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Abstract

This paper is devoted to the derivation of a necessary condition of F. John type
which must be satisfied by a solution of a mathematical programming problem
with set and cone constraints. The necessary condition is applied to an opti-
misation problem defined on functional spaces with inequality state constraints.
Furthermore a pseudo open mapping theorem is developed in the course of proving
the main theorem.

1. Introduction and notations

Optimality conditions for the solution of the following mathematical program-
ming problem in infinite-dimensional spaces have been studied by Varaiya [8],
Borwein [2], Kurcyusz [6], Zowe and Kurcyusz [9] and others:

minimise{f(x); x e X, w{x) e W}. (P)

Many of them assume that the cone W has an interior. This excludes the canoni-
cal non-positive cone of an Lp-space, as was pointed out by Craven [3]. However,
many cones of the constraints can be represented as a product of two cones such
that one has an interior and the other does not. For example, when we con-
sider the programming problem on function spaces, the former represents the
terminal constraints and the latter the state constraints. Hence we shall con-
cern ourselves in this paper with a necessary condition of F. John type for the
following mathematical programming problem:

minimise{f{x); x<=X,g(x) G Y, h{x) <E Z). (P)
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[2] Programming with Set and Cone Constraints 311

Here / is a real-valued function on a real normed space X\ g and h are mappings
from X into real normed spaces 2J and 3, respectively; A" is a non-empty subset
of X; Y is a convex cone in 2) with non-empty interior and Z is a convex cone in
3. Throughout this paper, a set C of the underlying normed space will be called
a cone, if it is not empty and if nC C C whenever \i > 0.

As regards notation and terminology, 2J* and 3* shall denote the conjugate
spaces of 2J and 3, respectively. Y* and Z* shall respectively denote the polar
cones of the cones Y and Z, that is

y* = {y* G 9J*; y*(y) < 0 for any y € Y},
Z* = {z* e y;z*{z) < 0 for any y € Z}.

For a subset A and an element a of the underlying normed space, int. A, cl. A
and [A\a] shall denote respectively the interior of A, the closure of A and the
conical hull A — a, that is

[A\a]= \J{X(A-a)}. (1)

By convention, each origin of the spaces X, 2J and 3 shall be denoted by the same
notation 0 and each origin of the conjugate spaces 2J* and 3* shall be denoted
by the same notation 0*. Also the same notation || • || shall denote each norm of
the spaces X, 2J and 3, unless explicitly stated otherwise. An element x shall be
called a feasible solution of (P) if x e M = X n g~1(Y) n h~1(Z). An element
x 6 M shall be called an optimal solution of (P) if x satisfies

/ ( ) /(z)

Usually constraint qualifications are imposed on the problem (P) in order to
ensure that Lagrange multipliers of Kuhn-Tucker type, rather than only of F.
John type, exist. Even in that case, certain qualifications must be imposed on
the problem (P) for the lack of the hypothesis that int. Z ^ 0 (see e.g., [1,3]).
Now we will suppose throughout this paper that the following is satisfied by the
spaces X, 3 and the cone Z in order to ensure that Lagrange multipliers of F.
John type exist.

ASSUMPTION. Besides the original norms denoted by || • ||, we introduce
additional norms on the linear spaces X and 3, which are denoted by the same
notation | • |, with the following properties:

(i) the cone Z has non-empty interior with respect to the additional norm | • |,
(ii) there exists an a > 0 such that

| | x | | < a | x | , ||*|| < a | z | for all x € X and z € 3-

For a subset A of X (or 3 respectively), A and 4̂° denote the closure and
the interior of A with respect to the additional norm | • |. Furthermore, for an
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element x € X, T(X, x) denotes a sequential cone to X at x (cf. [8,9]), that is

T(X, i ) = ! i e X; lim An = 0, lim | x - {xn - x)/Xn I = 0,
i n—»oo n—*oo '

xne X,Xn >0forn = 1,2,...}. (2)

DEFINITION. An element x e X is called a non-singular point of (P), if
(i) there exist continuous linear operators F&: X —• R, Gz: X —• 2) and a

linear operator //a: X —* %) such that for each x EX,

lim Xu)-f(x)
A

-Ft(x)
|u_x|_0

g(x + Xu) — i

= 0,

558MO || A
|u-z |->0

• Au) - ,

AJO
|u-x|—0

(ii) there exists a convex subset Q of X such that 6 EQ C T(X, x),
(iii) we can find a subset if of 3 and a positive /? such that K = 3 and for each

z E K, there exists an x E [Q\6] satisfying z E Hz(x) — [Z|/i(£)] and ||i| | < /3\\z\\.
The main purpose of this paper is to prove the following necessary condition

of F. John type for an optimal solution of (P).

THEOREM 1. // the space X, the 3 and the cone Z satisfy the Assumption
and if an optimal solution x of (P) is non-singular, then there exist Lagrange
multipliers r/ > 0, y* E Y* and z* E Z* such that

(»?,!/*) #(O,0*)> (3)

y*(g(x)) = 0, z*(h(x)) = 0 and (4)

V-Fi{x) + y*(Gi(x)) + z*(Hi{x))>0 forallxEQ, (5)

where F$,Gz,H£ and Q are as indicated in the Definition.

There have been many works in the area considered in this paper. In [9],
Zowe and Kurcyusz have obtained necessary conditions of Kuhn-Tucker type for
the problem (P), where the cone W does not have an interior, assuming closed
convexity of the set X, completeness of the spaces and regularity. On applying
their results to practical problems, it frequently happens that the underlying
spaces must be completed. In addition, the regularity condition must be satisfied
in this completion. But the task is difficult and this kind of nice completion
sometimes fails to be realised.
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[4] Programming with Set and Cone Constraints 313

Since the cone Z has a non-empty interior with respect to the additional norm
| • |, we can show, using the result of [7], the existence of Lagrange multipliers

like those of Theorem 1 even with the exclusion of (ii) from the Assumption and
(iii) from the Definition. While z* in the multiplier is an element of the space
3 of all linear functionals continuous with respect to the additional norm | • |, it
is not guaranteed, in this case, that z* € 3*- Borwein has obtained necessary
conditions of F. John type using two different kinds of topologies (Theorem 3 as
well as its Remark in [2]). But his results do not give an assurance that z* € 3*>
because z* must be continuous with respect to the topology that the cone Z has
a non-empty interior.

In practice many examples exist for function spaces conforming to our As-
sumption. In these cases, the space 3* is a proper linear subset of the space 3'-
Hence the space 3* is different in quality to the space 3'- Then it is important
to ensure that z* € 3* • The aim of this paper is to give this assurance, that is,
that the linear functional z* is continuous with respect to the original norm || • ||.
It is (i) of the Assumption and (iii) of the Definition that give this assurance.

In Section 2 we show some mathematical concepts and pseudo-open mapping
properties. In Section 3 we give the proof of Theorem 1. Finally, in Section 4
we apply Theorem 1 to an example and give a concluding remark.

2. Preliminary results and pseudo open mapping property

In this section, we present, under the Assumption of Section 1, a pseudo-open
mapping property which will be used in the sequel.

We know the following properties about a convex set of a normed space (see
Lemma 11.A in [5]).

LEMMA 1. Let A and B be convex subset of 3 with non-empty interior with
respect to the original norm || • || and the additional norm \ \ , respectively. Then

cl. A = cl.{int. A), int. A = int.{cl. A},
B = {5°}, B° = (B}°.

Using the properties of a convex cone in a normed space, we can easily show
the following lemma. Therefore we omit the proof.

LEMMA 2. If A and B are convex cones in 3 and if z is an element of 3,
then

(i) c\.A and A are both convex cones in 3- // in addition, A and B have
nonempty interiors with respect to the original norm || • || and the additional
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norm | • | respectively, then
(ii) int. A and B° are both convex cones in 3,
(iii) A + int. A = cl. A + int. A = int. A,

(iv) [A\z] and [B\z] are both convex cones in 3 with int. A C [A\z\ and B° C
\B\z],

(v) int.[il|«] = [int.i4|«] and [B\z]° = [B°\z).

Using the Assumption, one can show that for every A of 3, A c cl. A. By
virtue of Lemma 1, we have for every convex subset A of 3 with A0 / 0 ,
A C {>10} C cl.{A0}. Hence it follows, from Assumption and (iv) of Lemma 2,
that

[Z\z] c cl.{[Z|z]0} for every i e 3- (6)

We now present the following result, which may be not inaptly termed the
pseudo-open mapping property (cf. Section 2 in [9]).

THEOREM 2. Let C be a convex cone in X and let L be a linear operator from
X into 3- Suppose (i) the spaces X, 3 and the cone Z satisfy the Assumption,
(ii) we can find a positive /? and a subset Kof3 such that K = 3 and, for each
z € K, there exists an x EC satisfying

zeL(x)-~Z and \\x\\ < 0\\z\\.

Then, for each open subset O of X (with respect to the original norm \\ • \\), the
set L(C D O) — Z° C 3 is open (with respect to the original norm || • ||).

PROOF. For p > 0, let Up and Vp be respectively defined by

Up = {x e X; M < p} and Vp = {z € 3; ||z|| < p}.

We first show the following statement:
(S) for any e > 0, there exists a 6 > 0 such that

vs c L(c n Us) -1.

Let e be an arbitrary positive number. We set 8 = s/0(> 0). By virtue of (ii)
of the Assumption, it is easily shown that

(7)

because K = 3- By our hypotheses, it is implied that {KDVs} C L(Cf)U£) - Z,
which, by virtue of (7), implies that

= VeC{L{CnUe)-Z}. (8)
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[6) Programming with Set and Cone Constraints 315

It follows from (i) of the Assumption that L(C D Ue) - Z is a convex subset of
3 with {L(C D Ue) - Z}° = 0 . Hence, by virtue of Lemma 1, we obtain that

{{L{C n ut) - z}}° = {L{c n u£) - z}° c up n ue) - z.
This together with (8) imply that Vg C L{CC\UC)-~Z, thus proving the statement
(S).

We now turn to-the proof of the theorem. Let O be an arbitrary open subset
of X. If C n O = 0 , then L(C F\O)-Z0 will be considered to be the empty set,
which is open. Hence we assume that C C\O ̂  0 . Let z € L{C C\O) - Z° be
arbitrary; then there is an x e C n O such that z e L{x) - Z°. Since O is open,
there is an e > 0 such that x + Ue c O. It follows from (S) that there is a 6 > 0
such that V$ C L(C fl C/e) — Z. The linearity of L together with (iii) of Lemma
2 implies that

z + VsC L{x) + L{C n U£) = (Z + Z°)
c L{c n{x + ue}) - z° c L(C n o) - z°.

That is, z is an interior point of L(CnO)-Z°. Consequently the set L{CnO)-Z°
is open, completing the proof of the theorem.

3. Proof of Theorem 1

This section will be devoted to the proof of Theorem 1 under the Assumption.
Throughout this section let x be an optimal solution of (P), as well as a non-
singular element. Let the mappings F%, G±, H$, the sets Q,K and the positive
number /? be as indicated in the Definition. We denote by O the subset of X
defined by

O = {x G X; Ft{x) < 0, Gi{x) G int.[Y\g{x)]}.

We begin with the following lemma.

LEMMA 3. / /

Hi{\Q\f]no)n[z\h(x))° = 0, (9)
then there exist r\ e R, y* eY* and z* e Z* which satisfy (3)-(5).

PROOF. Since Q is a convex set with 9 e Q, it follows, from (i) of Lemma 2
and (1), that [Q\0] is a convex cone in X such that 0 € \Q\0\. Furthermore, by
virtue of (i) of the Assumption and (iv) of Lemma 2, [Z|/i(i)] is a convex cone
in 3 such that

We first consider the case where [Q\6] n O ^ 0 . By (i) of the Definition, the
subset O of X is a convex cone which is open (with respect to the original norm
|| • ||). Since x is a non-singular point of (P), it follows from (9) and Theorem 2
that the set Hz([Q\0] D O ) - [Z\h(x)]° does not contain the origin 0 of 3, and
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that it is an open convex cone in 3 (with respect to the original norm || • ||).
Hence, using the standard separation theorem (see Theorem 2.7.8 in [4]), there
is a non-zero z* G 3* such that

z*(z) > 0 for all z G H±{[Q\0\ n O) - [Z\h{x)]°.

By virtue of Lemma 1 and (6), this implies that

**(*) < 0 < z*{Hi{x)) for all z G [Z\h{x)] and x G [Q\0] D O, (10)

because H±{[Q\9) HO) and [.Z|/i(x)] are both convex cones. Let us define a norm
|| • || on the product space R x 2J x R by ||(£,j/,?)|| = |f| + \\y\\ + |?| and let us
define subsets Bi and B2 of R x 2) x R as follows:

Bi = {(£, y, ?); e < 0, y G int.[K |<?(x)], f < 0},

Since 0 ^ int. F C [Y\g(x)) it is easily verified that B\ is an open convex cone
in R x 2) x R. Since [Q\6] is a convex cone in X such that [<2|0] n O = 0 , the
linearity of the mapping (F±(-),G±(-), z*(H±(-))) implies that B2 is a convex
cone in R x 2J x R. In addition, it follows from (10) that £1 n B2 = 0 . We
may again use the standard separation theorem to claim the existence of r\ € R,
y* E 2)* and 77 € R such that

fa,V*,»?)/(O,0',O), »?>0, »?>0, (11)

y*(y)<0 for all y G int.[y|^(x)] and (12)

ri-F±(x)+y*{Gt(x)) + ij-z*(H±(x))>0 for all x € [Q|0]. (13)
Since £ is non-singular, (ii) of the Definition together with (10)-(13) imply that
on setting z* = fj • z* we have

y*(j/)<0 for all y e c\.[Y\g{x)}, (15)

(^ )<0 for all z G cl.[Z|/i(i)] and (16)

y*(G*(i)) + z*(fr*(a:))>0 for all x € [Q|0]. (17)

We now consider the case where [Q\0] C\O ̂  0 . Let us define a norm on the
product space Rxgj by ||(f,y)|| = ICI + IMI- We can easily show that Fi([Q\0\) x
G£([g|0]) is a convex cone in R x 2). Set £> = {(f,y); f < 0,y € int.[y|g(x)]}.
The set D is an open convex cone in R x2) such that £>n.Fi([Q|0]) x Gz([Q\0]) =
0 . Using the standard separation theorem, there exist r\ G R and t/* G 2J*, not
both zero, such that

V • € + »'(») < 0 for all e < 0, y G int.[F|S(x)] (18)
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and
+ y*{G±(x))>0 for all x G [Q\9\. (19)

If we set z* = 0*{<= 3*) it follows from (18) and (19) that (14)-(17) also hold.
Therefore we conclude that there exist rj € R, y* G 2)* and z* € 3* such
that (14)-(17) hold, whether or not the set [Q\0] D O is empty. Since x is a
feasible solution of (P) it is easily verified that ±ff(x) G cl.[y|g(i)] and ±h(x) G
cl.[Z|/i(x)]. Hence by virtue of (14)-(17) we conclude that the lemma holds.

PROOF OF THEOREM 1. By virtue of Lemma 3, it suffices to show that (9)
holds in order to show our desired results. We will show this by contradiction.
Let us assume that there is an x G [Q\0] D O such that Hz(i) G [Z|/i(x)]°. It
follows, from (1) and (v) of Lemma 2, that there are ng > 0 and Hh > 0 such
that Fx(x) < 0, Gi(x) G fj.g{mt.Y-g{x)) and Hz{x) € nh{Z°-h(x)). By virtue
of (i) of the Definition this implies that there is a 8 > 0 such that

{/(» + Att)-/(x)}/A<0, (20)

{g(x + Au) - g(x)}/\ + nag[x) € int. Y, (21)

{h{x + \u)-h(x)}/\ + nhh{x)eZ°, (22)

whenever 0 < A < 6 and | x — u | < 6. We know that T(X, x) is a cone which
is closed with respect to the additional norm | • | (see e.g., [8]). Hence it can be
verified that x €E [Q\0] C T(X, x). By virtue of (2) this implies that there are
sequences {An} and {xn} such that

An > 0, xn € X for each n = 1,2,... and

lim AB =0 , lim | x - (xn - x)/Xn \ = 0.
n—»oo n -»oo ' '

Hence there is a positive integer k such that

0 < Afc < 6, \x-(xk- x)/Xk | < <5,

0 < Hg\k < 1 and 0 < nh\k < 1.

By virtue of (20)-(22) and (iii) of Lemma 2 and because g{x) e Y, h(x) € Z and
xk = x + Xk[{xk - x)/Xk], we have

ff(xjt) E int. Y, h(xk) G Z°, xk G X and (23)

/(**) < /(*)• (24)

Since x is an optimal solution of (P), it follows from (23) that f{xk) > f(x), which
contradicts (24). Hence we conclude that the relation (9) holds, completing the
proof of Theorem 1.
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4. An example and concluding remarks

In this section, let us consider the following optimisation problem:

minimise / f - / x(s)ds ] dt (25)

under the constraints

x € £, f y/1 + x{t)2 dt < ^ t i and (26)
JO 4v2

x{t) < 1 for all* e 1,
where I = [0,1], •n is the circle ratio and £ is the nonned space of all continuous
real-valued functions defined on / with the following norm:

-LO| i ( t ) | a * | for each x € £.

Let us define convex cones Y C R and Z C £ as follows:

^ = U; f < 0}, and Z = {x 6 £; x(t) < 0 for alH G / } .

Note that K has non-empty interior. We define the mappings / : <£ —• R, g: <£.
R and h: <L —» £ as follows: for each i e £ ,

g(x) = f
^o

/i(i)(<) = i(f) - 1 for all ( e / .

Then our problem consisting of (25) and (26) is now rewritten as the problem
(P), where 3C = 3 = <£, 2) = 9t and X = €. Let us define the additional norm on
£ as follows:

III =sup|z(<)| for each x e £.
t€/

Then one can easily show that the convex cone Z has a non-empty interior with
respect to the additional norm J • | and that ||x|| < | x | for each x G C. Hence
our problem satisfies the Assumption in Section 1.

Using Theorem 1, we seek an optimal solution of our problem. On obtaining
this solution we shall verify its non-singularity. Let x G £ be an optimal solution
of our problem. We set Q = £ and we define the linear mappings F j : £ —• R,
G±:<i^R and H&: £ -> £ as follows: for each x € £,

Fi{x) = j (-J x(s)ds) dt,
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[10] Programming with Set and Cone Constraints 319

Gi(x)= f X{tl^x(t)dt and
JO V 1 x(i)2

Hi(x)(t) = x(t) for all * € /.

We know that, for any z* e <£*, there is a Lebesgue integrable function ip(t)
denned on / such that

z*{z) = f ip(t)z{t) dt for all z e C,
Jo

where the integral is to be interpreted in the sense of Lebesgue. By paying
attention to this and noting as well that Q = <£, it follows, by virtue of Theorem 1,
that there are non-negative numbers r), y,, not both zero, and a square Lebesgue-
integrable function ij){t) defined on / , such that

tl>[t) > 0, ip(t)(x{t) - 1) = 0 for almost all t € / , (28)

r}{t - 1) + -y^1} a +^(Q = 0 for almost alH e /. (29)

One can obtain the following form of (27)-(29) with a little effort.

{ 1 for 0 < t < \

- 2 ( l - * ) a 2 " '

n = 1, u = —= and
\/2

^ - « for 0 < t < i

I for \ < t < 1.

Now we shall verify that x given by (30) is a non-singular point of our problem.
We can easily verify that the mappings F%, G± and Hi satisfy (i) of the Definition.
Because Q = T{£, x) = C, Q is a convex subset of C with 6eQc T(Q, x). That
is, (ii) of the Definition is satisfied also. Let z € <£ be arbitrary. We set 6 = ||z||.
We shall consider the case where 8 > 0. We set z-(t) = [\z(t)\ - z{t)]/2 for all
t el and

Furthermore let us define a continuous function x(t) on / as follows:

-z-{t)-6 f o r O < t < i

x(t) = { {(e_(l/2) + 6)(t - e - \/2)}/e f o r | < t < i + £

0 for i + e < t < 1.
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Then it can be verified that

x G Q = [Q\0}(= C) (31)

and that there is an e € (0, e) such that

x(t) < —z-(t) whenever - <t < - + i.

This follows from the fact that x(t) and z- (t) are both continuous functions on
/ such that x(l/2) < -2_(l/2). We set

_ 8up t 6 / | z - (Q |+ l
A " l - x ( l / 2 + e) ( > 0 ) '

5(() = * W " * W + x(t) - 1 for all * € /.
A

Since 1 — £(1/2 + e) > 0 and x(t) is a decreasing function on the closed interval
[1/2,1], it can be verified that z e Z and z = H$(x) — X[z — h(x)]. Hence we
obtain that

z€H±(x)-[Z\h(x)]. (32)

Furthermore, by the definition of x, we can verify that

11*11 < V5||*||. (33)
If 6 = 0, we let x = 0(e £). It is then evident that (31)-(33) hold, because
0 E [Z\h(x)\. Hence we can now conclude that the optimal solution given by
(30) is a non-singular point of our problem, by setting K = <£.(= 3)- Moreover
the optimal value can be calculated to be:

16
Let us now state a concluding remark. We can apply Theorem 3.2 in [7] to

our example, because Q is a convex subset of <£ with 0 € Q C T(<£, x) and the
space € is complete with respect to the additional norm | • |. In this case the
linear functional z* in Theorem 1, however, is continuous with respect to the
additional norm | • | but it is not always continuous with respect to the original
norm || • ||. Hence (28) and (29) would be respectively rewritten as follows:

ip(t) is non-decreasing function defined on /, (34)

/ (x - l)d^(t) = 0, (35)
Jo

f1 I n(t - 1) + f l ( 0 1 x(t) dt + f x(t) d^(t) > 0 (36)
Jo [ v"l + x(t)2 J Jo

for all x e €,
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where the integrals in (35) and the latter half of (36) are in the sense of Stieltjes.
We must recognise that there is a great difference between the relations (28),
(29) and those of (34)-(36). We now end our discussion by emphasising again
that it is important to give an assurance that the linear functional z* in Theorem
1 is continuous with respect to the original norm || • ||.
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