_+1,M-n +r-k
that (k+1)-composition (nk 1'-1»1,nk_1 nk n1 n2 n1 r-k)

of M dominates (k+1)-compositions of M, each of which again
dominates (k+1)-compositions of M and so on. Using the simple

transform a. =T *(n )-i, define the set S=S(n, ,...,n_;r)
ij i 1 k

yee.sa@ e

to be {(ark=nk-r,...,a =n1-r),...,(a v

ri 1k

(8) a. .>a,. . for i=1,...,r-1 and j=1,...,k}
it1 j— 1ij

where (a. . ,a_i) is a vector of non-negative, nondecreasing
i i

K
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integers. The relation of domination on T#* through 1:1 trans-
formations used above is extended to T and S and therefore
we have the theorem.

THEOREM 1. Sets T*, T and S are isomorphic
distributive lattices.

We have shown in section 1 that T*(ni, ... ,nk; 2) through
C(n1, e ,nk; 2) is 1:1 to L*(ni, ...,n_; 2). Also

k

T*(ni, .. ,nk; 2) is 1:1 to S(ni, ... ; 2) by the theorem.

:nk
But S(ni, feeamys 2) is the set {(ak, ... ,ai)} of all vectors

of non-negative and nondecreasing integers such that

(9) 0<a.,<n-2 for j=1,...,k.

Now, using the construction of lattice paths from non-negative
nondecreasing vectors [4, p.253], we notice that
S(ni, RERENE 2) is 1:1 to the set L(ni, .. ,nk) of lattice paths

from (0,0) to (ni-i, k) not crossing the boundary given by the

points (0,0,), (1,1), (n1-n +1,2), (n1-n3+1,3),..,(ni-nk+i,k),

2
Here we have two remarks to offer:

(a) The above lattice paths are equivalent to paths from
(0,0) to (ni, k) not touching the same boundary;

(b) The set of paths are, in general, also equivalent to
paths from (0,0) to (n1+e-2,k) [or (n1+e-1,k)] not crossing

[or not touching] the boundary (0,0), (e, 1), (ni-n2+e, 2),

(ni-n3+e; 3), ... ,(ni-nk+e, k), where e is a positive integer.

From section 1,

(10) N{L*(n1,...,nk; 2)}) ={n,,...,n )

We observe from (4) and (5) that
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- - -1
nk 1 nk“1 1 n1
11 b = = 1 = yee ey
(11) . g z (n1 nk)z
X k- 1="% 1=72

The expression on the left hand side of (11) represents the

number of lattice points in the region R(n,,.-.- ,nk) of

1
k-dimensional Euclidean space bounded by hyperplanes

1 1 1 1
=3 = -=, X =X -=, X = - 5 .
X2 XT3 k-1 k27 k-1 ket 2

Thus, as a corollary of Theorem 1, we see that:

COROLLARY 1. N{ L*(ni, R 2)} =N{ L(ni, - ,nk)

=N{R(ni,...,nk)} =(n1,...,n )

k2’

It is not difficult to observe that T(ni’ ... ,nk; 2)
represent the set of (k+1)-composition vectors (Ti’ e, Tk, M)
which'are dominated by the (k+1)-composition vector

-1, s ooy -2, s > +k-2.
(nk 1 no oy n1+k M), M n, k
Thus according to [6], the number N{ T(n1, ceamy 2)} is give
by Dk in the recursive formula
, =4
DO
+u-2
(12) u a1 nk--u.-H:z “
D = Z (-1) D
u u-o
a=1 o
We know from Theorem 1 that
« ooy N 2 = AR
N{T(ni, n, )} (n1 nk)2
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Therefore, we have

COROLLARY 2.

(

A direct proof is also possible.

Proutt’ Pkeut2’

.,n_)

A solution of Du in (12) is
k'2 "’

We indicate it here.

Using induction, Du. can be written as the determinant
n Fu- +u-2 +u-
Prourt T2 Tkout2’ /hk u-2
1 2 \ u
+u-3 +u-3 +u-3
Prout” O Prousz' ® e
0 1 u-1
(13) 0
-1
0
0 . 1

,u), and

.,n. )

k'2

t .
Subtraction of the i h row from the (i-1)st row (1 =2,...

repetition of this process reduces (13) to (nk-u+1’nk-u+2’ ..

We now consider a problem, the solution of which is
obtained with the help of Corollary 1. It is required to determine
the number of r-compositions of n that are [s]-dominated by
the r-composition (ti(m), cen ,tr(m)) of m (m > sn) [4, page

254]. The r-composition (ti(m), e ,tr(rn)) of m [s]-

dominates an r-composition (t1(n), - ,tr(n)) of n if and only
if

(14) T.im) > sT_(n)
i - i

https://doi.org/10.4153/CMB-1965-026-0 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1965-026-0

for i=1,...,r. Inequalities (14) are equivalent to

T.(m)
> T .{n)
L - i
for i=1,...,r, where [z] is the greatest integer less than or
equal to z. Thus we are interested in the set of r-compositions

of n that are dominated by the r-composition

([T1:m)]’[T22m)] ) [Ti(sm)] B - [E_r_l’i)j)

m
of [—s ]. Transforming the set to the set of non-negative and

non-decreasing vectors, as done earlier, we observe that the
above set is 1:1 with the set of vectors (ai, ...,a 1) such that
r-

(i) a.'s are non-negative integers,

T.(m)
1

(iii) 0 < a. < min ([ J - i, n-r) for i=1,...,r-1.
>4z

s

From the discussion following Theorem 1, we can get the number
of such vectors, which is stated as a theorem.

THEOREM 2. The number of r-compositions of n that
are [s]-dominated by the r-composition (ti(m)’ o ,tr(m}}

of m (m > sn) is

T 1(rn)
min ([i‘_s—_] -r+1, n-r) + 2,

T (m)
mm([’—r—-—g—“ - r+2, n-r) + 2,.. .,
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T1(m)
min([ S ]-1,n-r +2)

3. Generalised ballot problems. The ballot problem
[2, p. 66] and its extension have been discussed by several
authors [1], [4], [7]. We state it as follows:

2

If in a ballot, Candidate A scores a votes and Candidate
B scores b votes, where a > bp, p being a positive integer,
what is the probability that at each instant A's vote exceeds
pu times B's vote ?

Representing each vote for A by a unit horizontal step
and each vote for B by a unit vertical step, one of the solutions
suggested in [4] uses the correspondence between lattice paths
and non-negative non-decreasing vectors. In fact, the ballot
problem with two candidates, in a generalised form, involves
counting of lattice paths not touching a certain boundary which
liestothe left of the paths. Recalling remarks (a) and (b), we
have obtained the solution to such a problem in Section 2. In
this context, we present below two theorems, the proof of
which obviously follows from the preceeding results.

THEOREM 3. Let x and y respectively represent
votes for A and B at a particular instant. Suppose that A
scores a votes and B scores b votes such that a > bp+ v,
p and v being non-negative numbers. The number of ways
in which x> yu + v happens is given by

(a-[p+v 1, a-[2ptv 1, ... ,a-[bp+v]+1)2 .

At this point we note that Takacs [7] gives a solution
for general p and v =0. When u is a positive integer and
v =0, the ballot problem reduces to the case stated at the
beginning of this section. Therefore, the required number is

(a-pt+1,... ,a—bp+’x)2 =(a,b,p) say. We have to show that
a-bp ,a+b
» b, =
(a,b, p) 275 ( b

For b =1, the result is true for all a and p. Adding
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each row to the previous row in the determinant (a,L,p!. we
obtain

(a,b,p) = (a+1,b,u) - (a+1,b-1, ) .
Hence

(12) (a+1,b,p) = (a+1,b-1,p) + (a,b, p)

1l

(a+1,b-1,p) + (a,b-1,pn) + (a-1,b, u}

(a+1,b-1,p) + (a,b=-1,p) + ... + (bu+i,b-1,u},

because (bp,b,pn) =0. Applying induction, we get from (412) that

a+1 at1
a-(b-1)p ,o+b-1
= > -1, = = —————
(a+1,b, ) (e, b1, 1) )
a=bu+1 a=bp+1
atl ib-2 atl be2
TR T T S
a=bpt+1 a=bp+1
_ (a+b) (a+b) _ a-bu+1 (a+b+1)
T 'b Fo-1! 7 aibet b ’

and the result follows.

Another variation of the ballot problen: is given beiow,
and the result will be used in the next secticn.

THEOREM 4. For A and B having a and b votc:
respectively, where a > b1p1 + v1 + (b—bi)pz + v
and v, being non-negative numbers and b1 <b
integer, the number of ways in which x> YRy + v1 when
0< y_<_b1, and x> bi“i + v + (y-b1)p2 + v, when

b1 <y <b can happen is
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(a-=[p.1+v1]+ 1, ... a-[b1p1+V1]+ i,
a=[b1p1+v1+pz+v2]+1, v
a- [b1[.|.1 +v1+(b—bi)p.2+ v2]+ 1)2 .

The above theorems illustrate the use of the results
developed in Section 2, in some simple boundary cases.

4. Some combinatorial identities. The two A. P. case
of [4, p.256-258] is a special case of Theorem 4, with

p,i, vi, p.z and v2 as non-negative integers. Using the

same notation as in [4], we therefore get

(13) N{Ap q(a+1,b+1; ct+1,d+1)} =N q(a+1,b+1; c+1,d+1)

= (a+(p-1)b+c+(q-1)d+2, a+(p-1)b+c+(g-2)d+2; ...,
a+(p-1)b+c+2, a+(p-1)b+2, a+(p-2)b+2,..., :a.+2)2

k at1i (a+1+(p+q- k)(b+14)
a+1+(pt+g-k)(b+1) pta-k

q
= = (-1) ).

k=0

(g-k+1)b-c-(q-k)d
(g-k+1)b-c-qd

(q-k+1)b-c-qd
k

( )

by Theorem 4 and Theorem 3 of [4]. Putb=1, c=1, d =0.
Then AP q(a+1,2, 2,1) is 1:1 with the set of paths from (0, 0)
t]

to (pt+a,ptq) not touching the line x+ q+ 1 =y, and the
number of such paths is equal to

2p+q+a) - (2p+q+a

( Ptq p-1

)

by [3]. Therefore, we have an identity
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(14) (a+p+2,...,a+p+2,a+pti,at+tp,..., a+2)Z

e e’
q

1 k a+1 a+1+2(p+g-k), qg-k

= 2 () = ) (7))
a+1+2(p+g-Kk) pta-k k

k=0
N (Zp+q+a) _ (2p+q+a)

ptq p-1

Consider (pt+a,ptq) as the origin, x=pta, y =ptq as
x-axis and y-axis respectively, such that the old origin becomes
(p+q, pta). Thus the previous set of paths is the same as the
set of paths from (0,0) to (p+q,pta) not touching x+ a + 1 =y.
The number in the latter set gives rise to the identity

(15) (ptq+Z2,..., ptq+2, p+q+1....,q+2)2

\_._v__/
a
a k q+1 a+1+2(pta-k) ,a-k
= 2 Rpe | e ) )
k=0 g+1+2(pta-k) pta-
_ (Zp+q+a) (2p+q+a)
T ' pta Y op-t )

Either from the remark preceding (15) or from the obvicus

. . 2ptgta 2ptg+ta \
identit ) y =( ), we see that (14) equals (15}).
y ptq pta ( q (

We can show that

(16) p;q 1)k a+l a+1+2(pta-K)) -k
k=0 a+1+2(ptg-k) ptg-k k
) p‘; Ok q+1 q+1+2(pta-k). a-k
- q+1+2(p+a-k) pta-k k
k=0
_ (2p+q+a) B (‘2p+q+a)
ptq pta
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by formula (17) in [9]. Therefore

ptq
k +1 +1+2 k k
(17 = (-1 a+1+32(+-k) @ p+(-p+q )\ (q )
k=q+1 prq q-k
= p;a (-)f — 3t (Q+1+2(P+a-k)) 2K
k=a+1 q+1’+2(p+a°k) p+a-k k
_ ,2ptg+ta
= p-1 )

Perhaps some of the identities might have been proved or
can be proved directly. A less obvious identity arises as follows.
In the ballot problem stated in Thecrem 3, set v =0 and
0 =§3=1- where a and b+1 are relatively prime numbers.
Then an application of the result of Theorem 2 of [8] yields

+1, a - [ ]+1 [ ]+1)

[b+1] b+1 b+1

1 a+b+1

=a+b+1( a )

In conclusion, we remark that the solution in the form

of a determinant might not reduce to a simpler expression,
except in some special cases.
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