
J. Functional Programming 6 (3): 535-562, May 1996 © 1996 Jeremy Gibbons 535

FUNCTIONAL PEARLS

Deriving tidy drawings of trees

Jeremy Gibbons*
Department of Computer Science,

University of Auckland,
Private Bag 92019,

Auckland, New Zealand.
Email jeremyflcs. auckland. ac.nz

Abstract

The tree-drawing problem is to produce a 'tidy' mapping from elements of a tree to points in
the plane. In this paper, we derive an efficient algorithm for producing tidy drawings of trees.
The specification, the starting point for the derivations, consists of a collection of intuitively
appealing criteria satisfied by tidy drawings. The derivation shows constructively that these
criteria completely determine the drawing. Indeed, the criteria completely determine a simple
but inefficient algorithm for drawing a tree, which can be transformed into an efficient
algorithm using just standard techniques and a small number of inventive steps.

The algorithm consists of an upwards accumulation followed by a downwards accumulation
on the tree, and is further evidence of the utility of these two higher-order tree operations.

Keywords: Derivation, trees, upwards and downwards accumulations, drawing.

1 Introduction

The tree drawing problem is to produce a mapping from elements of a tree to points
in the plane. This mapping should correspond to a drawing that is in some sense
'tidy'. Our definition of tidiness consists of a collection of intuitively appealing
criteria 'obviously' satisfied by tidy drawings.

We derive from these criteria an efficient algorithm for producing tidy drawings of
binary trees. The derivation process is a constructive proof that the tidiness criteria
completely determine the drawing. In other words, there is only one tidy drawing of
any given tree. In fact, the derivation of the algorithm is a completely reasonable and
almost routine calculation from the criteria: the algorithm itself, like the drawing, is
essentially unique.

The algorithm that we derive (which is due originally to Reingold and Tilford
(1981)) consists of an upwards accumulation followed by a downwards accumulation
(Gibbons, 1991; Gibbons, 1993b) on the tree. Basically, an upwards accumulation
on a tree replaces every element of that tree with some function of that element's

f Partially supported by University of Auckland Research Committee grant number
A18/XXXXX/62090/3414013.

https://doi.org/10.1017/S0956796800001842 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001842

536 Jeremy Gibbons

descendents, while a downwards accumulation replaces every element with some
function of that element's ancestors. These two higher-order operations on trees
are fundamental components of many tree algorithms, such as tree traversals, the
parallel prefix algorithm (Ladner and Fischer, 1980), evaluation of attributes in an
attribute grammar (Deransart et ah, 1988), evaluation of structured queries on text
(Skillicorn, 1993), and so on. Their isolation is an important step in understanding
and modularizing a tree algorithm. Moreover, work is progressing (Gibbons, 1993a;
Gibbons et al., 1994) on the development of efficient parallel algorithms for evalu-
ating upwards and downwards accumulations on a variety of parallel architectures.
Identifying the accumulations as components of a known algorithm shows how to
implement that algorithm efficiently in parallel.

For the purposes of exposition, we make the simplifying assumption that tree
elements are unlabelled or, equivalently, that all labels are the same size. It is easy
to generalize the algorithm to cover trees in which the labels may have greatly
differing widths. A more interesting generalization covers the case in which tree
labels may also have different heights. Bloesch (1993) gives two algorithms for this
case. It is slightly more difficult to adapt the algorithm to cope with general trees, in
which parents may have arbitrarily but finitely many children. Radack (1988) and
Walker (1990) present two different approaches. Radack's algorithm is derived by
Gibbons (1991) and described by Kennedy (1995).

The rest of this paper is organized as follows. In Section 2, we briefly describe
our notation. In Section 3, we summarize the ideas behind upwards and downwards
accumulations on trees. In Section 4, we present the tidiness criteria, and outline a
simple but inefficient tree-drawing algorithm. The derivation of an efficient algorithm,
the main part of the paper, is in Section 5.

The diagrams in this paper were drawn 'manually' using John Hobby's M ETA-
POST, rather than with the algorithms described here.

2 Notation

We will use the Bird-Meertens Formalism or 'BMF' (Backhouse, 1989; Bird, 1987;
Bird, 1988; Meertens, 1986), a calculus for the construction of programs from
their specifications by a process of equational reasoning. This calculus places great
emphasis on notions and properties of data, as opposed to program, structure. The
programs we produce are in a functional style, and are readily translated into a
modern functional language such as Haskell or ML.

The BMF is known colloquially as 'Squiggol', because its protagonists make heavy
use of unusual symbols and syntax. This approach is helpful to the cognoscenti,
but tends to make their work appear unnecessarily obscure to the uninitiated. For
this reason, we will use a more traditional notation here. We will use mostly words
rather than symbols, and mostly prefix functions rather than infix operators, simply
to make expressions easier to parse for those unfamiliar with the calculus. We hasten
to add two points. First, this translation leaves the BMF 'philosophy' intact. Second,
the presentation here, although more accessible, will be marginally less elegant than
it might otherwise have been.

https://doi.org/10.1017/S0956796800001842 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001842

Functional pearls 537

2.1 Basic combinators

Sectioning a binary operator involves providing it with one of its arguments, and
results in a function of the other argument. For example, (2+) and (+2) are two ways
of writing the function that adds two to its argument. The constant function const a
returns a for every argument; for example, const 1 2 = 1. (Function application is
left-associative, so that this parses as '(const 1) 2', and tightest binding.) Function
composition is written '°'; for example, const 1 ° const 2 = const 1. The identity
function is written 'id'. The converse © of a binary operator ffi is obtained by
swapping its arguments; for example, x — y = y — x.

The product type A x B consists of pairs (a,b) of values, with a :: A and b :: B.
The projection functions fst and snd return the first and second elements of a pair.
The fork fork (f,g) of two functions/ and g takes a single value and returns a pair;
thus, fork (f,g) a = (f a,g a).

2.2 Promotion

The notion of promotion comes up repeatedly in the BMF. We say that function / is
'© to <g> promotable' if, for all a and b,

f{a@b) = fa®fb

Promotion is a generalization of distributivity:/ distributes through ffi iff/ is © to
© promotable. We say that / 'promotes through ffi' if there is a ® such that / is ®
to <g> promotable.

2.3 Lists

The type list A consists of lists of elements of type A. A list is either a singleton
[a] for some a, or the (associative) concatenation x -H- y of two lists x and y.
In this paper, all lists are non-empty. We write 'wrapl' for the function taking a
to [a], and write longer lists in square brackets too—for example, ' [a ,b ,c] ' is an
abbreviation for [a] -H- \b\ -H- [c]. For every initial datatype such as lists, there is a
higher-order function map, which applies a function to every element of a member of
that datatype; for example, map (+1) [1,2,3] = [2,3,4]. We will use map for other
datatypes such as trees later, and will trust to context to reveal which particular
map is meant.

2.4 Homomorphisms

An important class of functions on lists are those called homomorphisms. These
are the functions that promote through list concatenation. That is, h is a list
homomorphism iff there is an associative operator <g> such that, for all x and y,

h (x -tf y) = h x ®h y

https://doi.org/10.1017/S0956796800001842 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001842

538 Jeremy Gibbons

The condition of associativity on ® is no great restriction. If h is -H- to ® promotable
then ® is necessarily associative, at least on the range of h:

h x ®(h y ®h z)

= {h is -H- to ® promotable}

h x ®h (y -W-z)

= {promotion again}

h (x-H-(y-H-z))

= {-H- is associative}

h ((x-H-y)4f z)

= {promotion, twice}

(h x ® h y)® h z

In fact, if h is -H- to ® promotable, then it is completely determined by its action on
singleton lists; for example,

h [a,b,c] = /i([a]-H-[fc]-H-[c]) = h [a] ® h [b] ® h [c]

If h is -H- to ® promotable and h°wrapl =f, then we write h as Ih (f, ®) ('lh' stands
for 'list homomorphism').

Stated another way, we have the Promotion Theorem on Lists, a special case of
the Promotion Theorem (Malcolm, 1990):

Theorem 1
If h is ® to ® promotable, then

h»lhtf,e) = lh(hof,®)

Since lh {wrapl, -ff) = id, this gives us a vehicle for proving the equality of a
function h and a homomorphism lh (f, ®), in that we need only show that h is -H-
to ® promotable, and that h ° wrapl = / .

For each / , map f is a homomorphism, for

mapf(x-W-y) = map f x -H- map f y

Indeed, map f = lh (wrapl °/,-H-), because map f [a] = [/" a] = (wrapl °f) a.
Another example of a homomorphism is the function len, which returns the length
of a list:

len = lh (const 1,+)

The functions ftearf and last, returning the first and last elements of a list, are also
homomorphisms. For example,

head (x -H- y) = head x = /s£ (head x,head y)

and so head = //i (id,fst). Similarly, last = M (id,snd). Other examples that we
will encounter are the functions smallest and largest, which return the smallest and
largest elements of a list, respectively:

smallest = //i (id,min)
largest = lh (id,max)

https://doi.org/10.1017/S0956796800001842 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001842

Functional pearls 539

and the function sum, which returns the sum of the elements of a list:

sum = Ih (id,+)

2.5 Leftwards and rightwards functions

Two generalizations of the notion of list homomorphism are the leftwards and the
rightwards functions. If there exist / and (not necessarily associative) © such that,
for all a and x,

h[a] = fa
h([a]-H-y) = a®hy

then we say that h is leftwards, and write it Iw (/",©). Similarly, if for all x and a,

h[a] = fa
h (x -H-[a]) = h x®a

then we say that h is rightwards, and write it rw (f, ®). Clearly, if h is a homomor-
phism then it is both leftwards and rightwards. What is not so obvious is that the
converse holds: Bird's Third Homomorphism Theorem (Gibbons, 1993a; Gibbons,
1996) states that if h is both leftwards and rightwards, then it is a homomorphism.

Consider the function inks, which takes a list and returns the list of lists consisting
of its initial segments, in order of increasing length. For example,

inks [a,b,c] = [[a], [a,b], [a,b,c]]

Now, inits is leftwards, because

inks ([a] -H- x) = [[a]] -H- map ([a] -H-) {inits x)

In fact,

inits = Iw {wrapl ° wrap/,©) where a © v = [[a]] -H- map ([a]-ff) v

It is also rightwards, because

inits (x -H- [a]) = inits x -H- [x -H- [a]]
= inits x -H- [last {inks x) -ff [a]}

since last {inks x) = x. In fact,

inits = rw {wrapl ° wrapl,®) where w ® a = w -tf [fast w -H- [a]]

Thus, by the Third Homomorphism Theorem, inits is a list homomorphism.

2.6 Binary trees

Finally, we come to binary trees. The type btree A consists of binary trees labelled
with elements of type A. A binary tree is either a leaf // a labelled with a single
element a, or a branch br {t,a,u) consisting of two children t and u and a label a.
For example, the expression

br {If b,a,br {If d,c,lf e))

https://doi.org/10.1017/S0956796800001842 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001842

540 Jeremy Gibbons

Fig. 1. The tree five

corresponds to the tree in Figure 1, which we will call five and use as an example
later.

Homomorphisms on binary trees bh (/", ©) ('binary tree homomorphism') promote
through br. That is, they satisfy the equations:

bh{f,®){lfa) = fa
bh(f,®)(br (t,a,u)) = bh (f,@) t ©fl bh (f,®)u

Note that, for binary trees, the second component of a homomorphism is a ternary
function. We write its middle argument as a subscript, for lack of anywhere better
to put it.

When instantiated to trees, Malcolm's Promotion Theorem states:

Theorem 2
If h satisfies

h {br (t,a,u)) = h t ©„ h u

then h=bh(h° If, ffi).

The function map on binary trees satisfies

map f (If a) = If (f a)
map f (br (t,a,u)) = br (map f t,f a, map f u)

and so

map f = bh(lf°f,®) where v ®a w = br (v,f a, w)

The function root is a binary tree homomorphism:

root (If a) — a
root (br (t,a,u)) = a = root t ®a root u where v ©a w = a

and so, with the same ©,

root = bh (id,®)

So are the functions size and depth:

size = bh (const 1, ©) where v®aw = v + l + w

depth = bh (const 1,©) where v (Ba w = 1 +max (v,w)

and the function brev, which reverses a binary tree:

brev = bh (If,®) where v ©„ w = br (w,a,v)

https://doi.org/10.1017/S0956796800001842 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001842

Functional pearls 541

2.7 Variable-naming conventions

To help the reader, we make a few conventions about the choice of names. For alpha-
betic names, single-letter identifiers are typically 'local', their definitions persisting
only for a few lines, whereas multi-letter identifiers are 'global', having the same
definitions throughout the paper. Elements of lists and trees are denoted a,b,c,....
Unary functions are denoted f,g,h. Lists and paths (introduced in Section 3.2)
are denoted w,x,y,z. Trees are denoted t,u. The letters v and w are used as the
'results' of functions, for example, in the definitions of homomorphisms such as brev
above.

We define a few infix binary operators such as © and ^ , just as we might use
alphabetic names for variables and unary functions. Round binary operators such
as @ and ® are 'local', and square binary operators such as EB and K are 'global'.

3 Upwards and downwards accumulations on trees

The material in this section is adapted from (Gibbons, 1993b), which is in turn a
summary of (Gibbons, 1991).

3.1 Upwards accumulations

Upwards and downwards accumulations arise from considering the list function
inks. On trees, the obvious analogue of inits is the function subtrees, which takes
a tree and returns a tree of trees. The result is the same shape as the original tree,
but each element is replaced by its descendents, that is, by the subtree of the original
tree rooted at that element. For example:

subtrees five — br (If (If b),
br (If b,a,br (If d,c,lf e)),
br (If (If d),

br (If d,c,lf e),

If {If e)))

which corresponds to the tree of trees in Figure 2. The function subtrees is a
homomorphism, because it satisfies

subtrees (If a) = If (If a)
subtrees (br (t,a,u)) = br (subtrees t,br (t,a, u),subtrees u)

Since root (subtrees t) = t, we have

subtrees (br (t,a,u)) = subtrees t ©fl subtrees u

where

v(Baw = br (v,br (root v,a,root w),w)

and so, with the same ©,

subtrees = bh (If ° If, ©)

The function subtrees replaces every element of a tree with its descendents. An

https://doi.org/10.1017/S0956796800001842 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001842

542 Jeremy Gibbons

Fig. 2. The subtrees of five

upwards accumulation replaces every element with some function of its descendents.
In other words, an upwards accumulation is of the form map h ° subtrees for some
h. In fact, we do not allow h to be an arbitrary function of the descendents. Rather,
we insist that h is a tree homomorphism, to ensure that the accumulation can be
computed in linear time (assuming that the components of h take constant time).
Consider map h (subtrees (br (t,a,u))):

map h (subtrees (br (t,a,u)))

{(2)}
map h (br (subtrees t,br (t,a,u),subtrees u))

{(1)}
br (map h (subtrees t),h (br (t,a,u)),map h (subtrees u))

If this is to be computed in linear time, computing h (br (t,a,u)) must take only
constant time. If h = bh (f, ©) where / and © take constant time, then

h (br (t , a , u)) = h t ® a h u

and h t and h u are available in constant time as the roots of map h (subtrees t)
and map h (subtrees u). Stated another way,

map (bh (f,®))° subtrees
= bh(lf°f,®) where v ®a w = br (v,root v ®a root u,u)

and is therefore both a homomorphism and computable in linear time.
We write 'up (f, ©)' for an upwards accumulation. This satisfies

up (f, ©) = map (bh (f, ©)) ° subtrees (3)

but, as described above, requires no longer to compute than bh (f, ©) does. The
function subtrees is itself an upwards accumulation, since subtrees = map id°subtrees
and id is a homomorphism; so is id, since id = map root ° subtrees and root
is a homomorphism. A more interesting example is the function ndescs, which
replaces every element with the number of descendents it has. Letting © satisfy

https://doi.org/10.1017/S0956796800001842 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001842

Functional pearls 543

Fig. 3. The path in five to the element labelled d

v®aw=v + l + w,so that size = bh (const 1, ©), we have

ndescs = map (bh (const 1,©))° subtrees
= up (const 1, ©)

Note that the expression involving the map takes quadratic time to compute, whereas
the accumulation takes linear time.

3.2 Downwards accumulations

Upwards accumulations replace every element of a tree with some function of
that element's descendents. For downwards accumulations, on the other hand, we
consider an element's ancestors. The ancestors of an element form a path. For
example, the ancestors of the element labelled d in five form the path in Figure 3,
which could be thought of as a list with two different kinds of concatenation, 'left'
and 'right', or as a tree in which each parent has exactly one child. We choose the
former view. The type path A consists of paths of elements of type A. A path is
either a single element (a) or two paths x and y joined with a 'left turn', x <H- y, or
a 'right turn', x -H» y. The function taking a to (a) is written lwrapp\ Just as -H- is
associative, the operations 4f and -H> satisfy the four laws

x<H-0><H-z) = (x4fy)4fz
x<H-(j>-H*z) = (x4fy)-H>z
x-H>()/<|fz) = (x-H>j>)<H-z
x-H>G>-H>z) = (x-fry)-ti>z

We say that '4h cooperates with -H>', or '4f and -H> cooperate with each other'. Thus,
the path in Figure 3 is represented by (a) -H* (c) 4f (d). Because of the cooperativity
property, brackets are unnecessary.

Path homomorphisms promote through both 41- and -H>; if, for all a, x and y, the
function h satisfies

h(a) = fa
h (x 4f y) = h x @h y
h (x -Wy) = h x ®h y

and © cooperates with ®, then we write ph (f, ©, ®) for h.

Just as for lists, we generalize path homomorphisms to upwards and downwards

https://doi.org/10.1017/S0956796800001842 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001842

544

Fig. 4. The paths of Jive

functions on paths. If, for all a, x and y, the function h satisfies

h(a) = fa
h{(a)4\-y) = a®hy
h({a)-fry) = a®hy

then we say that h is upwards, and write it uw (f, ©, <g>). The operators © and <g>
need not enjoy any cooperativity properties. Similarly, if, for all a, x and y,

h{a) = fa
h(x<H-(a}) = hx®a
h [x-W {a)) = hx®a

then we say that h is downwards, and write it dw (/", ©, ®). Path homomorphisms
are clearly both upwards and downwards; a generalization of Bird's Third Homo-
morphism Theorem states the converse.

Theorem 3 (Third Homomorphism Theorem for Paths (Gibbons, 1993a))

A path function that is both upwards and downwards is necessarily a path homo-
morphism.

The dual for downwards accumulations of the function subtrees is the function
paths, which replaces each element of a tree with that element's ancestors. For
example:

paths five = br (If ((a) <H- (b)),

(a),
br (If ((a) -* (c) «f (d)),

(a) -H> (c),
If ((a) -H> (c) * (e))))

which corresponds to the tree of paths in Figure 4. The function paths is another

https://doi.org/10.1017/S0956796800001842 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001842

Functional pearls 545

tree homomorphism; it satisfies

paths (If a) = If (a)
paths (br (t,a,u)) = br (map ((a)4f) (paths t),

(a),
map ((a)-H>) (paths u))

and so

paths = bh (If o wrapp, ffi)

where

v ©fl w = br (map ((a)4h) v,(a),map ((a)-H>) w)

A downwards accumulation replaces every element of a tree with some function of
that element's ancestors. In other words, downwards accumulations are of the form
map h o paths for some h. Again, we make a restriction on the choice of h, but this
time it is not so clear just what that restriction should be. On the one hand, we
would like h to be upwards, for

map (uw (f,©,®)) (paths (br (t,a,u)))
= br (map (a©) (map (uw (f, ffi, ®)) (paths t)),

fa,
map (a®) (map (uw (f, ©, ®)) (paths u)))

and so map (uw (f, ffi, ®)) ° paths is a homomorphism:

map (uw (f, 0, ®)) ° paths = bh (If °f, ®)

where

v ®a w = br (map (a©)v,f a,map (a®)w)

In terms of the Promotion Theorem, this could be stated as follows:

Theorem 4
If

g(lfa) = If (fa)
g(br(t,a,u)) = br (map (a©) (g t),f a,map (a®) (g u))

then
g = map (uw (f, ffi, ®)) o paths

(We will use this theorem later.)
On the other hand, mapping an upwards function over the paths of a tree takes

quadratic time to compute, and so we would like h to be downwards, for

map (dw (f, ffi, ®)) (paths (br (t,a,u)))
= br (map (dw (((f a)®), ffi, ®)) (paths t),

fa,
map (dw (((/• a)®),©,®)) (paths u))

which can be computed in linear time, at the cost of no longer being homomorphic
(since the result of applying map (dw (/", ©, ®)) ° paths to br (t,a,u) depends on
the results of applying different functions, map (dw (((/" a)ffi), ffi, ®)) ° paths and

https://doi.org/10.1017/S0956796800001842 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001842

546 Jeremy Gibbons

map (dw (((/" a)®),©,®)) °paths to the children t and M). TO satisfy both of these
requirements, we insist that h be both upwards and downwards. Theorem 3 concludes
that h is therefore a path homomorphism. We write 'down (f, ©, ®)' for a downwards
accumulation; it satisfies

down (f, ©, ®) = map (ph (f, ©, ®)) ° paths (4)

but again can be computed in linear time (if/, © and ® each take constant time).
Note that © and ® must cooperate with each other.

For example, consider the function plen, which returns the length of a path. The
function depths replaces every element of a tree with that element's depth in the
tree, that is, with the length of its path of ancestors:

depths = map plen ° paths

As it stands, it is not obvious whether depths is a homomorphism, nor whether it
can be computed efficiently. However, plen is upwards,

plen = uw (const 1,©,©) where a ®v = 1 +v

and so depths is a tree homomorphism. Moreover, plen is downwards,

plen = dw (const 1, ®, ®) where v ® a = v + 1

and so depths can also be computed in linear time. Writing

depths = down (const 1,+,+)

(since + is associative, it cooperates with itself) shows that depths is both homo-
morphic and efficiently computable.

We might ask, when can we generalize an upwards function h so that it is also
downwards? This would give us an efficient way of computing map h ° paths.

Suppose h is upwards but not downwards—we cannot write h (x 41- (a)) and
h (x -H* (a)) in terms of h x and a. Suppose, however, that there is another function
g such that h (x 4f {a)) and h (x •+!>• (a)) can be computed from h x, g x and a: for
some © and 0,

fc(x<H-(a)) = (hx,gx)ea
h(x-H>(a)) = (hx,gx)<da

In a sense, g is the 'extra information' needed to compute h (x <H-(a)) and h (x -ty(a))
from h x and a. Now h could be computed downwards, if only we could somehow
compute g. This, of course, begs the question, how do we compute g? Suppose
further that g is 'self-sustaining', in that no further information is required in order
to compute g: for some O and ®,

g (x4 f (a)) = (hx,gx)Oa
g(x-H»(a)) = (hx,gx)®a

Then fork (h,g) is downwards.

https://doi.org/10.1017/S0956796800001842 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001842

Theorem 5

If
h(a)

h (x «f (a))
h(xA

then

fork (h,

+ («))

,g) =

= f\ a
= (h x,
= {hx,

dw (f,®

g
g

Functional pearls

x)Qa g \
x) 0 a g i

5) where

g (a)
(x <H- (a))
[x * (a))

fa
(v,w) @a
(v,w) ® a

= ha
= (h >
= (h *

= (/i
= (v
= (»

:,g x
-,g x

a,/2

0 a ,
0 a,

:)Oa
:)®a

a)
w O a)
w ® a)

547

Then we have h = fst °fork (h,g), and so h is 'almost' downwards—it is the
composition of the projection fst with the downwards function fork (h,g). However,
it is not obvious whether fork (h,g) is still upwards. Fortunately, if g is itself
upwards, then so is fork (h,g), as shown by the following theorem.

Theorem 6

fork (uw (/i,9,0),MW (/i.O,®))
= «w (/", ©,<8>) where fa = (/i a,/2 a)

a®(v,w) = (a Qv,a Qw)
a®(v,w) = (a<Z>v,a®w)

In this case, fork (h,g) is both upwards and downwards, and hence a path
homomorphism. Then

map h o paths = map fst °map (fork (h,g))° paths

which is a (cheap) map composed with a downwards accumulation, and is efficiently
computable.

4 Drawing binary trees tidily

In this section, we define 'tidiness' and specify the function bdraw, which draws a
binary tree. We make the simplifying assumption that all tree labels are the same
size, because, for the purposes of positioning the elements of the tree, we can then
ignore the labels altogether.

The first property that we observe of tidy drawings is that all of the elements
at a given depth in a tree have the same _y-coordinate in the drawing. That is, the
y-coordinate is determined completely by the depth of an element, and the problem
reduces to that of finding the x-coordinates. This gives us the type of bdraw, the
function which draws a binary tree—its argument is of type btree A for some A,
and its result is a binary tree labelled with x-coordinates:

bdraw :: btree A —* btree ID

where coordinates range over D, the type of distances. We require that D include
the number 1, and be closed under subtraction (and hence also under addition)
and halving. Sets satisfying these conditions include the reals, the rationals, and
the rationals with finite binary expansions, the last being the smallest such set. We

https://doi.org/10.1017/S0956796800001842 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001842

548 Jeremy Gibbons

exclude discrete sets such as the integers, as Supowit and Reingold (1983) have
shown that the problem is NP-hard with such coordinates.

Tidy drawings are also regular, in the sense that the drawing of a subtree
is independent of the context in which it appears. Informally, this means that
the drawings of children can be committed to (separate pieces of) paper before
considering their parent. The drawing of the parent is then constructed by translating
the drawings of the children. In symbols:

bdraw (br (t,a,u)) = br (map (+r) (bdraw t),b,map (+s) (bdraw u))

for some b, r and s.
Tidy drawings also exhibit no left-to-right bias. In particular, a parent should be

centred over its children. We also specify that the root of a tree should be given
x-coordinate 0. Hence, r +s and b in the above equation should both be 0, as should
the position given to the only element of a singleton tree:

bdraw (If a) = If 0
bdraw (br (t,a,u)) = br (map (—s) (bdraw t),0,map (+s) (bdraw u))

for some s. Indeed, a tidy drawing will have the left child to the left of the right
child, and so s > 0.

This lack-of-bias property implies that a tree and its mirror image produce
drawings which are reflections of each other. That is, if we write '-' for unary
negation^, then we also require

bdraw ° brev = map - ° brev ° bdraw

The fourth criterion is that, in a tidy drawing, elements do not collide, or even get
too close together. That is, pictures of children do not overlap, and no two elements
on the same level are less than one unit apart.

Finally, a tidy drawing should be as narrow as possible, given the above con-
straints. Supowit and Reingold (1983) show that narrowness and regularity cannot
be satisfied together—there are trees whose narrowest drawings can only be pro-
duced by drawing identical subtrees with different shapes—and so one of the two
criteria must be made subordinate to the other. We choose to retain the regularity
property, since it will lead us to a homomorphic solution.

These last two properties determine s, the distance through which children are
translated. That distance should be the smallest distance that does not cause violation
of the fourth criterion. Suppose the operator EB, when given two drawings of trees,
returns the width of the narrowest part of the gap between the trees. (If the
drawings overlap, this distance will be negative.) For example, if pic t and pic2 are
as in Figure 5, then picx EBpic2 = -2, the minimum of 0 — 0, -% — V2 and -1 — 1. The
drawings should be moved apart or together to make this distance 1, that is,

s = (1 - (bdraw t EB bdraw u)) -4- 2

(In the example above, s will be

The presence of sectioning means that, strictly speaking, we should distinguish between the
number 'minus one', written '-!', and the function 'minus one', written '(—1)'.

https://doi.org/10.1017/S0956796800001842 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001842

Functional pearls 549

[0) (Jj {A)

Fig. 5. Drawings pic, and pic2, for which p/c, EBpic2 = -2

All that remains to be done to complete the specification is to formalize this
description of EB.

4.1 Levelorder traversal

We define two different 'zip' operators, each of which takes a pair of lists and returns
a single list by combining corresponding elements in some way. These two operators
are 'short zip', which we write szip, and 'long zip', written Izip. These operators differ
in that the length of the result of a short zip is the length of its shorter argument,
whereas the length of the result of a long zip is the length of its longer argument.
For example:

szip (®){[a,b\,[c,d,e\) = [a ®c,b ®d]

Izip (®) ([a,b],[c,d,e]) = [a ®c,b ® d,e\

From the result of the long zip, we see that the © must have type A x A —* A. This
is not necessary for short zip, but we do not use the general case.

The two zips are given formally by the equations

szip (©) ([a], [b]) = [a © b]
szip(®){[a],[b]-ti-y) =
szip(®)([a]-H-x,[b]) =

szip (©) ([a]-H-x, [ft]-H-jO =

a
a
a

>
a
a
a

®b
®b
®b

®b
®b
®b
®b

-W-szip [®){x,y)

-H-y
-ft-x
-tt-lzip (®){x,y)

They share many properties, but we use two in particular.

Fact 7

Both szip (ffi) (x,y) and Izip (©) (x,y) can be evaluated using just min (len x,len y)
applications of ©.

Lemma 8
I f / is © to ® promotable, then map f is both szip (©) to szip (®) and Izip (©) to
Izip (®) promotable.

We use long zip to define levelorder traversal of binary trees. This is given by the
function levels :: btree A —> list (list A):

levels = bh (wrapl ° wrapl,®) where x ®a y = [[a]] -H- Izip (-H-) (x,y)

https://doi.org/10.1017/S0956796800001842 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001842

550 Jeremy Gibbons

For example, the levelorder traversal of If b and br (If d,c,lf e) are [[b]] and
[[c], [d,e]], respectively, and so

levels five

We can at last define the operator EB on pictures, in terms of levelorder traversal.
It is given by

p EB q = smallest (szip (—) (map largest (levels p),
map smallest (levels q)))

If v and w are levels at the same depth in p and q, then largest v and smallest w
are the rightmost point of v and the leftmost point of w, respectively, and so
smallest w — largest v is the width of the gap at this level. Clearly, p EB q is the
minimum over all levels of these gap widths. For example, with pic { and pic2 as in
Figure 5, we have

map largest (levels picj) = [0, %, l]
map smallest (levels pic2) = [0,-^,-1]

and so

pic, EB pic2 = smallest [0-0,-V2 — V2,-1-1] = -2

This completes the specification of E8, and hence of bdraw:

bdraw = bh (const (If 0),D) (5)

where

pBaq = br (map (—s) p,0,map (+s) q) where s = (1 — (p Sq)) H-2
p EB q = smallest (szip (—) (map largest (levels p),

map smallest (levels q)))

This specification is executable, but requires quadratic effort. We now derive a linear
algorithm to satisfy it.

5 Drawing binary trees efficiently

A major source of inefficiency in the program that we have just developed is the
occurrence of the two maps in the definition of • . Intuitively, we have to shift the
drawings of two children when assembling the drawing of their parent, and then
shift the whole lot once more when drawing the grandparent. This is because we
are computing directly the absolute position of every element. If instead we were
to compute the relative position of each parent with respect to its children, these
repeated translations would not occur. A second pass—a downwards accumulation—
can fix the absolute positions by accumulating relative positions.

https://doi.org/10.1017/S0956796800001842 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001842

Functional pearls 551

Suppose the function rootrel on drawings of trees satisfies

rootrel (If a) = 0
rootrel (br (t,a,u)) = (a — root t) O (root u — a)

for some idempotent operator O. The idea here is that rootrel determines the position
of a parent relative to its children, given the drawing of the parent. For example,
with picx as in Figure 5, we have:

rootrel picx = (0-- ' />) © (fe - 0) = '/>

That is, if we define the function sep by

sep = rootrel ° bdraw (6)

then
sep (If a) = 0

sep(br (t,a,u)) = (1 - (bdraw t EB bdraw «)) H- 2 ^

For example:

sep./ii;e = (1 - (bdraw (If b) S bdraw (br (If d,c, If e)))) H- 2
= (1-0)-5-2
= v2

Then

ftr (t,a,u)) = br (map (—s) (bdraw t),0,map (+s) (bdraw u))
where s = sep (br (t,a,u))

Now, applying sep to each subtree gives the relative (to its children) position of
every parent. Define the function rel by

rel = map sep <> subtrees (8)

From this, we calculate that

rel (If a)

map sep (subtrees (If a))

{(2)}

map sep (If (If a))

Id)}
// (sep (If a))

{(7)}

1/0

and

rel (br (t,a,u))

{(8)}

map sep (subtrees (br (t,a,u)))

https://doi.org/10.1017/S0956796800001842 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001842

552 Jeremy Gibbons

{(2)}

map sep (br (subtrees t,br (t,a,u),subtrees u))

{(1)}
br (map sep (subtrees t),sep (br (t,a,u)),map sep (subtrees u)))

br (rel t,sep (br (t,a,u)),rel u)

That is,

rel (If a) = 1/0
rel (br (t,a,u)) = br (rel t,sep (br (t,a,u)),rel u)

This gives us the first 'pass', computing the position of every parent relative to its
children. How can we get from this to the absolute position of every element? We
need a function abs satisfying the condition

abs ° rel = bdraw (10)

We can calculate from this requirement a definition of abs. On leaves, the condition
reduces to

abs (rel (If a)) = bdraw (If a)

o {(9), (5)}

abs (If 0) = // 0

while on branches we require

abs (rel (br (t,a,u))) = bdraw (br (t,a,u))

o {(9), (5); let s= sep (br(t,a,u))}

abs (br (rel t,s,rel u)) = br (map (—s) (bdraw t),0,map (+s) (bdraw u))

<=> {assuming (10) holds on smaller trees}

abs (br (rel t,s,rel u)) = br (map (—s) (abs (rel t)),0,map (+s) (abs (rel u)))

These requirements are satisfied if

abs (If a) = If 0
abs (br (t,a,u)) = br (map (—a) (abs t),0,map (+a) (abs u))

By Theorem 4, this implies that

abs = map (uw (const 0, —, +)) ° paths

We give the upwards function uw (const 0, —, +) a name, pabs ('the absolute position
of the bottom of a path'), for brevity:

pabs = uw (const 0, —, +)

so that

abs = map pabs ° paths (11)

Thus, we have

bdraw = abs ° rel (12)

https://doi.org/10.1017/S0956796800001842 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001842

Functional pearls 553

where
rel = map sep ° subtrees

abs = map pabs ° paths

This is still inefficient, as computing rel takes quadratic time (because sep is not a
tree homomorphism) and computing abs takes quadratic time (because pabs is not
path homomorphism). We show next how to compute rel and abs quickly.

5.1 An upwards accumulation

We want to find an efficient way of computing the function rel satisfying

rel = map sep ° subtrees

where
sep (If a) = 0

sep (br (t,a,u)) = (1 - (bdraw t EH bdraw u)) -H 2

We have already observed that rel is not an upwards accumulation, because sep is
not a homomorphism—more information than the separations of the grandchildren
is needed in order to compute the separation of the children. How much more
information is needed? It is not hard to see that, in order to compute the separation
of the children, we need to know the 'outlines' of their drawings.

Each level of a picture is sorted. Therefore,

map smallest ° levels = map head ° levels
map largest ° levels = map last ° levels

and so

p EH q = right p M left q (13)

where

left = map head ° levels

right = map last ° levels

and

v E3 w = smallest (szip (—) (v, w))

Intuitively, left and right return the 'contours' of a drawing. For example, applying
the function fork (left, right) to the tree picl in Figure 5 produces the pair of lists
([0,-^ ,0] , [0, V2, l]). These contours are precisely the extra information needed to
make sep a homomorphism.

To show this, we need to show first that sep can be computed from the contours,
and second that computing the contours is a homomorphism. Define the function
contours by

contours = fork (left,right) ° bdraw (14)

How do we find sep t from contours t ? By definition, the head of each contour is
0, and (if t is not just a leaf) the second elements in the contours are -(sep t) and
sep t. Thus,

sep = spread ° contours (15)

https://doi.org/10.1017/S0956796800001842 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001842

554 Jeremy Gibbons

where, for some idempotent O,

spread ([0],[0]) = 0
spread ([0] -H- x, [0] -H- }>) = -(/lead x) O fcead y

on pairs of lists, each with head 0.
Now we show that contours is a homomorphism. On leaves, we have

contours {If a)

{(14)}

fork (left,right) (bdraw (If a))

{(5)}

fork (left,right)(lfO)

{left, right}

For branches, we will consider just the left contour, as the right contour is
symmetric. We have

left (bdraw (br (t,a,u)))

= {(5), setting s = (1 - (bdraw t EB bdraw «)) -h 2}

left (br (map (—s) (bdraw t),0,map (+s) (bdraw «)))

{left}

map head (levels (br (map (—s) (bdraw t),0,map (+s) (bdraw u))))

= {levels}

map head ([[0]] -H- Izip (-H-) (fei>e/s (map (- s) (Mraw t)),

levels (map (+s) (bdraw «))))

= {map, head}
[0] -H- map head (hip (-H-) (levels (map (- s) (Mraw t)),

levels (map (+s) (bdraw u))))

= {head is -tf to/sf promotable; Lemma 8}

[0] -H- Izipfst (map head (levels (map (—s) (bdraw t))),

map head (levels (map (+s) (bdraw «))))

= {levels ° map f = map (map f) ° levels}

[0] -H- Izipfst (map head (map (map (—s)) (levels (bdraw t))),

map head (map (map (+s)) (levels (bdraw u))))
= {head ° map f = / ° head}

[0] -tf Izipfst (map (—s) (map head (levels (bdraw t))),
map (+s) (map head (levels (bdraw u))))

{left}

[0] 4f Izipfst (map (- s) (left (bdraw t)),
map (+s) (left (bdraw u)))

https://doi.org/10.1017/S0956796800001842 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001842

Functional pearls 555

Similarly,

Now,

and so

where

Hence,

Thus,

right (bdraw (br (t,a,u)))
= [0] -H- hip snd {map (—s) {right {bdraw t)),

map (+s) {right {bdraw «)))

bdraw t EB bdraw u

{(13)}

right {bdraw t) E3 left {bdraw u)

{(14)}

snd {contours t) Rlfst {contours u)

contours {br {t,a,u)) = contours t Ba contours u

{w,x)Ba (y,z)
= ([0] 4f hip fst {map (-s)w, map (+s) y),

[0] -H- hip snd {map {—s) x,map (+s) z))
where s = (1 - {x My)) H-2

contours = bh {const {[0], [0]), B)

rel

map sep ° subtrees

{(15)}

map spread ° map contours ° subtrees

{(17)}

map spread ° map (in {const {[0], [0]), B)) ° subtrees

{(3)}

map spread ° up {const {[0],

(16)

(17)

That is,

rel = map spread ° up {const {[0], [0]), B) (18)

This is now an upwards accumulation, but it is still expensive to compute. The
operation B takes at least linear effort, resulting in quadratic effort for the upwards
accumulation. One further step is needed before we have an efficient algorithm for
rel.

https://doi.org/10.1017/S0956796800001842 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001842

556 Jeremy Gibbons

We have to find an efficient way of evaluating the operator B from (16):

(w,x)Ba(y,z) = ([0]-fr Izip fst (map (-s)w,map (+s)y),
[0] -H- hip snd {map (—s) x,map (+s) z))

where S = (1 - (X B J)) - H 2

One way of doing this is with a data refinement whereby, instead of maintaining a
list of absolute distances, we maintain a list of relative distances. That is, we make
a data refinement using the invertible abstraction function msi = map sum ° inks,
which computes absolute distances from relative ones. Under this refinement, the
maps can be performed in constant time, since

map (+s) (msi x) = msi (mapplus (s,x))
where mapplus (b, [a]) = [b + a]

mapplus (b, [a] -ff x) = [b + a) -H- x
(19)

Moreover, the zips can still be performed in time proportional to their shorter
argument, since if len x > len y then

Izip fst (msi x,msi y) = msi x

and if len x < len y then, letting (y\,yi) = split (len x,y) where

split (I, [a] 4fx) = ([a],x)
split (n + 1, [a] -H-x) = ([a]-H-t;,w) where (v,w) = split (n,x)

we have

Izip fst (msi x,msi y)

= {msi y = msi y\ -H- map (+sum yi) (msi yi)\ len x = len y{\

msi x -H- map (+sum y\) {msi yj)

= {map (+sum x)° map (—sum x) = id}

msi x -H- map (+sum x) (map (—sum x + sum y\) (msi ^))

{(19)}

msi x -H- map (+sum x) (msi (mapplus (sum y\ — sum x,yi)))

= {msi (x -tf y) = msi x -H- map (+sum x) (msi y)}

msi (x -tf mapplus (sum y\ — sum x,y2))

By symmetry,

Izip snd (msi x,msi y) = Izip fst (msi y,msi x)

(Note that the guard len x > len y must also be evaluated in time proportional to
the lesser of len x and len y, and so cannot be done simply by computing the two
lengths. In Figure 6 we define the predicate nst (for 'no shorter than'), for which
nst (x,y) = (len x > len y) but which takes time proportional to the lesser of len x
and len y.)

The refined B still takes linear effort because of the zips, but the important
observation is that it now takes effort proportional to the length of its shorter

https://doi.org/10.1017/S0956796800001842 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001842

Functional pearls 557

argument (that is, to the lesser of the common lengths of w and x and the common
lengths of y and z, when B is 'called' with arguments (w,x) and (y,z)). Reingold
and Tilford (1981) show that, if evaluating h t ®ah u from a, h t and h u takes
effort proportional to the lesser of the depths of the trees t and u, then the tree
homomorphism h = bh (f, ©) can be evaluated with linear effort. Actually, what
they show is that if g satisfies

g(//fl) = 0
g (br (t,a,u)) = g t +min (depth t,depth u) + g u

then

g x — size x — depth x

which can easily be proved by induction. Intuitively, g counts the number of pairs
of horizontally adjacent elements in a tree.

With this data refinement, rel can be computed in linear time.

5.2 A downwards accumulation

We now have an efficient algorithm for rel. All that remains to be done is to find
an efficient algorithm for abs, where

abs = map pabs ° paths
pabs = uw (const 0, —, +)

We note first that computing abs as it stands is inefficient. No operator © can satisfy
a + const 0 b = const 0 a © b for all a and b, and so pabs cannot be computed
downwards, and abs is not a downwards accumulation. Intuitively, pabs starts at
the bottom of a path and discards the bottom element, but we cannot do this when
starting at the top of the path.

What extra information do we need in order to be able to compute pabs down-
wards? It turns out that

pabs (x <ff (a)) = pabs x — bottom x
pabs (x -H> (a)) = pabs x + bottom x

where bottom returns the bottom element of a path:

bottom = uw (id,snd,snd)

Now, pabs and bottom together can be computed downwards, because of (20) and

bottom (x 4f {a)) = a
bottom (x -H» (a)) = a

Let

pabsb = fork (pabs,bottom) (21)

Then, by Theorem 6, pabsb is upwards:

pabsb = uw (/",©, ®) where fa = (0, a)
a@(v,w) = (v — a,w)
a<8>(v,w) = (v+a,w)

https://doi.org/10.1017/S0956796800001842 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001842

558 Jeremy Gibbons

Moreover, by Theorem 5, pabsb is downwards:

pabsb = dw (/",©, <8») where fa = (0,a)
{v,w) ©a = (v —w,a)
(v,w)®a = (v+w,a)

Finally, by Theorem 3, pabsb is a path homomorphism:

(22)

pabsb = ph if, ©, ®)
where fa = (0, a)

(i;,w)©(x,}0 = (v-w+x,y)

(v,w)®{x,y) = {v +w +x,y)

Putting all this together gives us

abs

{(11)}
map pabs ° paths

{(21)}

map fst o map pabsb ° paths

= {(22), wi th / , © and ® as defined there}

map fst o map (ph (f, ©, ®)) o pat/is

{(4)}

map fst ° down (f, ©, <g>)

That is,

abs = map fst ° down if, ©, ®) (23)

which can be computed in linear time.

5.3 The program

To summarize, the program that we have derived is as in Figure 6.

6 Conclusion

6.1 Summary

We have presented a number of natural criteria satisfied by tidy drawings of
unlabelled binary trees. From these criteria, we have derived an efficient algorithm
for producing such drawings.

The steps in the derivation were as follows:

1. we started with an executable specification (5)—an 'obviously correct' but
inefficient program;

2. we eliminated one source of inefficiency, by computing first the position of
every parent relative to its children, and then fixing the absolute positions in
a second pass (12);

https://doi.org/10.1017/S0956796800001842 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001842

Functional pearls 559

bdraw = abs ° rel

rel = map spread ° up {const ([0], [0]), B)
(w,x)Ba (y,z) = ([0] -frlzipfst (mapplus (-s,w),mapplus (s,y)),

[O] -frlzipsnd (mapplus (-s,x),mapplus (s,z)))
where S=(1 - (XKJI))T2

mapplus (b, [a]) = [a + b]
mapplus (b, [a] -H-x) = [a + b] -fr x

hipfst (x,y) = x, if nst (x,y)
= x -H- mapplus (sum v — sum x, w), otherwise

where (v,w) = sp/it (/en x,y)
/zipsna* (x,j/) = Izipfst (y,x)

nst (x, \b\) = true
nst([a\,[b] -fry) = false

nst ([a] -H-x, [b] -fry) = nst (x,y)

split(l,[a]-frx) = ([a],x)
sp/i((n + 1, [a]-H-x) = ([a]-H-i;,w) where (v,w) = split (n,x)

spread ([O],[O]) = 0
spread ([O]-H-x, [O]-H-y) = -(nead x) O nead y where a Oa = a

v E3 w = /n (id,min) (szip (—) (y, w))

afcs = map /st ° down (/•, ©, ®)
where /a = (0,a)

(D,W)©(X,)I) = (u -w +x,y)

(v,w)®(x,y) = (v+w+x,y)

Fig. 6. The final program

3. we made a step towards making the first pass efficient, by turning the function
computing relative positions into an upwards accumulation (18), computing
not just relative positions but also the outlines of the drawings;

4. we made a data refinement on the outline of a drawing (19), allowing us to
shift it in constant time; and

5. we made the second pass efficient by turning the function computing absolute
positions into a downwards accumulation (23), computing not just the absolute
positions but also the bottom element of every path. (In fact, we could have
calculated, using the technique of strengthening invariants (Gries, 1982) and
no invention at all, that

fork (pabs,uw (id,—,+))

is downwards, and hence also a path homomorphism; this would have done
just as well.)

https://doi.org/10.1017/S0956796800001842 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001842

560 Jeremy Gibbons

The derivation showed several things:

1. the criteria uniquely determine the drawing of a tree;
2. the criteria also determine an inefficient algorithm for drawing a tree (step 1

in the derivation), and only three or four small inventive steps (steps 2 to 5 in
the derivation) are needed to transform this into an efficient algorithm;

3. the algorithm (due to Reingold and Tilford (1981)) is just an upwards accu-
mulation followed by a downwards accumulation, and is further evidence of
the utility of these higher-order operations;

4. identifying these accumulations as major components of the algorithm may
lead, using known techniques for computing accumulations in parallel, to an
optimal parallel algorithm for drawing unlabelled binary trees.

6.2 Related work

The problem of drawing trees has quite a long and interesting history. Knuth (1968;
1971) and Wirth (1976) both present simple algorithms in which the x-coordinate of
an element is determined purely by its position in inorder traversal. Wetherell and
Shannon (1979) first considered 'aesthetic criteria', but their algorithms all produce
biased drawings. Independently of Wetherell and Shannon, Vaucher (1980) gives an
algorithm which produces drawings that are simultaneously biased, irregular, and
wider than necessary, despite his claims to have 'overcome the problems' of Wirth's
simple algorithm. Reingold and Tilford (1981) tackle the problems in the algorithms
of Wetherell and Shannon and of Vaucher, by proposing the criteria concerning
bias and regularity. Their algorithm is the one derived for binary trees here. Supowit
and Reingold (1983) show that it is not possible to satisfy regularity and minimal
width simultaneously, and that the problem is NP-hard when restricted to discrete
(for example, integer) coordinates. Briiggemann-Klein and Wood (1990) implement
Reingold and Tilford's algorithm as macros for the text formatting system TgX.

The problem of drawing general trees has had rather less coverage in the literature.
General trees are harder to draw than binary trees, because it is not so clear what is
meant by 'placing siblings as close as possible'. For example, consider a general tree
with three children, t, u and v, in which t and v are large but u relatively small. It
is not sufficient to consider just adjacent pairs of siblings when spacing the siblings
out, because t may collide with v. Spacing the siblings out so that t and v do not
collide allows some freedom in placing u, and care must be taken not to introduce
any bias. Reingold and Tilford (1981) mention general trees in passing, but make
no reference to the difficulty of producing unbiased drawings. Bloesch (1993) (who
adapts the algorithms of Vaucher and of Reingold and Tilford to cope with node
labels of varying width and height) also does not attempt to produce unbiased
drawings, despite his claims to the contrary. Radack (1988) effectively constructs
two drawings, one packing siblings together from the left and the other from the
right, and then averages the results. That algorithm is derived by Gibbons (1991)
and described by Kennedy (1995). Walker (1990) uses a slightly different method;
he positions children from left to right, but when a child touches against a left

https://doi.org/10.1017/S0956796800001842 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001842

Functional pearls 561

sibling other than the nearest one, the extra displacement is apportioned among the

intervening siblings.

6.3 Further work

Gibbons (1991) extends this derivation to general trees. We have yet to apply the

methods used here to Bloesch's algorithm (Bloesch, 1993) for drawing trees in which

the labels may have different heights, but do not expect it to yield any surprises.

It may also be possible to apply the techniques in (Gibbons et al., 1994) to yield

an optimal parallel algorithm to draw a binary tree of n elements in log n time on

rt/logn processors, even when the tree is unbalanced—although this is complicated

by having to pass non-constant-size contours around in computing B.

We are currently exploring the application to graphs of some of the general

notions—homomorphisms and accumulations—used here on lists and trees. See

(Gibbons, 1995) for further details.

6.4 Acknowledgements

Thanks are due to Sue Gibbons and the anonymous referees, whose suggestions

improved the presentation of this paper considerably.

References

Roland Backhouse (1989). An exploration of the Bird-Meertens formalism. In International
Summer School on Constructive Algorithmics, Hollum, Ameland. STOP project. Also available
as Technical Report CS 8810, Department of Computer Science, Groningen University,
1988.

Richard S. Bird (1987). An introduction to the theory of lists. In M. Broy, editor, Logic of
Programming and Calculi of Discrete Design, pages 3-42. Springer-Verlag. Also available as
Technical Monograph PRG-56, from the Programming Research Group, Oxford University.

Richard S. Bird (1988). Lectures on constructive functional programming. In Manfred Broy, edi-
tor, Constructive Methods in Computer Science. Springer-Verlag. Also available as Technical
Monograph PRG-69, from the Programming Research Group, Oxford University.

Anthony Bloesch (1993). Aesthetic layout of generalized trees. Software—Practice and Expe-
rience, 23(8):817-827.

Anne Bruggemann-Klein and Derick Wood (1990). Drawing trees nicely with T^X. In Malcolm
Clark, editor, Tj^i: Applications, Uses, Methods, pages 185-206. Ellis Horwood.

Pierre Deransart, Martin Jourdan, and Bernard Lorho (1988). LNCS 323: Attribute

Grammars—Definitions, Systems and Bibliography. Springer-Verlag.

Jeremy Gibbons, Wentong Cai, and David Skillicorn (1994). Efficient parallel algorithms for

tree accumulations. Science of Computer Programming, 23:1-18.

Jeremy Gibbons (1991). Algebras for Tree Algorithms. D.Phil, thesis, Programming Research

Group, Oxford University. Available as Technical Monograph PRG-94.

Jeremy Gibbons (1993a). Computing downwards accumulations on trees quickly. In Gopal
Gupta, George Mohay, and Rodney Topor, editors, 16th Australian Computer Science
Conference, pages 685-691, Brisbane. Revised version to appear in Theoretical Computer
Science.

https://doi.org/10.1017/S0956796800001842 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001842

562 Jeremy Gibbons

Jeremy Gibbons (1993b). Upwards and downwards accumulations on trees. In R. S. Bird, C. C.
Morgan, and J. C. P. Woodcock, editors, LNCS 669: Mathematics of Program Construction,
pages 122-138. Springer-Verlag. A revised version appears in the Proceedings of the Massey
Functional Programming Workshop, 1992.

Jeremy Gibbons (1994). How to derive tidy drawings of trees. In C. Calude, M. J. J. Lennon,
and H. Maurer, editors, Proceedings of Salodays in Auckland, pages 53-73, Department of
Computer Science, University of Auckland.

Jeremy Gibbons (1995). An initial-algebra approach to directed acyclic graphs. In B. Moller,
editor, LNCS 947: Mathematics of Program Construction, pages 282-303. Springer-Verlag.

Jeremy Gibbons (1996). The Third Homomorphism Theorem. Journal of Functional Program-
ming 6(4).

David Gries (1982). A note on a standard strategy for developing loop invariants and loops.
Science of Computer Programming, 2:207-214.

Andrew Kennedy (1996). Drawing trees. Journal of Functional Programming, to appear.
Donald E. Knuth (1968). The Art of Computer Programming, Volume 1: Fundamental Algo-

rithms. Addison-Wesley.
Donald E. Knuth (1971). Optimum binary search trees. Acta Informatica, 1:14-25.
Richard E. Ladner and Michael J. Fischer (1980). Parallel prefix computation. Journal of the

ACM, 27(4) :831-838.
Grant Malcolm (1990). Algebraic Data Types and Program Transformation. PhD thesis,

Rijksuniversiteit Groningen.
Lambert Meertens (1986). Algorithmics: Towards programming as a mathematical activity. In

J. W. de Bakker, M. Hazewinkel, and J. K. Lenstra, editors, Proc. CWl Symposium on
Mathematics and Computer Science, pages 289-334. North-Holland.

G. M. Radack (1988). Tidy drawing ofM-ary trees. Technical Report CES-88-24, Department
of Computer Engineering and Science, Case Western Reserve University, Cleveland, Ohio.

Edward M. Reingold and John S. Tilford (1981). Tidier drawings of trees. IEEE Transactions
on Software Engineering, 7(2):223-228.

David B. Skillicorn (1993). Parallel evaluation of structured queries in text. Draft, Department
of Computing and Information Sciences, Queen's University, Kingston, Ontario.

Kenneth J. Supowit and Edward M. Reingold (1983). The complexity of drawing trees nicely.
Acta Informatica, 18(4):377-392.

Jean G. Vaucher (1980). Pretty-printing of trees. Software—Practice and Experience, 10:553-
561.

John Q. Walker, n (1990). A node-positioning algorithm for general trees. Software—Practice
and Experience, 2O(7):685-7O5.

Charles Wetherell and Alfred Shannon (1979). Tidy drawings of trees. IEEE Transactions on
Software Engineering, 5(5):514-520.

Niklaus Wirth (1976). Algorithms + Data Structures = Programs. Prentice Hall.

https://doi.org/10.1017/S0956796800001842 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001842

