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Abstract. Nulling interferometers such as Darwin or TPF will require a rather sophisticated
data processing in order to perform a reliable planet detection and characterization. We propose
a Bayesian method, which follows the maximum a posteriori (MAP) approach, to solve this
problem. Our method accounts for the noise statistics and optimally combines the data from
a nulling interferometer at all observed wavelengths to perform reliable planet detection. The
problem to be solved is however multi-modal. We show how, in practice, the global optimum of
the MAP criterion can be found by our method; the latter also provides the most likely spectral
energy distributions of all planets. Additionally, we show that a proper regularization allows us
to achieve an improved robustness of the detection and could lead to shorter observation times.

Keywords. techniques: interferometric, methods: data analysis, methods: numerical, methods:
statistical, planetary systems.

1. Introduction

Nulling interferometers make use of destructive interferences to get rid of the stellar
light on the line of sight and strongly reduce the contrast between the light received from
a star and from its surrounding planets Bracewell (1978). It is expected that this feature,
possibly combined with internal and external modulations, will allow us to detect direct
evidences of exo-solar planet emission. A nulling interferometer however gives data of very
low signal-to-noise ratio and which are far from a direct image of the observed scene.
The planet detection and their characterization by their spectral signatures therefore
require a tailor-made data processing. In this paper, we propose a new method based
on the maximum a posteriori (MAP) approach, in order to achieve an optimal planet
detection and characterization. First, the assumed data model for a nulling interferometer
is established. Then we explain how the MAP approach can be applied to this kind of
data. We also show how to effectively obtain the globally optimal solution: that is the
most likely planet positions and spectral energy distributions. Finally, we demonstrate
the capabilities of our algorithm by the processing of realistic simulated data.
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2. Data Model
A general model of the output from a nulling interferometer writes Mennesson (1999):

At,λ =
∫∫

Rt,λ(θ) Iλ (θ) dθ, (2.1)

where At,λ is the recorded amplitude at time t and for the effective wavelength λ, Rt,λ(θ)
is the response of the instrument, i.e., the transmission map as a function of angular
coordinates θ, and Iλ(θ) is the specific brightness distribution of the observed object (or
scene). In this model, we assume that the scene does not vary during the whole data
acquisition. Doing otherwise would make the inversion prohibitively complicated and
probably not robust at least for the detection stage.

Spatial nulling interferometers such as Darwin will use both external modulation (i.e.,
rotation of the interferometric array with time) and internal modulation (i.e., modifica-
tion of the transmission map via phase shifts in the beam combination), so one should
bear in mind that index t in Eq. (2.1) actually codes for both the position in time and
for the configuration of the phase shifts of the array. Historically, the concept of internal
modulation was imagined by Mariotti in 1997 Mennesson, Léger & Ollivier (2005).

Because the data model of Eq. (2.1) is linear, any linear combination of the data gives
synthetic data that follow the same model, with a synthetic transmission map that is the
corresponding linear combination of transmission maps. When using internal modulation
it is possible to find coefficients for such a linear combination that make the synthetic
transmission map an odd function with respect to the angular direction θ Absil (2001).
Additionally, it is trivial to show from Eq. (2.1) that the data corresponding to an odd R
and an even object’s brightness distribution is zero. This is of paramount importance as
all components of the observed scenes except the planets should be even within a good
approximation. Indeed, the star and the exo-zodiacal light should be symmetrical, and
the local zodiacal dust as well as the instrumental thermal emissions are at a constant
level across the field of view. This means that we can, in our data model, retain only the
contribution of the planets, and search only for their parameters in the inversion. We can
write the specific object’s brightness distribution as:

Iλ(θ) =
Nsrc∑
i=1

Fi,λδ(θ − θi) + Isym
λ (θ) , (2.2)

where Nsrc is the number of planets and Fi,λ is the spectral energy distribution (SED)
of the i-th planet and Isym

λ (θ) accounts for all the symmetrically distributed sources.
After proper linear combination of the data, Isym

λ (θ) does not contribute to the expected
value of the signal; it is however the main source of noise. Combining the data model of
Eq. (2.1) with the object’s model of Eq. (2.2) and accounting for modulation yields:

At,λ =
Nsrc∑
i=1

Rt,λ(θi)Fi,λ + nt,λ , (2.3)

where nt,λ is the detection noise.

3. Detection Algorithm
The problem at hand is to estimate the positions θi and the SED’s Fi,λ of the planets,

assuming that their number Nsrc is known. Let us denote this set of parameters by
(θ,F) � {θi , Fi,λ ; i = 1, . . . , Nsrc;λmin � λ � λmax}.
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A well-known approach for the detection task is correlation. One could for instance con-
sider correlating the data recorded at a given wavelength with the noiseless data model
obtained for a point-source at all possible locations Angel & Woolf (1997), Mennesson &
Mariotti (1997). The location yielding the highest correlation would be a probable posi-
tion for a planet. Yet, let alone the fact that such a scheme is not statistically appropriate
for an instrument that is not shift-invariant, it neither makes use of statistical information
on the noise, nor provide a way to optimally combine the data at several wavelengths.

The maximum a posteriori (MAP) approach has none of these shortcomings; it defines
the solution (θ̂, F̂) as the set of parameters that has maximum probability given the data:

(θ̂, F̂) = arg max
(θ,F)

Pr(θ,F|A) , (3.1)

where A denotes the data set. By Bayes’ theorem and since the probability Pr(A) of the
data alone does not depend on the sought parameters, the MAP solution also solves:

(θ̂, F̂) = arg max
(θ,F)

Pr(A|θ,F) Pr(θ,F) = arg min
(θ,F)

JMAP(θ,F) , (3.2)

where the so-called maximum a posteriori cost function (or criterion) is:

JMAP(θ,F) = Jdata(θ,F) + Jprior(θ,F) , (3.3)

and where Jdata(θ,F) ∝ − log Pr(A|θ,F) is the neg-log-likelihood of the data given
the model and Jprior(θ,F) ∝ − log Pr(θ,F) is the negative logarithm of the a priori
probability of the model. Assuming independent Gaussian noise, Jdata writes:

Jdata(θ,F) �
∑
t,λ

1
σ2

t,λ

(
At,λ −

Nsrc∑
i=1

Rt,λ(θi)Fi,λ

)2

(3.4)

where the noise variance σ2
t,λ can be estimated from the data. Minimizing the term

Jdata enforces agreement of the parameters with the data; and minimizing Jprior enforces
agreement of the parameters with the available a priori information. In inverse problem
jargon, Jprior is called a regularization term. Since a properly sampled planet spectrum
should be a smooth function of the wavelength, we define Jprior so as to estimate the
roughness of the SED’s:

Jprior(θ,F) �
Nsrc∑
i=1

µi

λmax∑
λ=λmin

(
∂m Fi,λ

∂λm

)2

(3.5)

where the mth-order spectral derivative is computed by finite differences and were µi are
hyper-parameters allowing us to tune the relative weight of regularization.

Finding the minimum of JMAP with respect to (θ,F) yields the optimal solution.
However, such a criterion is multi-modal, hence its deepest minimum cannot be found
by a descent optimization algorithm: global optimization is required. Nevertheless, since
Jdata and Jprior are convex with respect to the subset of parameters F, the most likely
SED’s can be obtained by solving:

∂JMAP(θ,F)
∂Fi,λ

= 0 ;∀i,∀λ , (3.6)

for given planet positions. Moreover, because both criteria Jdata of Eq. (3.4) and Jprior of
Eq. (3.5) are quadratic with respect to the SED’s, JMAP is also quadratic and Eq. (3.6)
is a set of linear equations. Its solution, denoted in the following by F̂(θ), is analytical
and depends on the data and on the considered planet positions.
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550 E. Thiébaut and L. Mugnier

Figure 1. Detection of a faint planet by various criteria. From left to right: unconstrained J†
data,

J†
data with negative SED’s removed, J†

data with positivity and, J†
MAP with positivity. Darkest

values indicate most likely planet positions. The global minima of the criteria are highlighted
as a white dot surrounded by a black border.

Figure 2. Multiple planet detection steps at low signal-to-noise ratio (RSB∼ 2). From left to
right: criterion mapped for the 1st, 2nd, 3rd and 4th candidate planet.

If we replace the SED’s by F̂(θ) in the cost function JMAP(θ,F) of Eq. (3.2) we
obtain a partially optimized cost function with many less parameters, which only depends
(explicitly) on the assumed planet positions:

J†
MAP(θ) � JMAP(θ, F̂(θ)). (3.7)

It must be noted that this new cost function J†
MAP(θ) is nothing but the original MAP

cost function JMAP(θ,F) that has been optimized on a subset of its parameters (namely,
on the SED’s). Consequently, the former has exactly the same minima as the latter and
is significantly simpler to optimize.

Simply by setting µi = 0,∀i, it is possible to turn regularization off to obtain a solution
which does not depend on any prior. In this case, JMAP = Jdata and hence J†

MAP = J†
data.

To demonstrate the improvement brought by regularization, we must compare the results
obtained by optimizing the unregularized criterion J†

data and those obtained with J†
MAP.

In the following and for sake of simplicity, we denote by J(θ,F) the actual criterion
(either JMAP or Jdata) and J†(θ) the corresponding partially optimized criterion.

The minimum of J† provides the most likely set of planet positions. As expected and
shown by Fig. 1, J† is still multi-modal with respect to θ. To find the global minimum of
J†, the most obvious approach is to sample the field of view and map the cost function
J† onto the grid of planet positions. However if the grid has Ngrid cells, this requires the
solving of Eq. (3.6) and the computation of J† for Ngrid

Nsrc cases. Such a global search
is therefore limited to a modest number of planets on a reasonably small grid. In the
single planet case (see Fig. 1), J† is a 2-D pseudo-image of the field of view where local
minima corresponds to the most likely locations of the planet.

Obviously, the first pseudo-image shown by Fig. 1 is even, which constitutes a sign
ambiguity on the planet position. This ambiguity is due to the fact that the considered
synthetic transmission map R is odd so that for any (θ,F), (−θ,−F) has exactly the same
likelihood. Simply selecting the SED that is mostly positive removes the ambiguity. The
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Figure 3. Planet detection map for the blind-test. The darkest parts of the maps indicate the
minima of the criterion, hence where the planet is most likely located.

fact that the SED of each planet must actually be positive at all wavelengths suggests an
enhancement to the SED estimation, which consists in minimizing Eq. (3.2) or Eq. (3.4)
with respect to the SED’s under a positivity constraint:

F̂(θ) = arg min
F

J(θ,F) s.t. Fi,λ � 0 ;∀i,∀λ . (3.8)

The solution is no longer analytical but improves the planet detection, as seen by the
second and third pseudo-images in Fig. 1. Many numerical algorithms have been devised
to solve Eq. (3.8) when J is quadratic Lawson & Hanson (1974), Bro & Jong (1997), Stark
& Parker (1995). In our simulations, we solved Eq. (3.8) with VMLM-B Thiébaut (2002),
which is suitable even for non-quadratic criteria.

4. Simulation Results
We first checked our algorithm with a scene made of a central star, an exo-zodiacal

cloud and 1 or 3 planets. We simulated data for 4 different rotation angles of a Robin-
Laurance interferometer with 15 spectral channels. In the case of a single planet, Fig. 1
clearly demonstrates the improvements brought by non-negativity and regularization:
not only do these constraints help the method remove ambiguities (there are fewer local
minima of similar depth in the criterion map) but they also yield the correct position,
which would have been completely wrong otherwise. In order to be able to detect more
than one planet we iteratively applied our single planet detection scheme to a 3 planet
scene as follows: for each new planet, we optimize J† with respect to all SED’s but we only
allow the new planet to move; this yields a 2-D pseudo-image, whose global minimum
is the most likely position of the new planet. Figure 2 shows that the 3 first planets are
readily detected by our algorithm, whereas the (non-existing) 4th one is not.

In order to test our algorithm when the components of the observed scene are really
unknown, we applied our method to nulling data simulated by someone else. The data
consists in 1000 exposures of a rotating linear nulling interferometer with 3 telescopes
and 2 internal modulation states (the so-called L-TTN configuration). There are 27
wavelength channels from 6.7µm to 20µm, the duration of each exposure is 100 s and
we estimated the signal-to-noise ratio to be SNR� 1.5 per datum. Figure 3 shows the
regularized criterion J†

MAP computed for this data set onto a 1′′×1′′ field of view around
the central star. It clearly exhibits a likely point-like source at (0.′′012,−0.′′097) from the
central star. After unveiling of the simulation parameters, a planet was indeed simulated
at 1 AU away from a star at a distance of 10 pc. To check the robustness of our algorithm,
we repeated the processing for smaller and smaller data subsets. Figure 4 shows the
result of the detection with 100 %, 50 %, 10 %, 5 % and 1 % of the original data, i.e., with
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Figure 4. Effects of reducing the total observing time on planet detection. Top row: planet
detection by unregularized criterion J†

data. Bottom row: planet detection with spectral regular-

ization criterion J†
MAP. From left to right: 1000, 500, 100, 50 and 10 exposures. Strict positivity

constraint was used in all cases.

1000, 500, 100, 50 and only 10 exposures of 100 s each. From this figure it is clear that
spectral regularization improves the sensitivity of the detection. Indeed, with spectral
regularization, the detection is still reliable with only ∼50 exposures; whereas at least
∼100 exposures are needed without the regularization.

5. Conclusions
We have shown how a maximum a posteriori approach can lead to a planet detection

algorithm suitable for nulling interferometry data. Unlike the correlation method used
in earlier studies, our approach optimally combines all the available pieces of informa-
tion. Thanks to simulated data, we have demonstrated that non-negativity and spectral
regularization (enforcement that the spectral energy distribution of a planet should be
somewhat smooth) are critical features to disentangle the numerous ambiguities in the
detection from such kind of data. The most likely SED’s of the detected planets are a
by-product of our algorithm and can be used to perform planet characterization. We have
also shown how the detection scheme can be modified to account for several planets.
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