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THE STRONG MAXIMUM PRINCIPLE FOR THE HEAT
EQUATION*

by DAVID COLTON

(Received 23rd February 1984)

The strong maximum principle for harmonic functions is usually arrived at by
appealing to the mean value theorem (c.f. [2], p. 53). It is also of course possible simply
to appeal to the Hopf maximum principle [2], but using sledge hammers to kill flies is
generally viewed as aesthetically unpleasing. In contrast to the case of harmonic
functions, the only proof of the strong maximum principle for the heat equation that is
known to me is to invoke Nirenberg's strong maximum principle for parabolic
equations [2]. As in the case of harmonic functions, it seems desirable to provide a
direct proof of this result without having to go through the subtle comparison
arguments that are employed in the more general case. The purpose of this note is to
provide a proof of the strong maximum principle for the heat equation based on a mean
value theorem for solutions of the heat equation which we derive below. Such an
approach provides a straightforward and simple proof of the strong maximum principle
which avoids most of the detailed estimates of the proof of the maximum principle for
more general parabolic equations. Unfortunately the proof of the maximum principle for
the heat equation using the mean value theorem is not as short as the proof in the
corresponding case of harmonic functions. It nevertheless seems worthwhile to show
that such an alternate proof is possible, and it is to this purpose that we address this
paper.

For the sake of simplicity we shall only consider the case of the heat equation in
three space dimensions.

Theorem. Let u(\,t), xeR3, satisfy the heat equation

in a domain E and suppose that the maximum of u in E is M and that it is attained at
some interior point (xo,to). //(Xj,^) is a point of E which can be connected to (x0,t0) by
a path in E consisting only of horizontal and upward vertical line segments, then u = M at

Proof. Consider the spherical mean of u about the point (x0, t) defined by

^ 1 u(x,t)ds. (1)
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Then (c.f. [1], pp. 103-105) RS(R,t) is a strong solution of the heat equation in one
space dimension and since RS(R,t) is odd we can conclude that S(R, t) is an analytic
function of R in some neighbourhood of the origin (c.f. [1] p. 179), i.e.

n 2n

= R2" d"S(O,t)
t'o(2n + l)! 8t" ( '

R2n dnu(x0,t)

dt"

for R sufficiently small. We shall refer to (2) as the mean value theorem for the heat
equation.

Now suppose u achieves its maximum at a point (x0, t0) as stated in the theorem.
Suppose u is not identically equal to M in the component of the intersection of E with
the plane t = t0 that contains (x0, t0). Then there exists a sequence of positive numbers
pn, pn->0, such that S(pn,t0)<M, since if not u is identically equal to M in a
neighbourhood of (x0,10) intersected with the plane t = t0 and hence by analyticity u is
identically equal to M in the entire component described above. We now note that for
Ro and h sufficiently small, S(R,t) is a spherically symmetric solution of the heat
equation in the cylinder R^R0, to — h^t^to, and achieves its maximum value M at
(0, t0). Choose R0 = pno for n0 sufficiently large. Then by the weak maximum principle
for the heat equation (c.f. [1]) there exists a point (R^tx), O^RxSPngJo — h^tx^to,
such that S(R1,t1) = M. Applying the above argument to the cylinder R^pni,tl +
pn,St^t0, where tx+pni <to,pmi <pH, yields a point (R2,t2), 0^R2^pKl,
t1+pr,i^t2<t0, such that S{R2,t2) = M, and proceeding in this manner we have an
infinite sequence of points (Rn, tn) such that S(Rn,tn) = M and whose only accumulation
point is (0,t0). Since {Rn,tn) are maximum points, we have S,(Rn,tn) = O, and our choice
of concentric cylinders implies that

(3)

for all n. From the mean value theorem for functions of several variables applied to
S,(R,t) we now have that

Q SRt(R°n, t°n)(Rn + 1-R

where (R°, t°) is a point on the line segment joining (/?„, tn) to (Rn + i,tn + l), and since
SRt(0,to) = 0 we have from (3) and (4) by letting n tend to infinity that S,,(0,to) =
(d2u{xo,to)/dt2) = 0. Since S(pn,to)<M by hypothesis, S(R,tn) is not identically equal to
M for R^R0 and an appropriate infinite subsequence of the positive integers. Hence
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applying the above argument to S(R, t) and the point (Rn, tn) instead of u(x, t) and
(x0, t0) we can conclude that S,t(Rn, tn) = 0 for n in this subsequence. Equation (4) is now
valid for S, replaced by Stl and hence we can conclude that S,,,(0, ro)=(33u(xo, to)/dt3)
= 0. By induction we now have that all the derivatives of u with respect to t vanish at
(x0, t0), and hence from the mean value theorem for the heat equation we have that
S(R,to) = M for all R sufficiently small. But this contradicts the fact that S(pn,t0)<M
and hence we can conclude that u is identically equal to M in the component of the
intersection of E with the plane t = t0 that contains (x0)r0).

We now complete the proof of the theorem by using a simple comparison argument
due to Nirenberg (c.f. [2], p. 167). Let (x0, t0) be as above such that the vertical segment
(xo,t), t^^f^tQ lies in E. Suppose there is a point (x0,t2), tl^t2<t0, such that
"(xo>t2)<^ and let T be the least upper bound of such values of t2. Then by continuity
w(x0, T) = M and u(x0, t) < M for t2 ^ t < x. Then by the above analysis u(x, t) < M in some
cylinder |x —xo|^£, t2^t<z and u(x,x) = M for |x —xo|^e. We shall now obtain a
contradiction. Let D be a ball centred at (x0, T) such that the lower half of D is
contained in the above cylinder and let Q be that part of D lying below the paraboloid
|x — xo|2 + 7(j — T) = 0. Then dCl = Cl + C2 where Cx is part of 3D and C2 is part of the
boundary of the paraboloid. Consider the function v defined by

i;(x,0 = u (M)-e ( |x -x o | 2 + 7(t-T)) (5)

where e>0. Then v,~A3i>= — e<0 and v achieves its maximum in Q. The point at
which this maximum is achieved cannot be in Q since at such a point v, = 0 and A3u^0.
By choosing e sufficiently small we see that v<M on Cltv^M on C2, and since v = u on
C2 we can conclude that the maximum of v is M and occurs at (x0, T). Hence at (x0, T)
we have (dv/dt)^.O. But since (du/dt)(x0,T)=0 we see from (5) that (dv/dt)(x0,T) =
— 7£<0, and thus we obtain the desired contradiction. Hence we can conclude that u =
M on every vertical line segment whose upper end point is an interior maximum
point of u.

We note in closing that a strong minimum principle for the heat equation can be
obtained by simply replacing u by —win the above theorem.
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