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INTEGRAL KERNELS WITH 
REFLECTION GROUP INVARIANCE 

Dedicated to P. G. Rooney on the occasion of his 65th birthday 

CHARLES F. DUNKL 

Root systems and Coxeter groups are important tools in multivariable analysis. This 
paper is concerned with differential-difference and integral operators, and orthogonality 
structures for polynomials associated to Coxeter groups. For each such group, the struc­
tures allow as many parameters as the number of conjugacy classes of reflections. The 
classical orthogonal polynomials of Gegenbauer and Jacobi type appear in this theory 
as two-dimensional cases. For each Coxeter group and admissible choice of parame­
ters there is a structure analogous to spherical harmonics which relies on the connec­
tion between a Laplacian operator and orthogonality on the unit sphere with respect to a 
group-invariant measure. The theory has been developed in several papers of the author 
[4,5,6,7]. In this paper, the emphasis is on the study of an intertwining operator which 
allows the transfer of certain results about ordinary harmonic polynomials to those as­
sociated to Coxeter groups. In particular, a formula and a bound are obtained for the 
Poisson kernel. 

The presentation begins with a quick review of the basic définitions and then some 
integral identities involving Laguerre polynomials and the Gaussian measure. Next there 
is a study of the analogy between partial derivatives and the differential-difference op­
erators as applied to inner products on spaces of polynomials. 

The intertwining operator is then defined and shown to be a bounded linear operator 
with respect to a useful norm on polynomials (absolutely convergent series of homoge­
neous parts). The author conjectures that the intertwining operator is a positive integral 
transform in general (in one dimension, it is a form of Weyl's fractional integral). The 
paper ends with a reasonably explicit integral for the Poisson kernel for the ball, a ker­
nel which reproduces certain functions from their boundary values, and some examples 
coming from the group Z2, including Gegenbauer and disk polynomials. 

1. Background. Suppose that G is a finite reflection group (also called Coxeter 
group) on KN with the set { v/ : / = 1,2,..., m} of positive roots. Let <7, denote the 
reflection along v,-, that is, xcii : x - 2(( x, Vi) 11 vt1

2)v; for x e R N with the inner product 
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(x,y) := EjLi x{yi and the norm |JC| := (x,x)x'2. Thus G is a finite orthogonal group 
generated by reflections; the set of reflections in G is { 07 : 1 < / < m} ; and there is a 
fixed vector XQ so that ( v,-,xo) > 0 for 1 < i < m. 

Choose positive parameters at, 1 < i < m, such that 07 = OCJ whenever cr, is conjugate 
to cjj in G (assume also that | v/| = | v/| in this case, so that v/vv = ±v7 for some w G G). 

Define h(x) := UT=\ \(x^vj) \aj> a positively homogeneous G-invariant function of 
degree 7 : = YJjL 1 aj- The invariance refers to the action of G on functions on R N defined 
by R(w)f(x) = f(xw), x G KN, w G G. The hypotheses on or/ imply that R(w)h — h for 
all M / E G . 

The main concern of this work is the orthogonality structure for polynomials on the 
unit sphere S := {x G KN : |JC| = 1} with respect to the measure h2duj, where da; is the 
normalized rotation-invariant measure on S. The key device is the differential-difference 
operator 

Vkfix) := Vf(x) + }2 aj—1 \ v h 

(V is the gradient), and its components 7/, where 7)/(x) := ( V//(x), ef) (standard unit 
vectors e\,ei,... ,e/v). 

Let ?„ denote the space of homogeneous polynomials of degree n in x\, x2,..., xN. Say 
that a linear operator L is homogeneous of degree k if L(Pn C 2̂ +* for each n — 0,1, 
It was shown in [5] that V/, is homogeneous of degree — 1, and the set { Tt : / = 1, . . . , N} 
generates a commutative algebra of operators containing the /z-Laplacian A/2 := E^L 1 Tf. 

The main orthogonality theorem [4, p. 37] states that if/? G P̂„, then 

/s 
, pqh2 da; = 0 for all 4 G J2 &j 
s 7=0 

if and only if Ahp = 0. 
Accordingly, we define 9~Q := (PnC\ (kerA/j), the space of h-harmonic polynomials 

of degree n. Also let 9fn := (Pn D (ker A), the ordinary harmonic polynomials. 
We will study the intertwining operator V which is homogeneous of degree 0 and is 

uniquely defined by TtV = Vdh 1 < i < N, and VI = 1 (where df(x) = | - / W ) . 
Note that K?£ C i ^ . We also study various inner products on polynomials and obtain 
bounds on the Poisson kernel for /i-harmonic functions in the unit ball. The Gaussian 
distribution gets involved with Ah by use of polar coordinates. We collect some facts 
about such integrals. 

Let fi be the normalized Gaussian measure on R" defined by d^i(x) = 
(27r)~Ar/2^~lJcl I2 dx. Iff is a continuous function of polynomial growth on RN, then 

(i. i) jKjd, = (2-"/yr(f)) j;^e^drjsf(rX)M. 

Iff is positively homogeneous of degree 2k, then 

(1.2) / R ^ „ = 2-(r(f + . + 7)/r(f))/^„ 
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(recall! = E£ i <*,). 
This leads to an orthogonal decomposition of L2(h2dfi). Let 

H>
h

k = {C1-l+N/2W/2)p(x):pGH!'}. 

Formula (1.1) and the orthogonality theorem for Â  show 9{£k _L 9{£t for n ^ m. 
The Laguerre polynomials are given by 

and satisfy 

T(A + I)"1 j™ L^L^We-' dt = 8nm(A + l ) n / n\ 

(see Szego [15, p. lOOff]). Thus, 

/ R „ p B ( * ) * n ( ^ 

= bu ~k\ î7 | ) A ^ * ^ ' 

for/?„, g„ G 9~Q. We introduce the normalization constants CN := ( SR* /Î2 d/i ) and 

c'N := (XyA2rfo;) ; by (1.2), c^ = 27 ( r ( f + 7 ) / r ( f ))c*. Thanks to Selberg, Mac-
donald, Heckman, Opdam, and others, there is a closed form for c#- For Weyl groups the 
formula is 

cJi1 = U.^) (n(v*,v;) +a,- + i)/r((vA,v;) + D), 

where v* = (2/ |v/|
2)v/ (the co-root) and Vh = \ T!L\ OCJVJ (denoted by p in Opdam's 

paper [13]). Macdonald [12] conjectured this formula for root systems of Weyl groups 
and proved it for groups of the type AN, BN (or CN), DN by use of Selberg's integral [14]. 
Askey [1] also discussed integrals of this type. Opdam [13] proved the conjecture for all 
Weyl groups by use of shift operators. Although these have the effect of relating different 
parameter values, similar to the operator V discussed here, they are not homogeneous of 
degree 0 and are defined only on the G-invariant polynomials. For the Coxeter groups 
with just one conjugacy class of reflections (H^^H^hik) dihedral, k odd), 

m / I v l 2 \ « N 

cj = TiOy-) n 
T{dta + \) 

j=\^ * ' / i i T(a + 1) 

where {di,d2,...,<iw} are the degrees of the fundamental invariants ((2,6,10), 
(2,12,20,30), (2, k) respectively). For the even dihedral group h{2k) with 

h(x):= |**-je*|a-|**+je*|0 
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(interpretingx £ C = R2), 

r h2du - 2 2 "«*> r ( * ( t t + / 3 ) + 1 ) r ( 2 a + 1 ) r ( 2 / 3 + ° 
A2 ^ r(a + p + i)r(a + i)r(/3 +1) 

(note that the choice of /z implies that each | v7| = 2). Heckman [9] recently showed 
that Opdam's shift operators could be defined for non-crystallographic reflection groups 
by use of the author's differential-difference operators. Subsequently, in an as yet un­
published work, Opdam proved the HT, and H4 formulas. (Of course, the dihedral group 
integrals are ordinary beta integrals.) 

2. The intertwining operator. We review some concepts from the paper [7], which 
deals with inverting the operator Y1^L\ XiTi. For w G G, 0 < t < 1, let pw(t) be defined 

by 

( 1 / | G | ) E Av(0w = e x p ( ( l 0 g f ) f > ; ( l - (Tj)\ 

a central element of the group algebra R G; thus w *—>pw(t) is a class function. Label the 
conjugacy classes of reflections by 1,2,..., I, and let fy be the value of at associated 
to classy, thenpw(t) is a polynomial in tPx, t^2,..., f̂  with integer coefficients. (For the 
irreducible Coxeter groups I — 1 except for hi^m), BN,F4, G^ when I — 2.) Further, 

Pw(t) > 0 and EWGGPUO = | G| for 0 < t < 1. 

THEOREM 2.1 [7]. Lef (f\,... ,/n) Z?£ a« "h-exact 1-form" of polynomials (that is, 
Tjfj — TjfiforalliJ), then 

1 r\ N 

F(x) := — E / p^Ys^ifttxw)^ 
| G | w e G J 0 1=1 

satisfies T(F(x) — f(x); further, if g is another polynomial with T[g(x) = f(x) for all i, 
then F(x) = *(*) - g(0). 

This formula is used inductively to define V (from [7]). 

DEFINITION 2.2. Let V be the linear operator on polynomials defined by VI = 1, 
and iff G 2>n+i,then 

Vf(x) := - ! - £ E(*w);(vO/)(xw)) Cpw{t)fdt 

forn = 0,1,2, . . . . 

THEOREM 2.3. V w one-to-one on each <2n, n G Z+; 7/V = V3//or 1 < / < N; V 
is uniquely determined by the conditions V(Pn C P̂n> VI = 1, Tt-V = Vdifor all i; and 
R(w0)V = VR(w0)forw0 e G. 

PROOF. Most of these statements were proved in [7]. Note, for example, that induc­
tion shows (Vd{f)^=] is an /i-exact 1-form, and so Theorem 2.1 implies TiVf(x) — Vdf(x) 

https://doi.org/10.4153/CJM-1991-069-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1991-069-8


INTEGRAL KERNELS WITH REFLECTION GROUP INVARIANCE 1217 

(f G ÎÎÎ+I). To show that V commutes with the action of G assume that R(wo)Vg = 
V(R(w0)g) for g G <Pn, w0 G G. For/ G ¥n+ï, V (R(w0)f)(x) = Vf(xw0)w^ (chain-
rule, and wo is orthogonal). Thus 

N N 

di[R(w0)f](x) = £ djf(xw0)w0,ij = Y,wo,ijR(wo)djf(x), 
7=1 7=1 

and 

E(^)iEwo,«yV(*(w 0)3/)(^) = E(Jwwo)y(^(wo)V9/)(jw) 
i = l 7=1 7=1 

by inductive hypothesis, 

N 
= ^(xWW0)j(V(djf))(xwW0)-

Now in the expression for V(R(wo)f)(x), these calculations lead to 

V(R(wof)(x) = ^ E £(xww0)yVa/(xw0) Cpw(t)fdt. 
I 0 ! w€G7=l J0 

Replace the summation index by w — WQW'W^1 and use the fact that/?w(f) = / v ( 0 to 
see that V(/?(w0)/)« = V/(xw0). -

There is a useful norm on £ ^ 0 ^n for which V is a bounded linear operator. For 
any polynomial/?, let ||p||oo •= suP|x|<i \P(X)\- For formal sums/(x) = H%L0fn(x) with 
/„ G <Pn, let ll/IU := E ^ o ll/nlloo, and let A := {/ : \\f\\A < oo}, a subalgebra of the 
space of functions continuous on the closed unit ball and infinitely differentiable in the 
interior. There is another approach to norms for homogeneous polynomials by way of 
iterated directional derivatives. We define the d and T versions together. 

DEFINITION 2.4. Let || 1 ||a = || 1 | | r = 1, and for/ G !Pn+u let 

\\f\\T=-^sup{\\(y,Vhf)\\T:\y\ = l}9 n + I 

and 
1 sup{|K*V/>||3:b| = l}, 

n + 1 

for n = 0,1,2,. . . (note that x t—• {y, V//) is in fPw for each fixed y). Equivalently, for 

| |/ | |r = ^ s u p f | n ( ^ V A ) / w | : y i , ^ , . . . , y » e 5 ) ; 
n! U; = i I J • / = l 

a similar expression holds for ||/||a. 
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PROPOSITION 2.5. Forf G <Pn, \\ Vf\\T = ||/||a. 

PROOF. For any y\,yi,...,yn £ S, 

f[(yi,Vk)Vf(x) = v(f[(^V>/w). 
1 = 1 V ï = l 

In the latter expression, the argument of V is a constant and VI = 1. Thus the suprema 
over y \,..., yn of the two expressions are the same. • 

Van der Corput and Schaake [2] strengthened the Bernstein inequality and proved 
that H/lla = H/lloo for/ G Pn (in particular, | V/(x) |2 is maximized on S at the same x 
maximizing \f{x)\ and | V/(x)|2 = n2\f(x)\2 there). 

PROPOSITION 2.6. For / G £>„, ll/lloo < ll/Hr. 

PROOF. Inductively, assume |g(X)| < |*| "||g||r for g G îPn (obvious for w = 0), and 
let/ G !P,H.i. By Theorem 2.1, 

/(*) = Ï7T £ flpw(t)J2(^)i(Tif)(txw)dt. 

Forfixedz G 5, | | ( z ,V/ / ) | | r < supye5 ||(y, V//) | | r = (n+ l ) | | / | | r . By the inductive 
hypothesis, | (z,V//(x)) | < | |<z,V//)| |r < (n + l ) | | / | | r (each JC,Z G 5). Using the 
homogeneity we have 

X > w W ( t o v ) | < f \xw\n+l(n + l ) | | / | | r , 

and so 

r l 

i/wi <kr+1(^+Dii/iir(i/iG|)x: i Pw(t)fdt=\x\ 
because /?w(0 > 0 and T,weGPw(t) — \ G\ for 0 < t < 1. • 

The following is a corollary to this proposition and the van der Corput-Schaake in­
equality. 

THEOREM 2.7. V extends to a bounded operator on A, where Vf — X^Lo Vfn> far 

f=T^0fninAf\\Vf\\A<\\f\\Atand\Vf(x)\ < E ~ 0 Wll/nlloo < ll/IU (W < D-

The author conjectures that, in fact, | Vy(jc)| < sup{|/(jy)| : \y\ < |JC|} and the 
functional/1—> Vf(x) is positive for each x. For G = Z2, /i(x) = x" we already know V 
as an explicit fractional integral of Weyl type (see Theorem 5.1). 
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3. Inner products on polynomials. Consider the pairing on îP„ given by [p, q]^ := 
p(dx)q(x), p,q G ^P„; where p(dx) means that xt is replaced by ^- in p{x). Note that 
lp,qh = E m ^ i ! • • -mN^Prnqm, for m e Z+ with mi + • • • + mN = n and p(x) = 
T.mPm^\x '"XNN an<^ similarly for q. The reproducing kernel for this pairing is 
(x,y)n/n\; that is, ((x,dy)

n/n\)q(y) = q(x) for 4 G ^Pn, JC G R*. With the goal of 
constructing the Poisson kernel for /z-harmonic functions, we consider the action of V on 
this pairing. 

DEFINITION 3.1. For x,y G KN, let K(x,y) := Vxe^x^. Here, Vx indicates the vari­
able for the transformation; also || e^x,y^ \\A = e^. Further, let Kn(x, y) := Vx((x, y)n / n\), 
n G Z+. 

PROPOSITION 3.2. ForneZ+,x,yeRN, 
(i) \Kn(x,y)\ < max w e w | {xw,y) \n/n\; 

(ii) Kn(xw,yw) = Kn(x,y), w G G; 

(Hi) Kn(x,y) = ^ ( y , x ) ; 

(iv) (Vh)xKn(x,y) = Kn-i(x,y)y; 

(v) Kn+i(x,y) = |~r E v v e G ( ^ y ) ^ ( ^ y ) / o 7 w ( 0 ^ ^ / < 9 r r c > 0 andK0(x,y) = 1. 

PROOF. Part (v) is used to prove the others. Indeed, 

Kn+i(x,y)= Vx((x,y)n+l/(n + l)\) 

where/(x) = (x,y)n+l/(n + 1)!, but £/(*) = y / (* ,y )7" ! a n d t h u s ^ S " / = Kn(x,y)yh 

Let d(jt,y) := maxwGG | {xw,y) | (thus minwGG \xw ± y|2 = |x|2 + |y|2 — 2d(x,y)). Use 
Formula (v) and assume |ATn(jt,y)| < d(x,y)n/ n\ for some « > 0, then 

\Kn(xw,y)\ < d(xyy)n/nl, all w G G, 

and 

|^+ifcy)| < j^r £(d(*,30B+7"!) CpUOf1^ dt 
I M wEG ,/0 

= </(*,30B+7(n+l)! 

(since/?w(0 > 0 and T,wPw(t) = |G|) . This shows (i). 
Part (ii) follows from the commutation relation R(w)V = V7?(w), w G G (Theo­

rem 2.3). Indeed, 

Kn(xw,yw) = R(w)K(x,yw) = VxR(w)((x,yw)n / n\) 

= Vx((xw,yw)n/n\) = Vx((x,y)n / n\) = Kn(x,y). 
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We prove part (iii) inductively by use of (v). Assume Kn(x,y) — Kn{y,x) (clear for 
n = 0), then 

1 ri 
Kn+i(y,x) = y—- J2(yw>x)Kn(yw>x) / pw(t)fdt 

= Ï7T E ( ^ ~ 1 ^ ) ^ ( x w - 1 ^ ) fvw{t)fdt 

after the change of summation variable w' — w~l and by the fact pw(t) — pw\ (t) (estab­
lished in [7]). 

Finally, 

(Vh)xKn(x,y) = (Vh)xVx((x,y)n/nl)^VxVx((x.y)n/nl) 

= Vx((x,y)n-l/(n-l)\)y = Kn-l(x,y)y. 

m 

COROLLARY 3.3. If p G %, then Kn(x,V)p(y) = p(x\ for all x G KN; where 
Kn(x, Ty) is the operator formed by replacing yi by 7} with respect to the variable y, in 
Kn(x9y). 

PROOF. If q G 2>n, then q(x) = ((x,dy)
n/n\)q(y) and Vxq(x) = Kn(x,dy)q(y). Ap­

ply Vy to both sides (the left side is constant in y) to obtain Vxq(x) = Kn(x, Ty)Vyq{y); 
formally Vydy = VVy. The required identity holds for all Vq with q G ^Pn, and V is 
one-to-one on (Pn. • 

DEFINITION 3.4. The bilinear form [p, q]h := p(Tx)q{x), for p, q G !Pn, n = 0,1, 

THEOREM 3.5. Forp,q G Tn, 

\p,q]h = Kn(T\Ty)p(x)q(y) = [q,p]h. 

PROOF. By Corollary 3.3, p(x) = Kn(x, Ty)piy). The operators T and V commute 
and thus 

[p,q]h = Kn(T\Ty)p(y)q(x) = Kn(T>\Tx)p(y)q(x) 

by 3.2(iii). The latter expression equals [q,p]h- • 
In fact, [p, q\h is positive-definite. We establish this by expanding p, q in series of 

products of |JC| 2 and /z-harmonic polynomials and then relating the form [p,qh to the 
L2(S; h2du) inner product. 

THEOREM 3.6. Letp, q G (Pn and express 

P(x) = J2 \x\2jpn-2j(x), 
j<n/2 

?(*) = Z) \x\2jqn-2j(x), 
j<n/2 
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withpn-2j, qn-2j G ̂ C_2/, then 

\P> ih = E 4^'K« - 2/ + 7 + iV/ 2)7Lp„-2> ^-2;]*. 
j<n/2 

PROOF. The series expansions were shown to uniquely exist in [4, p. 37]. Recall 
A, = £ ^ 7 ? , thus 

lP,qh = E E Aipn-2dTx){\x\yq^2j(x)). 
j<n/2 i<n/2 

By the identity, 

(3.6) Ah\x\2jfm(x) = 4j(m+j + 7 - 1 + N/2)\x\2J'2fm(x) + \x\2j^m(x), 

for/m G îPm, m = 0,1,2,. . . (see [4, p. 38]), we see that 

^h{\A2Jqn-2j{x)) = 4*(-fle(-n+j-7 +l-N/2)l\x\2j-2tqn-2J(x), 

which is zero if £ > j . 
If I < j , then [\x\2jqn-2j{x), \x\2ipn-2t(x)\h — 0 by the same argument and the 

pairing is symmetric (Theorem 3.5). The only remaining terms are those withy = I, 
namely, 4>j\(n - 2/ + 7 + N/ 2)jpn^2j(Tx)qn~2j(xy m 

LEMMA 3.7. The adjoint ofTt acting onL2(K N, h2 dp) is given by T*g(x) — Xjg(x) — 
Tig(x) for polynomials g. 

PROOF. Integration by parts shows 

LAhf{x))g{mx)2dti{x) 

= " / ^ / w ( ^ w ) * w 2 d / i W 

+ jKJ(x)g(x)[-2h(x)d-^ + h(x)2Xi] dp(x) 

(f, g polynomials). For a fixed root v7, 

f fix) -fjxGj) 2 

L»—7 \ 80c)h(x) dp(x) 

f f(x)g(x) 2 A < x f f(X(Tj)g(x) 2 

J^N \X,Vj) J^N \X9Vj) 

r f(x)g(x) 2 /• f(x)g(xaj) 2 

JRN (x,Vj) J*N {x,Vj) 

in the second integral replace x by XOJ which changes (JC, vf) to (xoy, vy) = —(x, v, ) and 
leaves h(x)2dfi(x) invariant (assume a,- > 1 for integrability). Note also that 

h(x)£-h(x) = E ^ 7 ^ \ / z ( x ) 2 . 
d*,- j=i {x,Vj) 
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Combining these ingredients, we obtain 

jKTif{x)g{x)h{xfdii{x) = jKN[f(x)(xig{x) - ^g(x)) 

m \ 
+ E ctj(Vj)if(x)(-2g(x) + g(x) + gixaj))/ (x, vt) h(x)2 d»(x). 

• 

THEOREM 3.8. Ifp, q e 9Qf then 

lp,q\h = cN JKNpqh2dn = 2n[-+l^cN j^pqh2 du. 

PROOF. Since p(Tx)q(x) is a constant, 

[p,q\h = cN JRN(p(Tx)q(x))h(x)2 dp(x) 

= CNJRN q(x)(p(Tx)*l)h(x)2 diLix) 

= CN JR»
 qW(p(*) +PO(X))H*)2 dp(x) 

with a polynomialpo of degree less than n. Repeated use of the relation T*g(x) — xig(x) — 

Ttg(x), and the fact that deg(7/g) < deg(g) shows that the terms of highest degree in 
p(Tx)*l are exactly p(x). But JRN qpoh2 d[i = 0 since q G ?Q (recall Formula (1.1)). 
This shows [p,q\h — CNSRNpqh2dp,. The rest of the theorem follows from identity 
(1.2). 

Thus [p, q\h is positive-definite. There is a natural isomorphism of polynomials that 
maps 1!n and fPm into orthogonal subspaces of L2(KN,h2 dp) (for n ^ m); indeed the 
image of (Pn is E/<«/2 ®PQ_2jj (

s e e Section 1). The idea of forming e~~Ahl2 comes from 
Macdonald's use of eA/2 in [12] in connection with [p, q]^. Observe that e~Ah/2 maps fPn 

tO E/<„/2^/1-2/ . 

PROPOSITION 3.9. Le*/ e ^JJ, m,j G Z+, then 

e-^\x\Vm = {-lij\2!l^'MN/2-l\\x\2/2mx), 

an element of ^Qj-

PROOF. By Formula (3.6), 

e-A>'2\x\2Jf(x) = J2 (-~^(-J)d-m-j-l + 1 ~N/2)t\x\2^uf(x\ 

(and use the reversed form for the Laguerre polynomial, 

J- e=o £ -

m 
The pairing [-,-]h has an obvious extension to all polynomials with the convention 

\p,q\h = 0 if p E P̂„, g E Tm, n ^ m. Macdonald proved the following for the pairing 
[•, -]a (the relatively easy proof does not seem to be adaptable to Ah). 
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THEOREM 3.10. For p, q polynomials, 

\p,q]h = cNJRN(e-^2p)(e-A"'2q)h2dfx. 

PROOF. By Theorem 3.6, it suffices to establish this forp, q of the form 

p{x) = \x\2jpm(x), q(x) = \x\2jqm{x) with/?m,gm G 9Q. 

By (3.6), 

lp,qh = 4>j\\m + l + -J[pm,qm]h 

= 4ij\[m + l + ")2m(^+l)mc'NJspmqmh2duJ 

2m+2jp(U+1\ c<N(pmqmh2duJ. 
\ 1 I m+j JS 

The righthand side of the formula (by 3.9) equals 

cN jRN(j\2J)2L<
J
n+J-'+N/2\\x\2/2)2pm(x)qm(x)h(x)2 dfi(x) 

-2 r(^ + 7 ) c ^ - ) 2 y ! r(f) isPmqmhdu 

using Formula (1.3). • 
Note that 

A^r+N/2-l\\x\2/2)Pm(x) 

= -2(m + 7 +N/2 + k- l)I^'N,2'l\\x\2/2)pm(x) 

forpm G 9Q (a simple calculation using identity (3.6)). Thus Ah9i^k = fQ^k > 1), 

and we can characterize 0i^k as (ker(A*+1) H £ p f %) n (ker(A^) n Y^k~x &j) (as 

a subspace of L2(RN,h2 dp)). 

PROPOSITION 3.11. For k,m eZ+ with 2k < m, 

k \ k 

V=0 7 7=0 

PROOF. Note Hn-yj = {L^n+N/2~l\\x\2j 2)p(x) : p G Hn-y} • The two spaces are 
the images of e~Al2, é>~A*/2 applied to 2>m Pi ker(A*+1 ),Pmn ker(A^+1 ) respectively. But 
Ve~A/2 = e'Ah/2V, V(<Pm H ker A*+1) = (Pmn ker(A*+1), and Vis one-to-one. • 

There is an identity of Hecke for harmonic polynomials which can be adapted to h-
harmonic polynomials. 
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PROPOSITION 3.12. Ifp e ïQ, then 

p(y) = e~W2cN jRNp(x)K(x,y)h(x)2 d^ix) 

forye WLN. 

PROOF. Choose m > n, and let/m(jc) = £ j l 0 £/(.*, v). BY Corollary 3.3 and Theo­
rem 3.10, 

P(y) = \fm,p\h = cN jKMp(x)e-Ah/2fm(x)h(x)2 dii{x). 

Now e-^/%(x) = Ej<m/2{(-\y\y2y/j\)zTJoJKi^y)' Let m ^ ex) and use the 
dominated convergence theorem to get the stated formula. • 

4. The Poisson kernel. This is the reproducing kernel P(x9y) which is defined by 
the property: 

f(y) = cN fsf(x)P(x,y)h(x)2 du(x) 

for each/ e ^ , n e Z+, \y\ < 1. 
Let Pn(x,y) denote the component of degree n\ that is, Pn(x,y) = E ^ i qnj(x)qnj(y), 

where {gn j : j — 1,2,..., dn} is a real orthonormal basis for 9-Q (in L2(S, c'Nh2duj)), 
and dn = dimfH^ = dim^P„ — dimfP„_2. Thus, for each fixed y,x\—> Pn(x,y) is in ^ . 
Further P(x,y) = ££L0 n̂C*»)7) a s a formal series. 

THEOREM 4.1. For n e Z+, 

( f + 7 ) 2"~2> 

forx,y G R*. 

PROOF. The kernel Pn(x, y) is uniquely defined by the reproducing property for 9-Q. 

Le t / G 9Q, then/(y) = Kn{T\y)f(x) (Corollary 3.3). Fix 3;, and let p(x) = Kn(x,y) 

so that/(y) = \p,f\h- Expand p(x) = Ej<n/2 \x\2jpn-2j(x) v/ith pn-2j G ^_2</, then 

/OO = [/>>/]/> = \Pn,f]h = 2n^+^nc'NSsPnfh
2du (by Theorem 3.8). Thus,/>„(*, y) = 

2n ( ̂  + 7 ] /?«(*) with/?n being the (orthogonal) projection of/? on $Q. It was shown in 

[4, p. 38] that 

Pn(x) = £ (4(/! ( - | - 7 - n + 2)J |*| 2 V^«. 

But A/,^:n(x,y) = |y|2/^_2(-*,.y) (for Ah acting onx), so that A ^ x ) = \y\2jKn-2j(x,y). m 
By formally adding Y%L0 Pn(x,y) and reversing the summation, we are led to the fol­

lowing theorem. 
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THEOREM 4.2. Fix y e Kn with \y\ < 1, then 

P(x,y) = Vx((l - |y|2)(l - 2(x,y) + M V ' 2 " 7 ) , 

and 

0 < P(x,y) < (1 - \y\2)/(min\wx±y\)N+21 

wEG ' 

for\y\ < l = \x\. 

PROOF. Denote byfy the function which is the argument of Vx in the statement. We 
claim/, G A, with \fy\A = (1 - \y\2)(l - \y\rN~2\ Indeed, 

^( i - l , l 2 ) ( i + bl2r-/-go
(f

w7\1+^ |2 )n(„)-. 

B u t l K x ^ l U ^ W a n d O ^ l y l < l + \y\2for\y\ < 1, so 

\\fy\\A = (1 - b|2)(l + |y |2)^2^(l - ( J I ^ I ^ " / 2 " 

= ( l -W 2 ) ( l - |y |r w -^. 

Thus, Vfy(x) is defined and continuous for |JC| < 1. Further, 

Vfy(x) = (1 - \y\2) E ( x +7 2^m(x, j )( l + b | 2 r -m-W/ 2 - 7 

m=0 v 2 

„ °° /Af \ °° .(*« + y +7 ) . 
( I - I ^ I 2 ) E ( T + 7 ) 2w^mfey)E(-iy-—^—-1 l̂ -

Using the bound |/fm(jt,;y)| < d(x,y)m (from Proposition 3.2(i)) in the first equation 
shows 

\Vfy(x)\ < (1 - |y|2)(l -2d(x,y) + \y\2rN/2~\ 

the stated bound. In the double sum the part homogeneous of degree n in y is 

E , N \2_n'+
n

2)\y\2jK"-2^y), 

which equals Pn(x,y) for |JC| = 1. The fact that P(x, y) > 0 follows from the maximum 
principle for A/, (in [4, p. 41]). • 

Note that the bound on P(x, y) shows that for fixed x, y on 5, P(x, ry) —• 0 as r —> 1 _ 
except possibly for y G { ±xw : w G G } , the G-orbit of x and its antipode. 
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5. Examples. At the time of writing, a closed form for V is known only for h(x) — 
x® (the group Z2). Even so, this allows a simple determination of the Poisson kernel for 
the disc polynomials (Ikeda [10], see also [3] for formulas). They are orthogonal on the 
disk {JC G R2 : \x\ < 1} with the measure (1 — x\ — x\)xdx\dx2 and are realized as the 
restrictions to S of/z-harmonic polynomials on R3, for h(x) — x* with a — A + 1/2, 
which are even in x^. 

THEOREM 5.1. ForN = 1, h(x) = \x\a, a > 0, 

Vf(x) = ba f_xf{xt){\ - t)«-\l + t)a du 

where 
ba = 2~2aT(2a + 1)/ ( r ( a ) r ( a + 1)). 

PROOF. Direct verification by way of beta integrals shows that 

Vx2n=((l/2)n/(a + l/2)n)x
2n 

and 
Vx2^1 = ((l/2)n+l/(a + l/2)n+])x

2n+\ neZ+. 

Further Txln = 2nx2n and Tx2^ = (2n + 1 + 2a)x2n (note 

Tf(x) = f(x) + a (f{x) -f(-xj)/x, 

and induction shows VT = ^( j~). Alternatively, 

TXJ(x) = ^ £ 1
i ( r / , ( x 0 + a ( f ( x 0 - / ( - x 0 ) / x ) ( l - O ^ V l +t)adt 

= *« £ (V(*0(1 - 0a_1(l + 0" + 2(f(xt)/x)at(\ - j2)*"1) dt 

= £a / ^ / ( ^ ( f + (l - 0)d - 0a" ](l + 0* A 

= v/to; 
integration by parts is used in the second term. • 

To illustrate Proposition 3.11 for N = 1,7 = a, we note that VLL~ 1 / 2 ) (X 2 /2 ) = 

i ^ I < " - , / V / 2 ) ( i n ^ I ) . a n d V ( x £ i ' / V / 2 ) ) = J i ^ - ^ + ' / V / 2 ) (in 
Ptfn). Further, for N = 2, and h(x) = x%, the /i-harmonic polynomials are Gegenbauer 
polynomials so that V acts as a transform from trigonometric polynomials to the former, 
a classical formula of Dirichlet type. Indeed. 

ba jf1 (cos0 + it sin 9 )n(\ - t)a-\l + t)a dt 

(2a)n
 nK (2a + 1), 
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n— 1,2,3,... (a result of Erdélyi [8] for the part even in 9 ). The Poisson kernel for this 
family was discussed in [6]. A transform, and the Poisson kernel, for Jacobi polynomials 
can also be obtained by using h(x) — \x\ \& \x2\

a on R2 and expressing V as a double 
integral. 

Turning to N — 3, h(x) = | JC31a, we get the Poisson kernel explicitly as 

P(x,y) 

= ba £ ( 1 - \y\2)(\ - 2(xiy] +x2y2 + x3y3t) + M2)~"~3 / 2(l - t)"-\l + 0" dt 

l ~ b l 2 /a + 3/29am 4x3y3 \ 
\x-y\2a+3 2 i \ 2a + 1 ' \x-y\2J 

for \y\ < \x\ = 1, x,y G R3. As in [6], consider the hypergeometric function analytic 
on C \ [1,00] (cut along { z £ R : z > 1}. Note — 4jc3-y3 = |JC — y\2 — \xa — y\2, where 
xa = (xi,X2, —-̂ 3). The restriction of this kernel to polynomials even in JC3 was already 
determined in integral form by Kanjin [11]. 
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