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Spectrum of weak model sets with Borel
windows
Gerhard Keller, Christoph Richard , and Nicolae Strungaru

Dedicated to Bob Moody on the occasion of his 80th birthday

Abstract. Consider the extended hull of a weak model set together with its natural shift action. Equip
the extended hull with the Mirsky measure, which is a certain natural pattern frequency measure. It
is known that the extended hull is a measure-theoretic factor of some group rotation, which is called
the underlying torus. Among other results, in the article Periods and factors of weak model sets, we
showed that the extended hull is isomorphic to a factor group of the torus, where certain periods of
the window of the weak model set have been factored out. This was proved for weak model sets having
a compact window. In this note, we argue that the same results hold for arbitrary measurable and
relatively compact windows. Our arguments crucially rely on Moody’s work on uniform distribution
in model sets. We also discuss implications for the diffraction of such weak model sets and discuss a
new class of examples which are generic for the Mirsky measure.

1 The result

Throughout this article, we will adopt the setting of [12, 13]. For the statement of our
result to be self-contained, we briefly recall the main notation. Fix locally compact
second countable abelian groups G , H with Haar measures mG , mH , and consider
a co-compact lattice L in G × H, that projects injectively to G and densely to H.
A window is a measurable relatively compact set W ⊆ H. By the so-called cut-and-
project construction, these ingredients produce a weak model set. Let us describe
this using point measures instead of sets. Consider the compact quotient group
X̃ = (G × H)/L , which is sometimes called the torus. (The torus is denoted by X̂
in [13]. We changed notation from hat into tilde in order not to get into conflict with
the group dual and the Fourier transform.) Fix x̃ = x +L ∈ X̃. The cut step yields the
configuration νW(x̃) = ∑y∈(x+L )∩(G×W) δy , where δy puts a unit mass at y ∈ G × H.
The projection step maps the configuration νW(x̃) to G, using the canonical projection
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412 G. Keller, C. Richard, and N. Strungaru

πG ∶ G × H → G. This gives rise to a point measure νG
W(x̃) = (πG

∗ ○ νW)(x̃), which has
uniformly discrete support. The set ΛW(x̃) = supp(νG

W(x̃)) is called a weak model
set, and we sometimes abbreviate ΛW = supp(νG

W(0̃)). The vague closure of νG
W(X̃) in

the space of regular Borel measures on G is called the extended hull MG
W . The natural

translation action T on G, given by group addition Tg g′ = g + g′, induces a translation
action T̃ on X̃ by T̃g x̃ = (g , 0) + x̃ and an action S on MG

W by (Sg ν)(A) = ν(T−1
g A).

Let us denote by mX̃ the normalized Haar measure on X̃. Since νG
W is a measurable

mapping, (MG
W , S) carries a natural ergodic probability measure QG

W = mX̃ ○ (νG
W)−1,

the so-called Mirsky measure.
We have the following new results for the Mirsky measure on the extended hull.

These generalize Theorems B1 and B2 in [13], which were formulated for measurable,
relatively compact windows W ⊆ H that are compact modulo 0 [13, Definition 3.5],
i.e., there exist a compact set K and set N of zero Haar measure such that W =
K △ N . For the first result, recall that W is Haar aperiodic if mH((h + W) △ W) = 0
implies h = 0. In Euclidean space, any nonempty window of positive measure is Haar
aperiodic.

Theorem B1’ Suppose that W is measurable, relatively compact, and Haar aperiodic.
Then (MG

W , QG
W , S) is measure-theoretically isomorphic to (X̃ , mX̃ , T̃).

For the general case, consider the group HHaar
W = {h ∈ H ∶ mH((h + W) △ W) =

0} of Haar periods of W. Write HHaar
W = {0} × HHaar

W for the canonical embedding
of HHaar

W into G × H.

Theorem B2’ Suppose that W is measurable, relatively compact, and mH(W) > 0.
Let X̃′ = X̃/π X̃(HHaar

W ) with induced G-action T̃ ′ and Haar measure mX̃′ . Then
(MG

W , QG
W , S) is measure-theoretically isomorphic to (X̃′ , mX̃′ , T̃ ′).

Remark 1.1 (Diffraction analysis) The above result implies the known fact that
the extended hull has pure point dynamical spectrum when equipped with the
Mirsky measure (compare, e.g., [12, Theorem 2(a)]). In addition, the isomorphism in
Theorem B2’ explicitly describes the eigenvalues of the dynamical spectrum. This is
particularly useful for diffraction analysis as discussed in Section 4 (compare also the
introduction to [12]). Let us mention here that X̃′ characterizes the group generated
by the Bragg peak positions in the diffraction spectrum, i.e., that group is given by
the Ĝ-projection of the group dual to X̃′, which is viewed as a subgroup of G × H. For
details, see Remarks 4.3 and 4.4.

Remark 1.2 (Examples) The above diffraction properties are realized by configura-
tions which are generic for the Mirsky measure. The precise connection is somewhat
subtle, as Mirsky genericity on G and on G × H have to be distinguished (see Theorem
4.6 and Remark 4.7). For windows having almost no outer boundary, it is known that
maximal density implies Mirsky genericity (see Remark 2.4). Likewise, for windows
having almost no inner boundary, minimal density implies Mirsky genericity. Exam-
ples beyond these cases will be discussed in Section 5.
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2 Proof ingredients

2.1 Moody’s uniform distribution theorem

We will use a refinement of Moody’s theorem on uniform distribution [18, Theorem
1], which characterizes sets of almost everywhere convergence. We first introduce the
relevant notation. Consider any van Hove sequenceA = (An)n in G for averaging (see
[18, Equation (4)] for a definition). Recall that νG ∈MG

W is Mirsky generic along A if,
for every test function ϕ ∈ C(MG

W), the ergodic limit holds for the Mirsky measure
QG

W along A, i.e., we have

lim
n→∞

1
mG(An) ∫An

ϕ(Sg νG)dmG(g) = QG
W(ϕ).

In the sequel, we will consider ergodic limits on subclasses of test functions.

Definition 2.1 (Mirsky k-genericity) Let A = (An)n be any van Hove sequence in
G, and let k ∈ N. We call νG ∈MG

W Mirsky k-generic along A, if the ergodic limit
holds for the Mirsky measure QG

W along A, for every test function ϕ ∈ C(MG
W) of

the form ϕ = ϕc1 ⋅ ⋯ ⋅ ϕck ∈ C(MG
W), with ϕc i ∈ C(MG

W) given by ϕc i (ν) = ν(c i) for
c i ∈ Cc(G).

Likewise, we will consider Mirsky genericity and Mirsky k-genericity of ν ∈MW ,
i.e., with respect to the Mirsky measure QW = mX̃ ○ (νW)−1 along A, where MW

denotes the vague closure of νW(X̃) in the space M of regular Borel measures on
G × H.

Remark 2.2 (Sets of Mirsky genericity) Fix any tempered van Hove sequence A in
G (see [18, Equation (5)] for a definition), and consider the set X̃gen = X̃gen(A) of
points x̃ ∈ X̃ for which νW(x̃) is Mirsky generic along A. Note that X̃gen has full
mX̃-measure in X̃, which is seen as in the case of Z-actions (see, e.g., [7, Corollary
4.20]). Here, we use that G × H is second countable and that MW is compact and
metrizable. This allows us to apply the Lindenstrauss ergodic theorem [17, Theorem
1.2], which holds for van Hove sequences that are tempered. For the existence of such
averaging sequences, see, e.g., the discussion in [19, Remark 2.12(v)]. In particular,
corresponding sets X̃k ⊇ X̃k+1 ⊇ X̃gen for Mirsky k-genericity also have full mX̃-
measure, and we have X̃gen = ⋂k∈N X̃k by the Stone–Weierstrass theorem. Observe
that Mirsky k-genericity of νG

W(x̃) is inherited from Mirsky k-genericity of νW(x̃),
by continuity of the projection map πG

∗. Thus, all sets of k-genericity for the Mirsky
measure QG

W are full mX̃-measure sets. Moreover, all of the above sets are T̃-invariant,
as a consequence of the van Hove property.

For the following proposition, note that, for η ∈ Cc(H), we have

(η ○ πH) ⋅ νW(x̃) = ∑
y∈(x+L )∩(G×W)

η(yH) ⋅ δy ,

where we use the notation y = (yG , yH) for y ∈ G × H.
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414 G. Keller, C. Richard, and N. Strungaru

Proposition 2.3 (Moody’s uniform distribution theorem) Assume that W ⊆ H is
relatively compact and measurable. Let A = (An)n be any van Hove sequence in G.
Then the following hold.
(a) The configuration νG

W(x̃) is Mirsky 1-generic along −A if and only if

lim
n→∞

νG
W(x̃)(An)
mG(An)

= lim
n→∞

νW(x̃)(An × H)
mG(An)

= dens(L ) ⋅ mH(W).(2.1)

(b) The configuration νW(x̃) is Mirsky 1-generic along −A if and only if

lim
n→∞

((η ○ πH) ⋅ νW(x̃))(An × H)
mG(An)

= dens(L ) ⋅ mH(η ⋅ 1W)(2.2)

for any η ∈ Cc(H).

Remark 2.4 (When Mirsky 1-genericity implies Mirsky genericity) Consider any
relatively compact and measurable window W ⊆ H. As limiting point frequencies
of νG

W(x̃) always lie between dens(L ) ⋅ mH(W○) and dens(L ) ⋅ mH(W) (see, e.g.,
[9, Proposition 3.4]), we say that νG

W(x̃) has maximal density along A if the limit
on the left-hand side in equation (2.1) equals dens(L ) ⋅ mH(W). As discussed in
[12, Remark 3.16] and [13, Remark 8.7], maximal density of νG

W(x̃) along A implies
genericity of νW(x̃) along −A with respect to the Mirsky measure QW on G × H. One
concludes that maximal density of νG

W(x̃) implies genericity of νW(x̃) with respect
to the Mirsky measure QW on G × H if and only if the window satisfies mH(W) =
mH(W). This is a considerably stronger condition than the window being compact
modulo 0. Likewise, we speak of minimal density if the limit on the left-hand side
in equation (2.1) equals dens(L ) ⋅ mH(W○). Minimal density of νG

W(x̃) along A

implies Mirsky genericity of νW(x̃) along −A if and only if mH(W) = mH(W○). See
[2, Theorem 17 and Remark 5] for a variant of these results. An extension will be given
in Lemma 5.4 and Remark 5.5.

Remark 2.5 (Mirsky genericity on G versus G × H) Let us emphasize here that, for
each W and d ∈ H, we have QG

d+W = QG
W , which follows from the invariance of the Haar

measure on X̃ under translation by (0, d) +L . Indeed, denoting S(0,d) ∶ G × H →
G × H, x ↦ x + (0, d) and σd ∶MW →MW , σd ν = ν ○ S−1

(0,d), we have

QG
d+W = mX̃ ○ ν−1

d+W ○ (πG
∗)−1 = mX̃ ○ (σd ○ νW ○ S−1

(0,d))−1 ○ (πG
∗)−1

= (mX̃ ○ S(0,d)) ○ ν−1
W ○ (πG

∗ ○ σd)−1 = mX̃ ○ ν−1
W ○ (πG

∗)−1 = QG
W .

On the other hand, if νW(x̃) is Mirsky generic, then (2.2) uniquely identifies the
measure η ↦ mH(η ⋅ 1W) for η ∈ Cc(H), i.e., the Haar measure restricted to W. It
follows immediately that Qd+W = QW if and only if d is a Haar period for W.

The above result can, with some adaptions, be proved as in [18]. We start with the
following lemma which slightly refines [18, Proposition 2].
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Lemma 2.6 Let W ⊆ H be relatively compact and nonempty. Then any point in G
has a compact neighborhood B such that ((B − B) × (W − W)) ∩L = {(0, 0)}. As a
consequence, for every x̃ ∈ X̃ and every g , g′ ∈ ΛW(x̃), (g + B) ∩ (g′ + B) ≠ ∅ implies
g = g′. The latter statement also holds with W replaced by −W. Moreover, the following
are equivalent:
(i) ((B − B) × (W − W)) ∩L = {(0, 0)}.
(ii) πX̃ is one-to-one on B × W.
(iii) ΛW−W ∩ (B − B) = {0}.

Proof For the existence statement, take any compact zero neighborhood U ⊆ G
and note that (U × (W − W)) ∩L is finite as L is locally finite. Hence, there is a
zero neighborhood V ⊆ U such that (V × (W − W)) ∩L = {(0, 0)}. The first claim
follows after choosing a compact neighborhood B of the given point in G such that
B − B ⊆ V .

For the second claim let g , g′ ∈ ΛW(x̃) such that (g + B) ∩ (g′ + B) ≠ ∅. Then
there exist h, h′ ∈ H such that (g , h), (g′ , h′) ∈ (G × W) ∩ (x +L ). As (g + B) ∩
(g′ + B) ≠ ∅, this implies (g − g′ , h − h′) ∈ ((B − B) × (W − W)) ∩L . Hence, g =
g′. Note that replacing W by −W does not alter the argument.

(i) ⇒ (ii) ∶ Consider (g , h), (g′ , h′) ∈ B × W such that (g , h) = (g′ , h′) + � for
some � ∈ L . We then have (g − g′ , h − h′) ∈ ((B − B) × (W − W)) ∩L . Hence, (g −
g′ , h − h′) = (0, 0), and the claim follows.

(ii) ⇒ (iii) ∶ Let g ∈ ΛW−W ∩ (B − B). Then there exists h ∈ H such that (g , h) ∈
((B − B) × (W − W)) ∩L . Then g = b − b′ for some b, b′ ∈ B and h = w −w′
for some w , w′ ∈ W , and (b, w) = (b′ , w′) + � for � = (g , h) ∈ L . Hence, (b, w) =
(b′ , w′), which implies g = 0.

(iii) ⇒ (i) ∶ Assume that (g , h) ∈ ((B − B) × (W − W)) ∩L . Then g ∈ ΛW−W ∩
(B − B), which implies g = 0. As πG is one-to-one on L , this implies h = 0, and the
claim follows. ∎

Proof (Proof of Proposition 2.3) We treat assertion (b) first. By a standard dense-
ness argument, it suffices to consider functions c ∈ Cc(G × H) of product type c =
(ψ ○ πG) ⋅ (η ○ πH)where ψ ∈ Cc(G) and η ∈ Cc(H). Recalling ϕc(ν) = ν(c), we have,
for ỹ = y +L = (yG , yH) +L , that

ϕc(νW( ỹ)) = ∑
z∈(y+L )∩(G×W)

ψ(zG) ⋅ η(zH) = ∑
�∈L

c(y + �) ⋅ 1W(yH + �H) = f̃ ( ỹ),

where f̃ ∈ L1(X̃ , mX̃) denotes the projected L -periodization of the function y ↦
f (y) = c(y) ⋅ 1W(yH). Using the extended Weil formula [20, Theorem 3.4.6], we thus
get

∫
MW

ϕc dQW = ∫
X̃

ϕc(νW( ỹ))dmX̃( ỹ) = ∫
X̃

f̃ ( ỹ)dmX̃( ỹ) = mX̃( f̃ )

= dens(L ) ⋅ mG×H( f ) = dens(L ) ⋅ mG(ψ) ⋅ mH(η ⋅ 1W).

Next, consider the G-orbit of any x̃ ∈ X̃. Here, we assume without loss of generality
that ψ ∈ Cc(G) has sufficiently small support such that B = supp(ψ) satisfies the
assumption in Lemma 2.6. (The general case of arbitrary compact support can be
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416 G. Keller, C. Richard, and N. Strungaru

treated using a partition of unity by functions of small support.) Write Y = B × W ⊆
G × H and define Ỹ = πX̃(B × W) ⊆ X̃. It is readily seen that T̃g x̃ ∈ Ỹ if and only if
g ∈ −ΛW(x̃) + B. In particular, in that case, there exists � ∈ L such that (x + �)G ∈
ΛW(x̃), g ∈ −(x + �)G + B, and f̃ (T̃g x̃) = ψ((x + �)G) ⋅ η((x + �)H) ⋅ 1W((x + �)H)
as πX̃ is one-to-one on Y. Note that −ΛW(x̃) + B is a pairwise disjoint union of
translates of B, which follows from Lemma 2.6 as−ΛW(x̃) = Λ−W(−x̃). As Sg νW(x̃) =
νW(T̃g x̃), we thus have by the van Hove property of (−An)n that

lim
n→∞

1
mG(An) ∫−An

ϕc(Sg νW(x̃))dmG(g) = lim
n→∞

1
mG(An) ∫−An

f̃ (T̃g x̃)dmG(g)

= lim
n→∞

1
mG(An)

∑
yG∈ΛW(x̃)∩An

η(yH) ⋅ mG(ψ)

= mG(ψ) ⋅ lim
n→∞

((η ○ πH) ⋅ νW(x̃))(An × H)
mG(An)

,

provided that the above limit exists. Now, the claim in part (b) is obvious.
The proof of (a) is analogous: reread the above proof of (b) for η ≡ 1, considering

functions c ∈ Cc(G) and 1-genericity with respect to QG
W . ∎

2.2 Haar periods and periods

For the following, recall the notion of period group HW = {h ∈ H ∶ h + W = W} and
of Haar period group HHaar

W = {h ∈ H ∶ mH((h + W)ΔW) = 0}. Then W is called
(Haar) aperiodic if its (Haar) period group is trivial. To apply the techniques in [13]
with only minimal changes, we will circumvent the notion of Haar regularity [13,
Remark 3.12], which relies on compactness. Instead, we will construct a measurable
version Winv of W, which coincides with W up to measure zero, but is strictly
invariant under translation by any h ∈ HHaar

W .
We start by reviewing some simple properties of HHaar

W , which are listed in [23,
Lemma 7.1] (see also [2, Fact 2]). For completeness, we include the straightforward
proofs. First, let us recall that for a measurable relatively compact set W ⊆ H, its
covariogram function cW is defined via

cW ∶= 1W ∗ 1−W ,(2.3)

where ∗ denotes convolution. Note that cW is a positive definite function, which is
continuous by [22, Theorem I.1.6(b)] and [20, Proposition 3.6.3] and obviously has
compact support. A simple computation yields, for any h ∈ H, the relation

mH((h + W) △ W) = 2 ⋅ mH(W/(W + h)) = 2 ⋅ (cW(0) − cW(h)) .(2.4)

We have the following characterization of HHaar
W .

Lemma 2.7 [23, Lemma 7.1] Assume that W ⊆ H is relatively compact and measur-
able. Then

HHaar
W = {h ∈ H ∶ ∥1W − Th1W∥1 = 0} = {h ∈ H ∶ cW(h) = cW(0)}

= {h ∈ H ∶ Th cW = cW},
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where (Th f )(y) = f (y − h) denotes translation in H. In particular, HHaar
W is a compact

group.

Proof The first equality follows immediately from the observation ∥1W − Th1W∥1 =
mH(WΔ(h + W)), whereas the second one follows from equation (2.4). For the
last equality, the inclusion ⊇ is obvious, whereas ⊆ is an immediate consequence of
Krein’s inequality ∣ f (y − h) − f (y)∣2 ≤ 2 f (0)( f (0) − Re f (h)) for positive definite
functions f (see, e.g., [5, Chapter I.3.4]). Finally, since cW is a continuous func-
tion of compact support, its period group is closed and relatively compact, hence
compact. ∎

We can now prove the existence of the measurable version Winv of W.

Lemma 2.8 There exists a measurable set Winv ⊆ H such that:
(a) mH(W △ Winv) = 0 and
(b) Winv + h = Winv for all h ∈ HHaar

W .

Proof Abbreviate H0 ∶= HHaar
W and denote by mH0 the normalized Haar measure

on the compact abelian group H0. Define ψ ∶ H →R as the H0-periodization of 1W ,
i.e.,

ψ(h) ∶= ∫ 1W(h + h0)dmH0(h0),

and let Winv ∶= {h ∈ H ∶ ψ(h) = 1}. As mH0 is translation invariant, we have ψ(h +
h0) = ψ(h) for all h0 ∈ H0, and assertion (b) follows at once.

We turn to assertion (a). For measurable A ⊆ H with mH(A) < ∞ and all h0 ∈ H0,
we have

mH(A∩ W) = mH(A∩ (W − h0)) = ∫
A

1W(h + h0)dmH(h).

Hence, using Fubini,

mH(A∩ W) = ∫ (∫
A

1W(h + h0)dmH(h))dmH0(h0)

= ∫
A
(∫ 1W(h + h0)dmH0(h0))dmH(h) = ∫

A
ψ dmH .

As mH is σ-finite and this holds for all A ⊆ H of finite measure, it follows that 1W ⋅
mH = ψ ⋅ mH , i.e., 1W = ψ on a measurable set H1 ⊆ H with mH(H/H1) = 0. It follows
that W ∩ H1 = Winv ∩ H1. ∎

The lemma has the following immediate corollary.

Corollary 2.9 (Periods and Haar periods) We have HHaar
W = HHaar

Winv
= HWinv . In

particular, W is Haar aperiodic if and only if Winv is aperiodic.

Let H′ ∶= H/HWinv and denote by φ ∶ H → H′ the canonical projection. Consider
W ′ ∶= φ(Winv) and note φ−1(W ′) = Winv .
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Lemma 2.10 W ′ ⊆ H′ is Borel measurable and Haar aperiodic in H′.

Proof We first show measurability of W ′. Let W ′′ ∶= φ(H/Winv). Then W ′ ∪
W ′′ = φ(H) = H′, where W ′ ∩ W ′′ = ∅. Indeed, otherwise, there are h1 ∈ Winv
and h2 ∈ H/Winv such that φ(h1) = φ(h2). Then h2 − h1 ∈ HWinv , so that Winv +
(h2 − h1) = Winv . In particular, h2 = h1 + (h2 − h1) ∈ Winv , a contradiction. As W ′

and W ′′ = H′/W ′ are both analytic sets [11, Proposition 14.4(ii)], they are Borel
sets in view of Souslin’s theorem [11, Theorem 14.11]. To show Haar aperiodicity,
suppose that mH′((W ′ + h′) △ W ′) = 0 for some h′ = φ(h) ∈ H′, where mH′ =
mH ○ φ−1. Then 0 = mH((Winv + h + HWinv ) △ Winv) = mH((Winv + h) △ Winv),
so that h ∈ HHaar

Winv
= HWinv (see Corollary 2.9). Hence, h′ = φ(h) is the neutral

element in H′. ∎

3 Proofs

3.1 Haar aperiodic windows

Our proof of Theorem B1’ uses Mirsky 1-generic configurations on G × H along some
fixed tempered van Hove sequence. Recall that the set X̃1 ⊆ X̃ from Remark 2.2 has
full mX̃-measure and is T̃-invariant.

Lemma 3.1 Take x̃ , ỹ ∈ X̃1 such that νG
W(x̃) = νG

W( ỹ). Then νW( ỹ) = σd νW(x̃) for
some d ∈ H, where (σd ν)(A) = ν(A− (0, d)) for all Borel subsets A of G × H. More-
over, d is a Haar period of W.

Proof Proposition 2.3(b) shows that, for each x̃ ∈ X̃1, the sequence of measures
(μn(x̃))n , defined by

μn(x̃)(η) ∶= 1
dens(L )

((η ○ πH) ⋅ νW(x̃))(An × H)
mG(An)

(3.1)

for η ∈ Cc(H), converges weakly to mH ∣W . Take x̃ , ỹ ∈ X̃1 such that νG
W(x̃) = νG

W( ỹ).
Then, by [13, Lemma 4.4], there is d ∈ H such that νW( ỹ) = σd νW(x̃). As both
sequences (μn(x̃))n and (μn( ỹ))n converge weakly to mH ∣W and as the translation
σd is weakly continuous, this shows that σd(mH ∣W) = mH ∣W , in particular mH((W −
d) ∩ W) = mH(W). As mH(W) = mH(W − d), this proves mH((W − d) △ W) = 0,
i.e., d is a Haar period of W. ∎

Lemma 3.2 DefineM′W ⊆MW byM′W = νW(X̃1). If W is Haar aperiodic, then πG
∗∣M′

W
∶

M′W →MG
W is one-to-one.

Proof Take x̃ , ỹ ∈ X̃1 such that νG
W(x̃) = νG

W( ỹ). Then, by Lemma 3.1, we have
νW( ỹ) = σd νW(x̃) for some Haar period d of W. As W is Haar aperiodic, we get d = 0,
that is, νW(x̃) = νW( ỹ). ∎

Proof (Proof of Theorem B1’) πG
∗ is one-to-one at QW -a.a. ν ∈MW by Lemma 3.2

and the fact that X̃1 has full mX̃-measure by Remark 2.2. As X̃1 is T̃-invariant, we
conclude that πG

∗ ∶ (MW , QW , S) → (MG
W , QG

W , S) is a measure-theoretic isomorphism
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(observe the Lusin–Souslin theorem [11, Theorem 15.1]). Moreover, note that νG
W ∶

(X̃ , mX̃ , T̃) → (MW , QW , S) is a measure-theoretic isomorphism by [12, Theorem
2(a)]. Here, we use mH(W) > 0, which follows from Haar aperiodicity of W. Hence,
the claim is shown. ∎

3.2 General windows

Our proof of Theorem B2’ proceeds by reduction to the Haar aperiodic case. The
construction of factoring out topological or measure-theoretic periods has been
described in detail in Sections 6 and 7 of [13] for compact windows. The same
constructions can be used in the noncompact case. Since the group of Haar periods
is closed, the quotient X̃′ = X̃/π X̃(HHaar

W ) is a compact abelian group.

Proof (Proof of Theorem B2’) Assume first that W = Winv . The set W ′ = φ(W) is
Haar aperiodic (see Lemma 2.10). Moreover, note that (MG

W , QG
W , S) = (MG

W′ , QG
W′ , S),

which follows with the same proof as in Proposition 6.10 in [13]. Now, the claim of
the theorem follows from Theorem B1’. In the general case, note that (MW , QW , S) is
measure-theoretically isomorphic to (M, QW , S). As the present theorem applies to
the regularized window Winv , it suffices to show that QW = mX̃ ○ (νW)−1 equals QWinv =
mX̃ ○ (νWinv )−1 on M. However, this follows from the observation

{x̃ ∈ X̃ ∶ νW(x̃) ≠ νWinv (x̃)} ⊆ π X̃ ( ⋃
�∈L

((G × (W/Winv)) − �)) ,

and this is a set of mX̃-measure zero, because L is countable and mH(W/Winv) = 0
by Lemma 2.8(a). ∎

4 Consequences for diffraction

We discuss implications of our results for diffraction analysis of configurations (com-
pare [3, 15]). In particular, we discuss Besicovitch almost periodicity [16], which links
our approach to that in [23]. Whereas in the latter reference the Mirsky measure is
constructed using Besicovitch almost periodic configurations (compare [16, Theorem
6.13]), we take the Mirsky measure for granted and investigate when projections
of Mirsky generic configurations are Besicovitch almost periodic. We assume that
the reader is familiar with Remark 8.8 in [13], where the notions of autocorrelation
measure, diffraction measure, diffraction spectrum, and generic configuration are
discussed in the present framework.

The link between dynamical and diffraction properties is well understood (see, for
example, [3, Sections 6–8]). Let us specialize this to our needs.

Fact 4.1 [3, Sections 6–8] (MG
W , QG

W , S) has discrete dynamical L2-spectrum. It also
has pure point diffraction spectrum, i.e., its autocorrelation measure γQG

W
, which

is characterized via γQG
W
(c1 ∗ c2) = QG

W(ϕc1 ⋅ ϕc2) for c1 , c2 ∈ Cc(G), has a Fourier
transform γ̂QG

W
that is a point measure. The group S ⊆ Ĝ of dynamical eigenvalues of

(MG
W , QG

W , S) is generated by the set of Bragg peak positions, i.e., by those characters
χ ∈ Ĝ for which γ̂QG

W
({χ}) ≠ 0.
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Indeed, as (MG
W , QG

W , S) is a factor of the system (X̃ , mX̃ , T̃)with factor map νG
W (see

[12, Theorem 2]), and as the latter system has discrete dynamical spectrum, the same
is true for (MG

W , QG
W , S), and pure point diffraction spectrum as well as the remaining

assertions follow from [3, Theorems 7 and 9] and the Dworkin-type calculation in the
proof of Theorem 5(a) in [3].

In [15], this link is analyzed in more detail. Consider an eigenvalue χ ∈ S and
denote by Eχ the projection to the subspace of L2(MG

W , QG
W) generated by an eigenvec-

tor having an eigenvalue χ. If cχ(νG) ∶= (Eχϕχ⋅σ)(νG) does not vanish almost surely,
it gives a corresponding measurable eigenfunction (compare the proof of Theorem 3
in [15]). Here, σ ∈ Cc(G) is any function satisfying mG(σ) = 1. Let us define Eχ = 0 if
χ ∉ S. Then, for any χ ∈ Ĝ, the function ∣cχ ∣ is QG

W -almost surely constant by ergodicity.
Next, consider any van Hove sequence A = (An)n in G. For an individual config-

uration νG ∈MG
W , the point part in its diffraction is often inferred from the so-called

Fourier–Bohr coefficients along A, which are for χ ∈ Ĝ defined by

aA
χ (νG) = lim

n→∞

1
mG(An) ∫An

χ(t)dνG(t),(4.1)

whenever that limit exists. We have the following result.

Fact 4.2 [15, Theorems 3 and 5] Consider any χ ∈ Ĝ. We then have γ̂QG
W
({χ}) =

⟨cχ , cχ⟩, where ⟨⋅, ⋅⟩ denotes the scalar product on L2(MG
W , QG

W). Moreover, for any
tempered van Hove sequenceA = (An)n , the limit aA

χ alongA in equation (4.1) exists
in L2(MG

W , QG
W). In fact, aA

χ = cχ holds QG
W -almost surely.

Remark 4.3 An eigenvalue χ ∈ Smay satisfy γ̂QG
W
({χ}) = 0, in which case χ is called

an extinction position. Extinction positions have been observed for the Fibonacci
chain (see, e.g., [1, Section 9.4.1]), where they reflect an inflation symmetry of the
underlying point set. Note that, by Fact 4.2, if χ ∈ S is not an extinction position,
i.e., if χ ∈ S is a Bragg peak position, then νG ↦ aA

χ (νG) defines the eigenfunction
cχ for χ. On the other hand, if χ ∈ S is an extinction position, then, by Fact 4.1,
there exist χ1 , . . . , χk , χk+1 , . . . , χn ∈ S, which are Bragg peak positions so that χ =
χ1 ⋅ ⋯ ⋅ χk ⋅ χ−1

k+1 ⋅ ⋯ ⋅ χ−1
n . In this case, an eigenfunction c̃χ is given by c̃χ = cχ1 ⋅ ⋯ ⋅ cχk ⋅

cχk+1 ⋅ ⋯ ⋅ cχn .

Remark 4.4 Note that Theorem B2’ explicitly describes the group of eigenvalues
of (MG

W , QG
W , S) (compare [15, Chapter 7]). To explain this, denote by L ○ ⊆ Ĝ × Ĥ

the annihilator of the lattice L ⊆ G × H, which is isomorphic to the group dual
to X̃. Furthermore, denote by L ○′ ⊆ L ○ those characters whose Ĥ-component is
HHaar

W -invariant, i.e., we have L ○′ = L ○ ∩ (Ĝ × (HHaar
W )○), where (HHaar

W )○ ⊆ Ĥ is
the annihilator of HHaar

W . Note that L ○′ is isomorphic to the group dual to X̃′. The
same statement holds for its projection πĜ(L ○′), as L ○ projects injectively to Ĝ.
Now, Theorem B2’ implies that the group of eigenvalues is πĜ(L ○′). Theorem B2’
also provides a way to compute the eigenfunctions via the torus parametrization map
(compare the above discussion).

https://doi.org/10.4153/S0008439522000352 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439522000352


Spectrum of weak model sets with Borel windows 421

Although the notion of Besicovitch almost periodicity for a measure is known
for quite some time [4, 8, 14], it has only recently systematically been studied, in
conjunction with other types of almost periodicity [16]. Fix any van Hove sequence
A = (An)n in G and consider the seminorm ∥ ⋅ ∥2,A, which is, for any f ∈ L2

l oc(G) ∩
L∞(G), defined by

∥ f ∥2,A = lim sup
n→∞

( 1
mG(An) ∫An

∣ f (t)∣2 dt)
1/2

.

Then f is called Besicovitch almost periodic along A if f can be approximated by
trigonometric polynomials with respect to ∥ ⋅ ∥2,A (see Definition 3.1 and Proposition
3.7 in [16]). A translation bounded measure νG ∈MG is called Besicovitch almost
periodic along A if the function φ ∗ νG is Besicovitch almost periodic for any φ ∈
Cc(G) (see Definition 3.30 and Remark 3.31 in [16]). The space of Besicovitch almost
periodic measures is denoted by BapA(G). This space is important in mathematical
diffraction theory as it characterizes pure point diffractive measures in the following
sense [16, Theorem 3.36]. We recall the definition of the autocorrelation γνG of νG

along A,

γνG ∶= lim
n→∞

1
mG(An)

νG ∣An ∗ ν̃G ∣An ,(4.2)

whenever that limit exists. Here, measure reflection is defined by μ̃( f ) = μ( f̃ ), where
f̃ (x) = f (−x).

Fact 4.5 (Cf. [16, Theorem 3.36]) Fix any van Hove sequence A = (An)n in G, and
let νG ∈MG be a translation bounded measure. Then νG ∈ BapA(G) if and only if the
following properties hold.
(i) νG has autocorrelation γνG along A, and γ̂νG is a pure point measure.
(ii) The Fourier–Bohr coefficients aA

χ (νG) along A exist for all χ ∈ Ĝ.
(iii) The consistent phase property γ̂νG ({χ}) = ∣aA

χ (νG)∣2 holds for all χ ∈ Ĝ.
We can now prove a strengthened version of Theorem 4.1 in [23]. To simplify the

notation, we denote weighted model combs by

νG
h (x̃) = ∑

y∈(x+L )∩(G×H)
h(yH) ⋅ δyG .

In particular, we have νG
W(x̃) = νG

1W
(x̃).

Theorem 4.6 (Cf. [23, Theorem 4.1]) Let W ⊆ H be a relatively compact measurable
window in some cut-and-project scheme (G , H, L ), where both G and H are second
countable. Let A = (An)n be any van Hove sequence in G. Then the following hold.
(a) νG

W(x̃) is Mirsky 1-generic along −A if and only if νG
W(x̃) satisfies uniform distri-

bution along A, i.e., if we have

lim
n→∞

1
mG(An)

νG
W(x̃)(An) = dens(L ) ⋅ mH(W) .
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(b) νG
W(x̃) is Mirsky 2-generic along −A if and only if νG

W(x̃) has an autocorrelation
γνG

W(x̃)
along A of the form

γνG
W(x̃)

= dens(L ) ⋅ νG
cW
(0̃),

where cW ∈ Cc(H) is the covariogram function of equation (2.3).
(c) If νG

W(x̃) is Mirsky 2-generic along −A, then the Fourier transform of γνG
W(x̃)

is
given by

γ̂νG
W(x̃)

= dens(L )2 ⋅ ∑
χ∈πĜ(L ○)

cW

⋀

(η) ⋅ δχ ,

where η ∈ Ĥ is uniquely determined by (χ, η) ∈ L ○, and cW

⋀

(η) = 0 if χ ∈
πĜ(L ○/L ○′) (compare Remark 4.4 for notation). Observe also that cW

⋀

(η) =
∣1W

⋀

(η)∣2.
(d) νW(x̃) is Mirsky 1-generic along −A if and only if, for any χ ∈ πĜ(L ○), the

Fourier–Bohr coefficient of νG
W(x̃) along A exists and is given by

aA
χ (νG

W(x̃)) = dens(L ) ⋅ χ(xG) ⋅ η(xH) ⋅ 1W

⋀

(η) .(4.3)

Here, x̃ = (xG , xH) +L , and η ∈ Ĥ is uniquely determined by (χ, η) ∈ L ○ (com-
pare Remark 4.4 for notation).

(e) Assume that νG
W(x̃) is Mirsky 2-generic along −A and νW(x̃) is Mirsky 1-generic

along −A. Then νG
W(x̃) is Besicovitch almost periodic along A if and only if

aA
χ (νG

W(x̃)) = 0 for all χ ∈ Ĝ/πĜ(L ○).

Remark 4.7 (Relation to dynamical diffraction) The proof of Theorem 4.6(b) shows
that the autocorrelation γνG

W(x̃)
agrees with the autocorrelation γQG

W
of (MG

W , QG
W , S)

from Fact 4.1 if and only if νG
W(x̃) is Mirsky 2-generic along −A.

In dynamical diffraction analysis, people often consider the hull {Sg νG ∶ g ∈ G}
associated with a configuration νG . For any configuration νG

W(x̃) that is Mirsky
generic along −A, its hull MG

W(x̃) = {Sg νG
W(x̃) ∶ g ∈ G} has full Mirsky measure

QG
W(MG

W(x̃)) = 1. This is seen as in the proof of [12, Theorem 5(c)]. Thus, in that case,
the systems (MG

W(x̃), QG
W , S) and (MG

W , QG
W , S) are measure-theoretically isomorphic.

Proof (Proof of Theorem 4.6) Part (a) is Proposition 2.3(a).
For part (b), abbreviate ωG ∶= νG

W(x̃) and recall that Mirsky 2-genericity of ωG along
−A can be characterized as

lim
n→∞

1
mG(An) ∫−An

ϕc1(Sg ωG) ⋅ ϕc2(Sg ωG)dmG(g) = QG
W(ϕc1 ⋅ ϕc2)

for all c1 , c2 ∈ Cc(G), whereas the existence of an autocorrelation γωG along A

satisfying (c1 ∗ c̃2 ∗ γωG )(0) = QG
W(ϕc1 ⋅ ϕc2) for all c1 , c2 ∈ Cc(G) is equivalent to

lim
n→∞

1
mG(An)

(ωG ∣An ∗ ω̃G ∣An) (c1 ∗ c̃2) = QG
W(ϕc1 ⋅ ϕc2), (c1 , c2 ∈ Cc(G)).

The equality of these two limits, provided one of them exists, is shown in the proof of
Theorem 5(a) in [3]. (Note that the latter equation appears in that paper on the last
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line of page 1881.) The identity QG
W(ϕc1 ϕc2) = dens(L ) ⋅ (c1 ∗ c̃2 ∗ νG

cW
(0̃))(0) can be

checked similarly to the calculation for two-point patterns in the proof of Remark 3.12
in [12] (compare [18, Proposition 3]).

Part (c) follows from (b) for χ ∈ πĜ(L ○) instead of χ ∈ πĜ(L ○′), e.g., by the
Poisson Summation Formula as in [21, Theorem 4.10]. Moreover, note that, since cW
is HHaar

W -periodic, cW

⋀

is supported inside (HHaar
W )○ (see, e.g., [5, Proposition 6.4]).

Therefore, cW

⋀

(η) = 0 if χ ∈ πĜ(L ○/L ○′).
Part (d) is a consequence of Proposition 2.3(b). Indeed, for each (χ, η) ∈ L ○,

consider y = x + � ∈ x +L and note that

η(yH) = η(xH + �H) = χ(xG)χ(xG)η(xH)η(�H) = χ(xG)η(xH)χ(yG),

where we used χ(�G)η(�H) = 1. Then

((η ○ πH) ⋅ νW(x̃))(An × H)
mG(An)

=
∑y∈(x+L)∩(An×W) η(yH)

mG(An)

= χ(xG)η(xH)
∑y∈(x+L)∩(An×W) χ(yG)

mG(An)
= χ(xG)η(xH)

mG(An) ∫
An

χ(t)dνG
W(x̃)(t).

Now, if νW(x̃) is Mirsky 1-generic along−A, Proposition 2.3(b) applied to any function
ψ ∈ Cc(H) that agrees with η on W gives (4.3). Conversely, assume that (4.3) holds
for all (χ, η) ∈ L ○. Then (2.2) holds for all ψ ∈ Cc(H) which agree on W with some
η ∈ π Ĥ(L ○), and hence for all linear combinations of such functions. The density of
π Ĥ(L ○) in Ĥ implies that the set

A ∶= {ψ ∈ Cc(H) ∶ ∃n ∈ N, c1 , . . . , cn ∈ C, (χ1 , η1), . . . , (χn , ηn) ∈ L 0

such that ψ(h) =
n
∑
k=1

ck ηk(h) for all h ∈ W}

is an algebra separating the points and hence is dense in C0(H). This immediately
implies that (2.2) holds for all η ∈ Cc(H), giving Mirsky 1-genericity for νW(x̃).

Part (e) follows from (b)–(d) and Fact 4.5. ∎

5 A class of examples

This section focuses on cut-and-project schemes (G , H, L ) with relatively compact
Borel window W ′ = W/V , where V , W ⊆ H are compact sets satisfying V ⊆ W .
Within that setting, one may construct configurations that illustrate the statements of
Theorems B2’ and 4.6, without having a window being compact modulo 0 or without
being of extremal density.

5.1 Results for the general setting

To apply Theorem B2’, one needs to determine the Haar periods of W ′. In that context,
the following notion appears to be relevant.
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Definition 5.1 (Haar thinness) Let H be a locally compact group (LCA) group with
Haar measure mH . Consider Borel sets V ⊆ W ⊆ H. We say that V is Haar thin in W
if for all open U ⊆ H such that mH(U ∩ V) > 0 we have mH(U ∩ V) < mH(U ∩ W).

Lemma 5.2 If V is Haar thin in W and mH(V) > 0, then W/V is not compact
modulo 0.

Proof Suppose for a contradiction that W/V = K modulo 0 for some compact K ⊆
H. For any open U ⊆ H, by Haar thinness, mH(U ∩ K) = mH(U ∩ W/V) = 0 if and
only if mH(U ∩ W) = 0. As H is second countable, this implies that K = W modulo
0, i.e., mH(V) = 0 in contradiction to the assumption mH(V) > 0. ∎

Lemma 5.3 (Haar periods) Let H be an LCA group with Haar measure mH . Let W ⊆
H be compact, and assume that the Borel set V ⊆ W is Haar thin in W. Then W ′ = W/V
satisfies

HHaar
W′ = HHaar

W ∩ HHaar
V .

Proof Recall that h ∈ HHaar
W if and only if mH((W + h)/W) = 0. The inclusion

HHaar
W ∩ HHaar

V ⊆ HHaar
W′ can be inferred from the standard estimate (W ′ + h)/W ′ ⊆

((W + h)/W) ∪ (V/(V + h)). For the reverse inclusion, fix arbitrary h ∈ HHaar
W′ and

note that

mH((W + h)/W) = mH((W ′ + h)/W) + mH((V + h)/W)
= mH((V + h)/V),

where we used mH((V + h) ∩ W ′) = mH((V + h) ∩ (W ′ + h)) = 0 in the second
equation. To conclude the argument, note first that 0 = mH(W ′/W) = mH((W ′ +
h)/W). As V is Haar thin in the compact set W, by shift invariance of mH , this implies
that 0 = mH((V + h)/W) = mH((W + h)/W). Hence, h ∈ HHaar

W ∩ HHaar
V . ∎

One may now consider examples νG
W′(x̃) constructed from maximal density con-

figurations νG
W(x̃) and νG

V(x̃). As their diffraction can be explicitly computed in
particular examples such as k-free integers (see, e.g., the references given in [9, Section
5]), these may serve to illustrate the statements in Theorem 4.6.

Lemma 5.4 (Diffraction) Let (G , H, L ) be a cut-and-project scheme with two
compact windows V ⊆ W ⊆ H. Assume that, for given x̃ ∈ X̃, both νG

V(x̃) and νG
W(x̃)

have maximal density along the same averaging sequence, i.e., there exists a van Hove
sequence A = (An)n in G such that

lim
n→∞

1
mG(An)

νG
V(x̃)(An) = dens(L ) ⋅ mH(V),

lim
n→∞

1
mG(An)

νG
W(x̃)(An) = dens(L ) ⋅ mH(W).

Consider W ′ = W/V. Then the following hold.
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(a) νG
W′(x̃) is Besicovitch almost periodic along A.

(b) νG
W′(x̃) has Fourier–Bohr coefficients along A given by

aA
χ (νG

W′(x̃)) = { dens(L ) ⋅ χ(xG) ⋅ η(xH) ⋅ 1W′

⋀

(η), if χ ∈ πĜ(L ○),
0, otherwise .

(c) νG
W′(x̃) has autocorrelation and diffraction along A given by

γνG
W′
(x̃) = dens(L ) ⋅ νG

cW′
(0̃) , γ̂νG

W′
(x̃) = dens(L )2 ⋅ ∑

χ∈πĜ(L ○′)

cW′

⋀

(η) ⋅ δχ .

Remark 5.5 (Mirsky genericity) In conjunction with Theorem 4.6, the previous
result implies that νW′(x̃) is Mirsky 1-generic along −A, and that νG

W′(x̃) is Mirsky
2-generic along−A. Using approximation by regular model sets as in [2, 23], one may,
in fact, show that νG

W′(x̃) is Mirsky generic along −A, without resorting to Besicovitch
almost periodicity.

Proof (Proof of Lemma 5.4) By [16, Proposition 3.39], both νG
W(x̃) and νG

V(x̃) are
Besicovitch almost periodic. Hence, νG

W′(x̃) = νG
W(x̃) − νG

V(x̃) is Besicovitch almost
periodic (compare [16, Proposition 3.8]). This proves (a).

As to part (b), note that we have

aA
χ (νG

W′(x̃)) = aA
χ (νG

W(x̃)) − aA
χ (νG

V(x̃)).

Hence, (b) follows from [16, Corollary 3.40] applied to νG
W(x̃) and νG

V(x̃).
The proof of part (c) only uses the validity of parts (a) and (b), but not the maximal

density assumptions of the lemma: The diffraction formula

γ̂νG
W′
(x̃) = dens(L )2 ⋅ ∑

χ∈πĜ(L ○)

cW′

⋀

(η) ⋅ δχ

follows from (a), (b), and Fact 4.5. On the other hand, Lemma 3.6 and Theorem 4.10
in [21] give that γ = dens(L ) ⋅ νG

cW′
(0̃) is Fourier transformable and

γ̂ = dens(L )2 ⋅ ∑
χ∈πĜ(L ○)

cW′

⋀

(η) ⋅ δχ .

We thus get γ = γνG
W′
(x̃) from double Fourier transformability [21, Theorem 4.12].

Since cW′ is HHaar
W′ -periodic, we can restrict the summation over πĜ(L ○) to πĜ(L ○′).

This proves (c). ∎

5.2 An example from B-free sets

Assume that H is compact. Then any weak model set is a subset of the lattice ΛH .
The trivial choice W = H leads to comparing a weak model set ΛV to its lattice
complement ΛH/V . This applies to the so-called sets of multiples, which are usually
studied dynamically through their complementary B-free sets (see [6, 10]).

For an example beyond extremal density, let us consider the set of cube-free
integers that are not square-free. An appropriate cut-and-project scheme (Z, H,L)
has compact internal space H = ∏p∈PZ/(p3Z), with P denoting the set of all primes.
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Moreover,L = {(n, Δ(n)) ∶ n ∈ Z}, where Δ ∶ Z→ H denotes the natural embedding
Δ(n) = (n, n, n, . . .) ∈ H. Consider the compact sets V ⊆ W ⊆ H given by

W = ∏
p∈P

(Z/(p3Z)/{0}) , V = ∏
p∈P

(Z/(p3Z)/{0, p2 , 2p2 , . . . , (p − 1)p2}).

Then ΛV and ΛW are the sets of square-free integers and cube-free integers, respec-
tively, and ΛW′ is the set of integers that are cube-free, but not square-free.

Note that W ′ is Haar aperiodic and fails to be compact modulo 0. Together with
Lemmas 5.2 and 5.3, this is an immediate consequence of the following result. Recall
that W is Haar regular if U ∩ W ≠ ∅ implies that mH(U ∩ W) > 0 for any open U ⊆ H
(see [13, Definition 3.10]).

Lemma 5.6 Both V and W are Haar regular, and V is Haar thin in W. Moreover, W
is Haar aperiodic.

Proof Both Haar regularity and Haar thinness can be checked by restricting to
open cylinder sets US(h) ⊆ H as defined in [10], for h ∈ H and finite S ⊂ {p3 ∶ p ∈ P}.
However, for those cylinder sets, the claims are obvious due to the product structure of
mH . For Haar regularity of W, note that mH(W) > 0 by positive density of cube-free
integers. Thus, mH(US(h) ∩ W) > 0 for h ∈ W , as intersecting by US(h) affects only
finite many coordinates. An analogous argument shows Haar regularity of V. A simi-
lar argument also shows Haar thinness, noting that mH(W) > 0 implies mH(W ′) > 0.
As W clearly is aperiodic, Haar aperiodicity follows from Haar regularity by [13,
Remark 3.12]. ∎

Note further that both ΛV and ΛW are weak model sets of maximal density
with respect to An = [−n, n] (see, e.g., [9, Section 5.2] and the references therein).
Moreover, the window W ′ satisfies (W ′)○ = ∅ and W ′ = W . For the latter claim,
note that, due to W ′ ⊆ W = V ∪ W ′, it suffices to show that V ⊆ W ′. However, this
is obvious as V is Haar regular and Haar thin in W.

To summarize, the example ΛW′ of cube-free integers that are not square-free has
a window W ′ that is not compact modulo 0. As W ′ is Haar aperiodic, Theorem B1’
applies. Thus, the dynamical spectrum of the Mirsky measure QG

W′ equals πĜ(L ○).
It thus coincides with the dynamical spectrum of the Mirsky measure QG

W of cube-
free integers. Note that the dynamical spectrum can be identified with the discrete
group Ĥ. Whereas ΛW′ fails to have extremal density along A, both Theorem 4.6 and
Remark 4.7 apply to ΛW′ , due to Lemma 5.4 and Remark 5.5.
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Amer. Math. Soc. 370(2018), 5425–5489.
[7] M. Einsiedler and T. Ward, Ergodic theory with a view towards number theory, Graduate Texts in

Mathematics, 259, Springer, London, 2011.
[8] J.-B. Gouéré, Quasicrystals and almost periodicity. Commun. Math. Phys. 255(2005), 655–681.
[9] C. Huck and C. Richard, On pattern entropy of weak model sets. Discrete Comput. Geom. 54(2015),

741–757.
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